1
|
Bharti J, Verma R, Thangaraj A, Sony SK, Fathy K, Rawat B, Kaul R, Chakraborty P, Gupta I, Kaul T. Combating aggressive weeds: Reinforcing herbicide resistance in pigeonpea (Cajanus cajan L.) through genome editing. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109550. [PMID: 40054114 DOI: 10.1016/j.plaphy.2025.109550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/10/2025] [Accepted: 01/22/2025] [Indexed: 05/07/2025]
Abstract
Pigeonpea (Cajanus cajan L.) is a drought-tolerant, tropical grain legume, rich in dietary proteins, vitamins, and micronutrients. However, the longstanding problem of weed infestation in the fields is a major constraint that significantly hampers the productivity of pigeonpea. Glyphosate, a widely used post-emergent, broad-spectrum, systemic herbicide, has emerged as an effective weed management strategy at the field level. It inhibits the chloroplastic enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) in the shikimate pathway by competitively inhibiting its substrate, phosphoenol pyruvate (PEP), thus curtailing the biosynthesis of essential aromatic amino acids (phenylalanine, tyrosine, and tryptophan). This makes glyphosate lethal to weeds and the main crop as well. To address this susceptibility towards glyphosate, we developed glyphosate-resistant pigeonpea plants by modifying the PEP-binding site within the native CcEPSPS enzyme at positions 182G-to-A, 183T-to-I, and 187P-to-S, for reducing glyphosate binding affinity. The targeted base-editing was achieved using the CRISPR-Cas9-based homology-directed repair (HDR) technique. T2-edited plants harbouring mCcEPSPS exhibited stable inheritance of the these GATIPS mutations, reduced glyphosate binding affinity, and maintained optimal photosynthetic and agronomic parameters post-glyphosate application. The mCcEPSPS enzyme efficiently catalysed the transformation of PEP and S3P to EPSP and demonstrated in vitro resistance to glyphosate. In contrast to treated control (TC) plants, the edited plants possessed excellent photosynthetic, agronomic, and physiological metrics following a post-foliar Roundup (6 ml/L) spray. This work offers the first efficient and precise gene-editing report in pigeonpea, offering an effective, sustainable strategy for broad-spectrum weed management to mitigate both quantitative and qualitative crop losses.
Collapse
Affiliation(s)
- Jyotsna Bharti
- Nutritional Improvement of Crops Group, Plant Biology and Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rachana Verma
- Nutritional Improvement of Crops Group, Plant Biology and Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Arulprakash Thangaraj
- Nutritional Improvement of Crops Group, Plant Biology and Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sonia Khan Sony
- Nutritional Improvement of Crops Group, Plant Biology and Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Khaled Fathy
- Nutritional Improvement of Crops Group, Plant Biology and Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Bhupendra Rawat
- Nutritional Improvement of Crops Group, Plant Biology and Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rashmi Kaul
- Nutritional Improvement of Crops Group, Plant Biology and Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Puja Chakraborty
- Nutritional Improvement of Crops Group, Plant Biology and Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Isha Gupta
- Nutritional Improvement of Crops Group, Plant Biology and Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Tanushri Kaul
- Nutritional Improvement of Crops Group, Plant Biology and Biotechnology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
2
|
He Y, Hua Y, Chen X, Zhang X, Lei L, Lin Y, Wu G. Engineering 5-Enolpyruvylshikimate-3-phosphate Synthases from Halomonas sp. for Augmenting Glyphosate-Resistance without Activity Penalty. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10430-10438. [PMID: 40252030 DOI: 10.1021/acs.jafc.5c00610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2025]
Abstract
Glyphosate nonselectively inhibits most herbaceous plants by targeting 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Introducing glyphosate-resistant EPSPS genes into crops imparts herbicide resistance, essential for molecular breeding. In this study, we enhanced the EPSPS from Halomonas sp. through directed evolution. After two screening rounds, the best variant (HoEPSPS-4M) with four mutations (G112A, M155 V, I285F, D326E) exhibited a 22-fold increase in glyphosate resistance (kcat/Km × Ki) and a 2.3-fold improvement in catalytic efficiency (kcat/Km). Isothermal titration calorimetry (ITC) showed a 1.7-fold reduction in glyphosate binding affinity. Molecular docking and dynamics simulations revealed that the G112A mutation at the active site decreased glyphosate binding, while distal mutations modulated enzymatic activity by altering protein dynamics and functional networks. Overexpression of HoEPSPS-4 M in Nicotiana benthamiana conferred high glyphosate resistance, demonstrating its potential for developing herbicide-resistant crops. This work expands genetic resources for glyphosate resistance and provides insights into optimizing resistance and enzymatic efficiency by protein engineering.
Collapse
Affiliation(s)
- Yunhao He
- College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, PR China
| | - Yu Hua
- College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, PR China
| | - Xinyi Chen
- College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, PR China
| | - Xin Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, PR China
| | - Lei Lei
- School of Life Science and Technology, Wuhan Polytechnic University, No. 68, Xuefu South Road, Dongxihu District, Wuhan 430023, PR China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, PR China
| | - Gaobing Wu
- College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, PR China
| |
Collapse
|
3
|
Vidal-Verdú À, Latorre-Pérez A, Pascual J, Mañes-Collado R, Nevot-Terraes A, Porcar M. Assessing hydrocarbon degradation capacity of Isoptericola peretonis sp. nov. and related species: a comparative study. Front Microbiol 2025; 16:1471121. [PMID: 39973932 PMCID: PMC11839211 DOI: 10.3389/fmicb.2025.1471121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/22/2025] [Indexed: 02/21/2025] Open
Abstract
Since the beginning of their production and use, fossil fuels have affected ecosystems, causing significant damage to their biodiversity. Bacterial bioremediation can provide solutions to this environmental problem. In this study, the new species Isoptericola peretonis sp. nov. 4D.3T has been characterized and compared to other closely related species in terms of hydrocarbon degradation and biosurfactant production by in vitro and in silico analyses. Biosurfactants play an important role in microbial hydrocarbon degradation by emulsifying hydrocarbons and making them accessible to the microbial degradation machinery. The tests performed showed positive results to a greater or lesser degree for all strains. In the synthesis of biosurfactants, all the strains tested showed biosurfactant activity in three complementary assays (CTAB, hemolysis and E24%) and rhamnolipid synthesis genes have been predicted in silico in the majority of Isoptericola strains. Regarding hydrocarbon degradation, all the Isoptericola strains analyzed presented putative genes responsible for the aerobic and anaerobic degradation of aromatic and alkane hydrocarbons. Overall, our results highlight the metabolic diversity and the biochemical robustness of the Isoptericola genus which is proposed to be of interest in the field of hydrocarbon bioremediation.
Collapse
Affiliation(s)
- Àngela Vidal-Verdú
- Institute for Integrative Systems Biology I2SysBio (Universitat de València-CSIC), Paterna, Spain
| | - Adriel Latorre-Pérez
- Darwin Bioprospecting Excellence SL. Parc Científic Universitat de València, Paterna, Spain
| | - Javier Pascual
- Darwin Bioprospecting Excellence SL. Parc Científic Universitat de València, Paterna, Spain
| | - Ruth Mañes-Collado
- Institute for Integrative Systems Biology I2SysBio (Universitat de València-CSIC), Paterna, Spain
| | - Aitana Nevot-Terraes
- Institute for Integrative Systems Biology I2SysBio (Universitat de València-CSIC), Paterna, Spain
| | - Manuel Porcar
- Institute for Integrative Systems Biology I2SysBio (Universitat de València-CSIC), Paterna, Spain
- Darwin Bioprospecting Excellence SL. Parc Científic Universitat de València, Paterna, Spain
| |
Collapse
|
4
|
Ouyang C, Jin X, Guo Q, Luo S, Zheng Y, Zou J, An B, Li D. Highly Efficient Agrobacterium tumefaciens Mediated Transformation of Oil Palm Using an EPSPS-Glyphosate Selection System. PLANTS (BASEL, SWITZERLAND) 2024; 13:3343. [PMID: 39683136 DOI: 10.3390/plants13233343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024]
Abstract
Oil palm (Elaeis guineensis Jacq.) is the most efficient oil-producing crop globally, yet progress in its research has been hampered by the lack of effective genetic transformation systems. The EPSPS gene, encoding 5-enolpyruvylshikimate-3-phosphate synthase, has been used as a transgenic selection marker in various crops, including rice and soybean. This study evaluated the EPSPS/glyphosate selection system for oil palm transformation. We constructed a binary expression vector, pCGlyDESCLI-C, containing the TIPS-EiEPSPS selection marker from goosegrass and the mScarlet-I red fluorescent reporter gene. This vector was introduced into oil palm embryonic callus (EC) via Agrobacterium-mediated transformation. After optimizing the transformation steps, positive calli were obtained, and integration of the foreign gene into the oil palm genome was confirmed through molecular analysis. Notably, the selection efficiency of the EPSPS/glyphosate selection system exceeded that of the traditional hpt/hygromycin selection system, demonstrating its advantages. Our findings support the effectiveness of the TIPS-EiEPSPS/glyphosate selection system for oil palm genetic transformation, marking its first application in this species and offering a valuable tool for advancing research on this economically significant crop.
Collapse
Affiliation(s)
- Chao Ouyang
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Xiongxia Jin
- College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Qinghui Guo
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Shaojie Luo
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Yusheng Zheng
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Jixin Zou
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Baoguang An
- Guangdong Bolian Biotechnology Co., Ltd., Guangzhou 511466, China
| | - Dongdong Li
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| |
Collapse
|
5
|
Li S, Li P, Li X, Wen N, Wang Y, Lu W, Lin M, Lang Z. In maize, co-expression of GAT and GR79-EPSPS provides high glyphosate resistance, along with low glyphosate residues. ABIOTECH 2023; 4:277-290. [PMID: 38106436 PMCID: PMC10721750 DOI: 10.1007/s42994-023-00114-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/01/2023] [Indexed: 12/19/2023]
Abstract
Herbicide tolerance has been the dominant trait introduced during the global commercialization of genetically modified (GM) crops. Herbicide-tolerant crops, especially glyphosate-resistant crops, offer great advantages for weed management; however, despite these benefits, glyphosate-resistant maize (Zea mays L.) has not yet been commercially deployed in China. To develop a new bio-breeding resource for glyphosate-resistant maize, we introduced a codon-optimized glyphosate N-acetyltransferase gene, gat, and the enolpyruvyl-shikimate-3-phosphate synthase gene, gr79-epsps, into the maize variety B104. We selected a genetically stable high glyphosate resistance (GR) transgenic event, designated GG2, from the transgenic maize population through screening with high doses of glyphosate. A molecular analysis demonstrated that single copy of gat and gr79-epsps were integrated into the maize genome, and these two genes were stably transcribed and translated. Field trials showed that the transgenic event GG2 could tolerate 9000 g acid equivalent (a.e.) glyphosate per ha with no effect on phenotype or yield. A gas chromatography-mass spectrometry (GC-MS) analysis revealed that, shortly after glyphosate application, the glyphosate (PMG) and aminomethylphosphonic acid (AMPA) residues in GG2 leaves decreased by more than 90% compared to their levels in HGK60 transgenic plants, which only harbored the epsps gene. Additionally, PMG and its metabolic residues (AMPA and N-acetyl-PMG) were not detected in the silage or seeds of GG2, even when far more than the recommended agricultural dose of glyphosate was applied. The co-expression of gat and gr79-epsps, therefore, confers GG2 with high GR and a low risk of herbicide residue accumulation, making this germplasm a valuable GR event in herbicide-tolerant maize breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-023-00114-8.
Collapse
Affiliation(s)
- Shengyan Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pengcheng Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangyin Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ning Wen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yinxiao Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Min Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhihong Lang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan China
| |
Collapse
|
6
|
Shen E, Wang X, Lu Z, Zhou F, Ma W, Cui Z, Li Z, Li C, Lin Y. Overexpression of a beta-1,6-glucanase gene GluM in transgenic rice confers high resistance to rice blast, sheath blight and false smut. PEST MANAGEMENT SCIENCE 2023; 79:2152-2162. [PMID: 36729081 DOI: 10.1002/ps.7394] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Frequent fungal diseases tend to lead to severe losses in rice production. As a main component of the fungal cell wall, glucan plays an important role in the growth and development of fungi. Glucanase can inhibit the growth of fungi by breaking glycosidic bonds, and may be a promising target for developing rice varieties with broad-spectrum disease resistance. RESULTS We transferred a codon-optimized β-1,6-glucanase gene (GluM) from myxobacteria into the japonica rice variety Zhonghua11 (ZH11), and obtained a large number of individual transgenic plants with GluM overexpression. Based on molecular analysis, three single-copy homozygous lines with GluM overexpression were selected for assessment of fungal disease resistance at the T3 generation. Compared with that of the recipient cultivar ZH11, the area of rice blast lesion in transgenic rice was reduced by 82.71%; that of sheath blight lesion was decreased by 35.76%-43.67%; the sheath blight resistance in the field was enhanced by an average of 0.75 grade over 3 years; and the incidence of diseased panicles due to rice false smut was decreased by 65.79%. More importantly, there was no obvious loss of yield (without a significant effect on agronomic traits). Furthermore, plants overexpressing a β-1,6-glucanase gene showed higher disease resistance than rice plants overexpressing a β-1,3-glucanase gene derived from tobacco. CONCLUSION The β-1,6-glucanase gene GluM can confer broad-spectrum disease resistance to rice, providing an environmentally friendly alternative way to effectively manage fungal pathogens in rice production. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Enlong Shen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xingchao Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhaoxi Lu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fei Zhou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing, China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Changyan Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
7
|
Sony SK, Kaul T, Motelb KFA, Thangaraj A, Bharti J, Kaul R, Verma R, Nehra M. CRISPR/Cas9-mediated homology donor repair base editing confers glyphosate resistance to rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1122926. [PMID: 36959937 PMCID: PMC10027715 DOI: 10.3389/fpls.2023.1122926] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Globally, CRISPR-Cas9-based genome editing has ushered in a novel era of crop advancements. Weeds pose serious a threat to rice crop productivity. Among the numerous herbicides, glyphosate [N-(phosphonomethyl)-glycine] has been employed as a post-emergent, broad-spectrum herbicide that represses the shikimate pathway via inhibition of EPSPS (5'-enolpyruvylshikimate-3-phosphate synthase) enzyme in chloroplasts. Here, we describe the development of glyphosate-resistant rice lines by site-specific amino acid substitutions (G172A, T173I, and P177S: GATIPS-mOsEPSPS) and modification of phosphoenolpyruvate-binding site in the native OsEPSPS gene employing fragment knockout and knock-in of homology donor repair (HDR) template harboring desired mutations through CRISPR-Cas9-based genome editing. The indigenously designed two-sgRNA OsEPSPS-NICTK-1_pCRISPR-Cas9 construct harboring rice codon-optimized SpCas9 along with OsEPSPS-HDR template was transformed into rice. Stable homozygous T2 edited rice lines revealed significantly high degree of glyphosate-resistance both in vitro (4 mM/L) and field conditions (6 ml/L; Roundup Ready) in contrast to wild type (WT). Edited T2 rice lines (ER1-6) with enhanced glyphosate resistance revealed lower levels of endogenous shikimate (14.5-fold) in contrast to treated WT but quite similar to WT. ER1-6 lines exhibited increased aromatic amino acid contents (Phe, two-fold; Trp, 2.5-fold; and Tyr, two-fold) than WT. Interestingly, glyphosate-resistant Cas9-free EL1-6 rice lines displayed a significant increment in grain yield (20%-22%) in comparison to WT. Together, results highlighted that the efficacy of GATIPS mutations in OsEPSPS has tremendously contributed in glyphosate resistance (foliar spray of 6 ml/L), enhanced aromatic amino acids, and improved grain yields in rice. These results ensure a novel strategy for weed management without yield penalties, with a higher probability of commercial release.
Collapse
|
8
|
Gan Q, Luan M, Hu M, Liu Z, Zhang Z. Functional study of CYP90A1 and ALDH3F1 gene obtained by transcriptome sequencing analysis of Brassica napus seedlings treated with brassinolide. FRONTIERS IN PLANT SCIENCE 2022; 13:1040511. [PMID: 36407633 PMCID: PMC9669335 DOI: 10.3389/fpls.2022.1040511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Sclerotinia disease and weeds of Brassica napus greatly reduce crop yields. However, brassinolides can improve the resistance of plants to sclerotinia diseases and herbicides. In this study, we investigated the effects of brassinolide on the occurrence, physiological indices, yield, and gene expression of Fanming No. 1 seeds under sclerotinia and glufosinate stress. The results showed that soaking of the seeds in 0.015% brassinolide for 6 h reduced the incidence of sclerotinia by 10%. Additionally, in response to glufosinate stress at the seedling stage, the enzyme activities of catalase and superoxide dismutase increased by 9.6 and 19.0 U/gFW/min, respectively, and the soluble sugar content increased by 9.4 mg/g, increasing the stress resistance of plants and yield by 2.4%. LHCB1, fabF, psbW, CYP90A1, ALDH3F1, ACOX1, petF, and ACSL were screened by transcriptome analysis. ALDH3F1 and CYP90A1 were identified as key genes. Following glufosinate treatment, transgenic plants overexpressing ALDH3F1 and CYP90A1 were found to be resistant to glufosinate, and the expression levels of the ALDH3F1 and CYP90A1 were 1.03-2.37-fold as high as those in the control. The expression level of ATG3, which is an antibacterial gene related to sclerotinia disease, in transgenic plants was 2.40-2.37-fold as high as that in the control. Our results indicate that these two key genes promote plant resistance to sclerotinia and glufosinate. Our study provides a foundation for further studies on the molecular mechanisms of rapeseed resistance breeding and selection of new resistant varieties.
Collapse
Affiliation(s)
- Qingqin Gan
- College of Agriculture, Hunan Agricultural University, Changsha, China
| | - Mingbao Luan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences/Key Laboratory of Stem-Fiber Biomass and Engineering Microbiology, Ministry of Agriculture, Changsha, China
| | - Maolong Hu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Science, Nanjing, China
| | - Zhongsong Liu
- College of Agriculture, Hunan Agricultural University, Changsha, China
| | - Zhenqian Zhang
- College of Agriculture, Hunan Agricultural University, Changsha, China
| |
Collapse
|
9
|
Ouyang C, Liu W, Chen S, Zhao H, Chen X, Jin X, Li X, Wu Y, Zeng X, Huang P, He X, An B. The Naturally Evolved EPSPS From Goosegrass Confers High Glyphosate Resistance to Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:756116. [PMID: 34777434 PMCID: PMC8586540 DOI: 10.3389/fpls.2021.756116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Glyphosate-resistant crops developed by the CP4-EPSPS gene from Agrobacterium have been planted on a massive scale globally, which benefits from the high efficiency and broad spectrum of glyphosate in weed control. Some glyphosate-resistant (GR) genes from microbes have been reported, which might raise biosafety concerns. Most of them were obtained through a hygromycin-HPT transformation system. Here we reported the plant source with 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene from goosegrass endowed rice with high resistance to glyphosate. The integrations and inheritability of the transgenes in the rice genome were investigated within two generations. The EiEPSPS transgenic plants displayed similar growth and development to wild type under no glyphosate selection pressure but better reproductive performance under lower glyphosate selection pressure. Furthermore, we reconstructed a binary vector pCEiEPSPS and established the whole stage glyphosate selection using the vector. The Glyphosate-pCEiEPSPS selection system showed a significantly higher transformation efficiency compared with the hygromycin-HPT transformation system. Our results provided a promising alternative gene resource to the development of GR plants and also extended the plant transformation toolbox.
Collapse
Affiliation(s)
- Chao Ouyang
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Wei Liu
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
| | - Silan Chen
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Huimin Zhao
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Xinyan Chen
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Xiongxia Jin
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Xinpeng Li
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Yongzhong Wu
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Xiang Zeng
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Peijin Huang
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| | - Xiuying He
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
| | - Baoguang An
- Hainan Bolian Rice Gene Technology Co., Ltd., Haikou, China
| |
Collapse
|
10
|
Wen L, Zhong J, Cui Y, Duan Z, Zhou F, Li C, Ma W, Yin C, Chen H, Lin Y. Coexpression of I. variabilis-EPSPS* and WBceGO-B3S1 Genes Contributes to High Glyphosate Tolerance and Low Glyphosate Residues in Transgenic Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7388-7398. [PMID: 33909432 DOI: 10.1021/acs.jafc.1c00880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Weeds are one of the main factors that affect the yield and quality of rice. The combination of glyphosate-resistant transgenic crops and glyphosate is regarded as an important strategy for weed management in modern agriculture. In this study, a codon-optimized glyphosate oxidase gene WBceGO-B3S1 from a variant BceGO-B3S1 and a glyphosate-tolerant gene I. variabilis-EPSPS* from the bacterium Isoptericola variabilis were transformed into an Oryza sativa subsp. geng rice variety Zhonghua11 by Agrobacterium-mediated genetic transformation. Molecular detection and field agronomic trait analysis contributed to the selection of three homozygous lines with stable expression of a single copy of the transferred genes integrated into the intergenic region. Under the treatment of glyphosate at a test amount in the field, transgenic lines exhibited no differences in agronomic traits. Under the treatment by 3600 g ha-1 glyphosate, the glyphosate residues in the aboveground tissues of the three candidate transgenic homozygous lines were significantly lower than those in the transgenic homozygous line with I. variabilis-EPSPS* alone at 1, 5, and 10 days. The transgenic line coexpressing I. variabilis-EPSPS* and WBceGO-B3S1 has great application value in breeding of transgenic rice varieties with high glyphosate resistance and low glyphosate residues. This study is a step forward in solving the problem of herbicide residues in food crops by taking advantage of genes that degrade glyphosate.
Collapse
Affiliation(s)
- Lixian Wen
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Jue Zhong
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Ying Cui
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhenchun Duan
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Fei Zhou
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - ChangYan Li
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Weihua Ma
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Changxi Yin
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Hao Chen
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
11
|
Li C, Zhang J, Ren Z, Xie R, Yin C, Ma W, Zhou F, Chen H, Lin Y. Development of 'multiresistance rice' by an assembly of herbicide, insect and disease resistance genes with a transgene stacking system. PEST MANAGEMENT SCIENCE 2021; 77:1536-1547. [PMID: 33201594 DOI: 10.1002/ps.6178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Weeds, diseases and pests pose serious threats to rice production and cause significant economic losses. Cultivation of rice varieties with resistance to herbicides, diseases and pests is believed to be the most economical and environmentally friendly method to deal with these problems. RESULTS In this study, a highly efficient transgene stacking system was used to assembly the synthetic glyphosate-tolerance gene (I. variabilis-EPSPS*), lepidopteran pest resistance gene (Cry1C*), brown planthopper resistance genes (Bph14* and OsLecRK1*), bacterial blight resistance gene (Xa23*) and rice blast resistance gene (Pi9*) onto a transformable artificial chromosome vector. The construct was transferred into ZH11 (a widely used japonica rice cultivar Zhonghua 11) via Agrobacterium-mediated transformation and 'multiresistance rice' (MRR) with desirable agronomic traits was obtained. The results showed that MRR had significantly improved resistance to glyphosate, borers, brown planthopper, bacterial blight and rice blast relative to the recipient cultivar ZH11. Besides, under the natural occurrence of pests and diseases in the field, the yield of MRR was significantly higher than that of ZH11. CONCLUSION A multigene transformation strategy was employed to successfully develop rice lines with multiresistance to glyphosate, borers, brown planthopper, bacterial blight and rice blast, and the obtained MRR is expected to have great application potential. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chuanxu Li
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianguo Zhang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhiyong Ren
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Rong Xie
- Rice and Sorghum Research Institute, Sichuan Academy of Agricultural Sciences, Key Laboratory of Southwest Rice Biology and Genetic Breeding, Ministry of Agriculture, Luzhou Branch of National Rice Improvement Center, Deyang, China
| | - Changxi Yin
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weihua Ma
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fei Zhou
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hao Chen
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
12
|
Li W, Wang L, Zhou F, Li C, Ma W, Chen H, Wang G, Pickett JA, Zhou JJ, Lin Y. Overexpression of the homoterpene synthase gene, OsCYP92C21, increases emissions of volatiles mediating tritrophic interactions in rice. PLANT, CELL & ENVIRONMENT 2021; 44:948-963. [PMID: 33099790 DOI: 10.1111/pce.13924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/12/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Plant defence homoterpenes can be used to attract pest natural enemies. However, the biosynthetic pathway of homoterpenes is still unknown in rice, and the practical application of such indirect defence systems suffers from inherent limitations due to their low emissions from plants. Here, we demonstrated that the protein OsCYP92C21 is responsible for homoterpene biosynthesis in rice. We also revealed that the ability of rice to produce homoterpenes is dependent on the subcellular precursor pools. By increasing the precursor pools through specifically subcellular targeting expression, genetic transformation and genetic introgression, we significantly enhanced homoterpene biosynthesis in rice. The final introgressed GM rice plants exhibited higher homoterpene emissions than the wild type rice and the highest homoterpene emission reported so far for such GM plants even without the induction of herbivore attack. As a result, these GM rice plants demonstrated strong attractiveness to the parasitic wasp Cotesia chilonis. This study discovered the homoterpene biosynthesis pathway in rice, and lays the foundation for the utilisation of plant indirect defence mechanism in the "push-pull" strategy of integrated pest management through increasing precursor pools in the subcellular compartments and overexpressing homoterpene synthase by genetic transformation.
Collapse
Affiliation(s)
- Wei Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Lingnan Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Fei Zhou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Changyan Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hao Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Jing-Jiang Zhou
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, Gansu Agricultural University, Lanzhou, China
- College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
13
|
Zhang J, Guo Y, Fang Q, Zhu Y, Zhang Y, Liu X, Lin Y, Barkan A, Zhou F. The PPR-SMR Protein ATP4 Is Required for Editing the Chloroplast rps8 mRNA in Rice and Maize. PLANT PHYSIOLOGY 2020; 184:2011-2021. [PMID: 32928899 PMCID: PMC7723101 DOI: 10.1104/pp.20.00849] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/01/2020] [Indexed: 05/20/2023]
Abstract
Chloroplast gene expression involves the participation of hundreds of pentatricopeptide repeat (PPR) RNA binding proteins, and proteins in the PLS subfamily typically specify sites of RNA editing, whereas those in the P-subfamily typically stabilize RNA, activate translation, or promote intron splicing. Several P-type PPR proteins include a small MutS-related (SMR) domain, but the biochemical contribution of the SMR domain remains enigmatic. Here, we describe a rice (Oryza sativa) mutant, osatp4, lacking the ortholog of ATP4, a PPR-SMR protein in maize (Zea mays). osatp4 mutants were chlorotic and had a plastid-ribosome deficiency when grown in the cold. Like maize ATP4, OsATP4 was required for the accumulation of dicistronic rpl16-rpl14 transcripts. Surprisingly, OsATP4 was also required for the editing of a specific nucleotide in the ribosomal protein S8 transcripts, rps8, and this function was conserved in maize. By contrast, rps8 RNA was edited normally in the maize PROTON gradient regulation3 mutant, pgr3, which also lacks rpl16-rpl14 transcripts, indicating that the editing defect in atp4 mutants is not a secondary effect of altered rpl16-rpl14 RNA metabolism. Expression of the edited rps8 isoform in transgenic osatp4 mutants complemented the cold-sensitive phenotype, indicating that a rps8 expression defect accounts for the cold-sensitivity. We suggest that ATP4 stimulates rps8 editing by facilitating access of a previously characterized PLS-type RNA editing factor to its cognate cis-element upstream of the edited nucleotide.
Collapse
Affiliation(s)
- Jinghong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yipo Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qian Fang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongli Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuejiao Liu
- Institute of Crop Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Fei Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
14
|
Zhai R, Ye S, Zhu G, Lu Y, Ye J, Yu F, Chu Q, Zhang X. Identification and integrated analysis of glyphosate stress-responsive microRNAs, lncRNAs, and mRNAs in rice using genome-wide high-throughput sequencing. BMC Genomics 2020; 21:238. [PMID: 32183693 PMCID: PMC7076996 DOI: 10.1186/s12864-020-6637-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Glyphosate has become the most widely used herbicide in the world. Therefore, the development of new varieties of glyphosate-tolerant crops is a research focus of seed companies and researchers. The glyphosate stress-responsive genes were used for the development of genetically modified crops, while only the EPSPS gene has been used currently in the study on glyphosate-tolerance in rice. Therefore, it is essential and crucial to intensify the exploration of glyphosate stress-responsive genes, to not only acquire other glyphosate stress-responsive genes with clean intellectual property rights but also obtain non-transgenic glyphosate-tolerant rice varieties. This study is expected to elucidate the responses of miRNAs, lncRNAs, and mRNAs to glyphosate applications and the potential regulatory mechanisms in response to glyphosate stress in rice. RESULTS Leaves of the non-transgenic glyphosate-tolerant germplasm CA21 sprayed with 2 mg·ml- 1 glyphosate (GLY) and CA21 plants with no spray (CK) were collected for high-throughput sequencing analysis. A total of 1197 DEGs, 131 DELs, and 52 DEMs were identified in the GLY samples in relation to CK samples. Genes were significantly enriched for various biological processes involved in detoxification of plant response to stress. A total of 385 known miRNAs from 59 miRNA families and 94 novel miRNAs were identified. Degradome analysis led to the identification of 32 target genes, of which, the squamosa promoter-binding-like protein 12 (SPL12) was identified as a target of osa-miR156a_L + 1. The lncRNA-miRNA-mRNA regulatory network consisted of osa-miR156a_L + 1, two transcripts of SPL12 (LOC_Os06g49010.3 and LOC_Os06g49010.5), and 13 lncRNAs (e.g., MSTRG.244.1 and MSTRG.16577.1). CONCLUSION Large-scale expression changes in coding and noncoding RNA were observed in rice mainly due to its response to glyphosate. SPL12, osa-miR156, and lncRNAs (e.g., MSTRG.244.1 and MSTRG.16577.1) could be a novel ceRNA mechanism in response to glyphosate in rice by regulating transcription and metal ions binding. These findings provide a theoretical basis for breeding glyphosate-tolerant rice varieties and for further research on the biogenesis of glyphosate- tolerance in rice.
Collapse
Affiliation(s)
- Rongrong Zhai
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Road, Hangzhou, 310021 Zhejiang China
| | - Shenghai Ye
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Road, Hangzhou, 310021 Zhejiang China
| | - Guofu Zhu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Road, Hangzhou, 310021 Zhejiang China
| | - Yanting Lu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Road, Hangzhou, 310021 Zhejiang China
| | - Jing Ye
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Road, Hangzhou, 310021 Zhejiang China
| | - Faming Yu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Road, Hangzhou, 310021 Zhejiang China
| | | | - Xiaoming Zhang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, 198, Shiqiao Road, Hangzhou, 310021 Zhejiang China
| |
Collapse
|
15
|
Wang XJ, Dong YF, Jin X, Yang JT, Wang ZX. The application of gene splitting technique for controlling transgene flow in rice. Transgenic Res 2019; 29:69-80. [PMID: 31654191 DOI: 10.1007/s11248-019-00178-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/18/2019] [Indexed: 10/25/2022]
Abstract
Controlling transgene flow in China is important, as this country is part of the center of origin of rice. A gene-splitting technique based on intein-mediated trans-splicing represents a new strategy for controlling transgene flow via biological measures. In this study, the G2-aroA gene which provides glyphosate tolerance was split into an N-terminal and a C-terminal region, which were then fused to intein N and intein C of the Ssp DnaE intein, ultimately forming EPSPSn:In and Ic:EPSPSc fusion genes, respectively. These fusion genes were subsequently transformed into the rice cultivar Zhonghua 11 via the Agrobacterium-mediated method. The two split gene fragments were then introduced into the same rice genome by genetic crossings. Glyphosate tolerance analysis revealed that the functional target protein was reconstituted by Ssp DnaE intein-mediated trans-splicing and that the resultant hybrid rice was glyphosate tolerant. The reassembly efficiency of the split gene fragments ranged from 67 to 91% at the molecular level, and 100% of the hybrid F1 progeny were glyphosate tolerant. Transgene flow experiments showed that when the split gene fragments are inserted into homologous chromosomes, the gene-splitting technique can completely avoid the escape of the target trait to the environment. This report is the first on the reassembly efficiency and effectiveness of transgene flow containment via gene splitting in rice. This study provides not only a new biological strategy for controlling rice transgene flow but also a new method for cultivating hybrid transgenic rice.
Collapse
Affiliation(s)
- Xu-Jing Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, MARA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Beijing, 100081, China
| | - Yu-Feng Dong
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, MARA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Beijing, 100081, China
| | - Xi Jin
- Department of Biochemistry, Baoding University, Baoding, 071000, China
| | - Jiang-Tao Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, MARA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Beijing, 100081, China
| | - Zhi-Xing Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, MARA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Beijing, 100081, China.
| |
Collapse
|
16
|
Vila-Aiub MM, Yu Q, Powles SB. Do plants pay a fitness cost to be resistant to glyphosate? THE NEW PHYTOLOGIST 2019; 223:532-547. [PMID: 30737790 DOI: 10.1111/nph.15733] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
We reviewed the literature to understand the effects of glyphosate resistance on plant fitness at the molecular, biochemical and physiological levels. A number of correlations between enzyme characteristics and glyphosate resistance imply the existence of a plant fitness cost associated with resistance-conferring mutations in the glyphosate target enzyme, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). These biochemical changes result in a tradeoff between the glyphosate resistance of the EPSPS enzyme and its catalytic activity. Mutations that endow the highest resistance are more likely to decrease catalytic activity by reducing the affinity of EPSPS for its natural substrate, and/or slowing the velocity of the enzyme reaction, and are thus very likely to endow a substantial plant fitness cost. Prediction of fitness costs associated with EPSPS gene amplification and overexpression can be more problematic. The validity of cost prediction based on the theory of evolution of gene expression and resource allocation has been cast into doubt by contradictory experimental evidence. Further research providing insights into the role of the EPSPS cassette in weed adaptation, and estimations of the energy budget involved in EPSPS amplification and overexpression are required to understand and predict the biochemical and physiological bases of the fitness cost of glyphosate resistance.
Collapse
Affiliation(s)
- Martin M Vila-Aiub
- Australian Herbicide Resistance Initiative (AHRI) - School of Agriculture & Environment, University of Western Australia (UWA), Crawley, 6009, Western Australia, Australia
- IFEVA - CONICET - Faculty of Agronomy, Department of Ecology, University of Buenos Aires (UBA), Buenos Aires, 1417, Argentina
| | - Qin Yu
- Australian Herbicide Resistance Initiative (AHRI) - School of Agriculture & Environment, University of Western Australia (UWA), Crawley, 6009, Western Australia, Australia
| | - Stephen B Powles
- Australian Herbicide Resistance Initiative (AHRI) - School of Agriculture & Environment, University of Western Australia (UWA), Crawley, 6009, Western Australia, Australia
| |
Collapse
|
17
|
Dong Y, Jin X, Tang Q, Zhang X, Yang J, Liu X, Cai J, Zhang X, Wang X, Wang Z. Development and Event-specific Detection of Transgenic Glyphosate-resistant Rice Expressing the G2-EPSPS Gene. FRONTIERS IN PLANT SCIENCE 2017; 8:885. [PMID: 28611804 PMCID: PMC5447670 DOI: 10.3389/fpls.2017.00885] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
Glyphosate is a widely used herbicide, due to its broad spectrum, low cost, low toxicity, high efficiency, and non-selective characteristics. Rice farmers rarely use glyphosate as a herbicide, because the crop is sensitive to this chemical. The development of transgenic glyphosate-tolerant rice could greatly improve the economics of rice production. Here, we transformed the Pseudomonas fluorescens G2 5-enolpyruvyl shikimate-3-phosphate synthase (EPSPS) gene G2-EPSPS, which conferred tolerance to glyphosate herbicide into a widely used japonica rice cultivar, Zhonghua 11 (ZH11), to develop two highly glyphosate-tolerant transgenic rice lines, G2-6 and G2-7, with one exogenous gene integration. Seed germination tests and glyphosate-tolerance assays of plants grown in a greenhouse showed that the two transgenic lines could greatly improve glyphosate-tolerance compared with the wild-type; The glyphosate-tolerance field test indicated that both transgenic lines could grow at concentrations of 20,000 ppm glyphosate, which is more than 20-times the recommended concentration in the field. Isolation of the flanking sequence of transgenic rice G2-6 indicated that the 5'-terminal of T-DNA was inserted into chromosome 8 of the rice genome. An event-specific PCR test system was established and the limit of detection of the primers reached five copies. Overall, the G2-EPSPS gene significantly improved glyphosate-tolerance in transgenic rice; furthermore, it is a useful candidate gene for the future development of commercial transgenic rice.
Collapse
Affiliation(s)
- Yufeng Dong
- Biotechnology Research Institute, Chinese Academy of Agricultural SciencesBeijing, China
| | - Xi Jin
- Department of Biochemistry, Baoding UniversityBaoding, China
| | - Qiaoling Tang
- Biotechnology Research Institute, Chinese Academy of Agricultural SciencesBeijing, China
| | - Xin Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural SciencesBeijing, China
| | - Jiangtao Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural SciencesBeijing, China
| | - Xiaojing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural SciencesBeijing, China
| | - Junfeng Cai
- Biotechnology Research Institute, Chinese Academy of Agricultural SciencesBeijing, China
| | - Xiaobing Zhang
- Biology Institute, Hebei Academy of SciencesShijiazhuang, China
| | - Xujing Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural SciencesBeijing, China
| | - Zhixing Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural SciencesBeijing, China
| |
Collapse
|