1
|
Zhu Y, Li L. Wood of trees: Cellular structure, molecular formation, and genetic engineering. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:443-467. [PMID: 38032010 DOI: 10.1111/jipb.13589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/28/2023] [Indexed: 12/01/2023]
Abstract
Wood is an invaluable asset to human society due to its renewable nature, making it suitable for both sustainable energy production and material manufacturing. Additionally, wood derived from forest trees plays a crucial role in sequestering a significant portion of the carbon dioxide fixed during photosynthesis by terrestrial plants. Nevertheless, with the expansion of the global population and ongoing industrialization, forest coverage has been substantially decreased, resulting in significant challenges for wood production and supply. Wood production practices have changed away from natural forests toward plantation forests. Thus, understanding the underlying genetic mechanisms of wood formation is the foundation for developing high-quality, fast-growing plantation trees. Breeding ideal forest trees for wood production using genetic technologies has attracted the interest of many. Tremendous studies have been carried out in recent years on the molecular, genetic, and cell-biological mechanisms of wood formation, and considerable progress and findings have been achieved. These studies and findings indicate enormous possibilities and prospects for tree improvement. This review will outline and assess the cellular and molecular mechanisms of wood formation, as well as studies on genetically improving forest trees, and address future development prospects.
Collapse
Affiliation(s)
- Yingying Zhu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems and College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
2
|
Mendu L, Jalathge G, Dhillon KK, Singh NP, Balasubramanian VK, Fewou R, Gitz DC, Chen J, Xin Z, Mendu V. Mutation in the Endo-β-1,4-glucanase (KORRIGAN) Is Responsible for Thick Leaf Phenotype in Sorghum. PLANTS (BASEL, SWITZERLAND) 2022; 11:3531. [PMID: 36559643 PMCID: PMC9780866 DOI: 10.3390/plants11243531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Sorghum [Sorghum bicolor (L.) Moench] is an important crop for food, feed, and fuel production. Particularly, sorghum is targeted for cellulosic ethanol production. Extraction of cellulose from cell walls is a key process in cellulosic ethanol production, and understanding the components involved in cellulose synthesis is important for both fundamental and applied research. Despite the significance in the biofuel industry, the genes involved in sorghum cell wall biosynthesis, modification, and degradation have not been characterized. In this study, we have identified and characterized three allelic thick leaf mutants (thl1, thl2, and thl3). Bulked Segregant Analysis sequencing (BSAseq) showed that the causal mutation for the thl phenotype is in endo-1,4-β-glucanase gene (SbKOR1). Consistent with the causal gene function, the thl mutants showed decreased crystalline cellulose content in the stem tissues. The SbKOR1 function was characterized using Arabidopsis endo-1,4-β-glucanase gene mutant (rsw2-1). Complementation of Arabidopsis with SbKOR1 (native Arabidopsis promoter and overexpression by 35S promoter) restored the radial swelling phenotype of rsw2-1 mutant, proving that SbKOR1 functions as endo-1,4-β-glucanase. Overall, the present study has identified and characterized sorghum endo-1,4-β-glucanase gene function, laying the foundation for future research on cell wall biosynthesis and engineering of sorghum for biofuel production.
Collapse
Affiliation(s)
- Lavanya Mendu
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Gayani Jalathge
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | | | - Nagendra Pratap Singh
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA
| | | | - Rebecca Fewou
- Faculty of Science, University of Angers, 49000 Angers, France
| | - Dennis C. Gitz
- U. S. Department of Agriculture, Agriculture Research Service, Lubbock, TX 79415, USA
| | - Junping Chen
- U. S. Department of Agriculture, Agriculture Research Service, Lubbock, TX 79415, USA
| | - Zhanguo Xin
- U. S. Department of Agriculture, Agriculture Research Service, Lubbock, TX 79415, USA
| | - Venugopal Mendu
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
3
|
Perrot T, Pauly M, Ramírez V. Emerging Roles of β-Glucanases in Plant Development and Adaptative Responses. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11091119. [PMID: 35567119 PMCID: PMC9099982 DOI: 10.3390/plants11091119] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 05/04/2023]
Abstract
Plant β-glucanases are enzymes involved in the synthesis, remodelling and turnover of cell wall components during multiple physiological processes. Based on the type of the glycoside bond they cleave, plant β-glucanases have been grouped into three categories: (i) β-1,4-glucanases degrade cellulose and other polysaccharides containing 1,4-glycosidic bonds to remodel and disassemble the wall during cell growth. (ii) β-1,3-glucanases are responsible for the mobilization of callose, governing the symplastic trafficking through plasmodesmata. (iii) β-1,3-1,4-glucanases degrade mixed linkage glucan, a transient wall polysaccharide found in cereals, which is broken down to obtain energy during rapid seedling growth. In addition to their roles in the turnover of self-glucan structures, plant β-glucanases are crucial in regulating the outcome in symbiotic and hostile plant-microbe interactions by degrading non-self glucan structures. Plants use these enzymes to hydrolyse β-glucans found in the walls of microbes, not only by contributing to a local antimicrobial defence barrier, but also by generating signalling glucans triggering the activation of global responses. As a counterpart, microbes developed strategies to hijack plant β-glucanases to their advantage to successfully colonize plant tissues. This review outlines our current understanding on plant β-glucanases, with a particular focus on the latest advances on their roles in adaptative responses.
Collapse
|
4
|
Barthel D, Dordevic N, Fischnaller S, Kerschbamer C, Messner M, Eisenstecken D, Robatscher P, Janik K. Detection of apple proliferation disease in Malus × domestica by near infrared reflectance analysis of leaves. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 263:120178. [PMID: 34280798 DOI: 10.1016/j.saa.2021.120178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
In this study near infrared spectroscopical analysis of dried and ground leaves was performed and combined with a multivariate data analysis to distinguish 'Candidatus Phytoplasma mali' infected from non-infected apple trees (Malus × domestica). The bacterium is the causative agent of Apple Proliferation, one of the most threatening diseases in commercial apple growing regions. In a two-year study, leaves were sampled from three apple orchards, at different sampling events throughout the vegetation period. The spectral data were analyzed with a principal component analysis and classification models were developed. The model performance for the differentiation of Apple Proliferation diseased from non-infected trees increased throughout the vegetation period and gained best results in autumn. Even with asymptomatic leaves from infected trees a correct classification was possible indicating that the spectral-based method provides reliable results even if samples without visible symptoms are analyzed. The wavelength regions that contributed to the differentiation of infected and non-infected trees could be mainly assigned to a reduction of carbohydrates and N-containing organic compounds. Wet chemical analyses confirmed that N-containing compounds are reduced in leaves from infected trees. The results of our study provide a valuable indication that spectral analysis is a promising technique for Apple Proliferation detection in future smart farming approaches.
Collapse
Affiliation(s)
- Dana Barthel
- Laimburg Research Centre, Laimburg 6, Pfatten (Vadena), IT-39040 Auer (Ora), South Tyrol, Italy.
| | - Nikola Dordevic
- Laimburg Research Centre, Laimburg 6, Pfatten (Vadena), IT-39040 Auer (Ora), South Tyrol, Italy
| | - Stefanie Fischnaller
- Laimburg Research Centre, Laimburg 6, Pfatten (Vadena), IT-39040 Auer (Ora), South Tyrol, Italy
| | - Christine Kerschbamer
- Laimburg Research Centre, Laimburg 6, Pfatten (Vadena), IT-39040 Auer (Ora), South Tyrol, Italy
| | - Manuel Messner
- Laimburg Research Centre, Laimburg 6, Pfatten (Vadena), IT-39040 Auer (Ora), South Tyrol, Italy
| | - Daniela Eisenstecken
- Laimburg Research Centre, Laimburg 6, Pfatten (Vadena), IT-39040 Auer (Ora), South Tyrol, Italy
| | - Peter Robatscher
- Laimburg Research Centre, Laimburg 6, Pfatten (Vadena), IT-39040 Auer (Ora), South Tyrol, Italy
| | - Katrin Janik
- Laimburg Research Centre, Laimburg 6, Pfatten (Vadena), IT-39040 Auer (Ora), South Tyrol, Italy.
| |
Collapse
|
5
|
Wu B, Li Y, Li J, Xie Z, Luan M, Gao C, Shi Y, Chen S. Genome-Wide Analysis of Alternative Splicing and Non-Coding RNAs Reveal Complicated Transcriptional Regulation in Cannabis sativa L. Int J Mol Sci 2021; 22:ijms222111989. [PMID: 34769433 PMCID: PMC8584933 DOI: 10.3390/ijms222111989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/26/2022] Open
Abstract
It is of significance to mine the structural genes related to the biosynthetic pathway of fatty acid (FA) and cellulose as well as explore the regulatory mechanism of alternative splicing (AS), microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the biosynthesis of cannabinoids, FA and cellulose, which would enhance the knowledge of gene expression and regulation at post-transcriptional level in Cannabis sativa L. In this study, transcriptome, small RNA and degradome libraries of hemp 'Yunma No.1' were established, and comprehensive analysis was performed. As a result, a total of 154, 32 and 331 transcripts encoding key enzymes involved in the biosynthesis of cannabinoids, FA and cellulose were predicted, respectively, among which AS occurred in 368 transcripts. Moreover, 183 conserved miRNAs, 380 C. sativa-specific miRNAs and 7783 lncRNAs were predicted. Among them, 70 miRNAs and 17 lncRNAs potentially targeted 13 and 17 transcripts, respectively, encoding key enzymes or transporters involved in the biosynthesis of cannabinoids, cellulose or FA. Finally, the crosstalk between AS and miRNAs or lncRNAs involved in cannabinoids and cellulose was also predicted. In summary, all these results provided insights into the complicated network of gene expression and regulation in C. sativa.
Collapse
Affiliation(s)
- Bin Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (B.W.); (Y.L.); (J.L.); (Z.X.)
| | - Yanni Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (B.W.); (Y.L.); (J.L.); (Z.X.)
| | - Jishuang Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (B.W.); (Y.L.); (J.L.); (Z.X.)
| | - Zhenzhen Xie
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (B.W.); (Y.L.); (J.L.); (Z.X.)
| | - Mingbao Luan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (M.L.); (C.G.)
| | - Chunsheng Gao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (M.L.); (C.G.)
| | - Yuhua Shi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
- Correspondence:
| |
Collapse
|
6
|
Bryant ND, Pu Y, Tschaplinski TJ, Tuskan GA, Muchero W, Kalluri UC, Yoo CG, Ragauskas AJ. Transgenic Poplar Designed for Biofuels. TRENDS IN PLANT SCIENCE 2020; 25:881-896. [PMID: 32482346 DOI: 10.1016/j.tplants.2020.03.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 05/12/2023]
Abstract
Members of the genus Populus (i.e., cottonwood, hybrid poplar) represent a promising source of lignocellulosic biomass for biofuels. However, one of the major factors negatively affecting poplar's efficient conversion to biofuel is the inherent recalcitrance to enzymatic saccharification due to cell wall components such as lignin. To this effect, there have been efforts to modify gene expression to reduce biomass recalcitrance by changing cell wall properties. Here, we review recent genetic modifications of poplar that led to change cell wall properties and the resulting effects on subsequent pretreatment efficacy and saccharification. Although genetic engineering's impacts on cell wall properties are not fully predictable, recent studies have shown promising improvement in the biological conversion of transgenic poplar to biofuels.
Collapse
Affiliation(s)
- Nathan D Bryant
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Yunqiao Pu
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Joint Institute for Biological Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Timothy J Tschaplinski
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Gerald A Tuskan
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Wellington Muchero
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Udaya C Kalluri
- Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Chang Geun Yoo
- Department of Paper and Bioprocess Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; Center for Bioenergy Innovation, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Joint Institute for Biological Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; Center for Renewable Carbon, Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA.
| |
Collapse
|
7
|
Behr M, Baldacci-Cresp F, Kohler A, Morreel K, Goeminne G, Van Acker R, Veneault-Fourrey C, Mol A, Pilate G, Boerjan W, de Almeida Engler J, El Jaziri M, Baucher M. Alterations in the phenylpropanoid pathway affect poplar ability for ectomycorrhizal colonisation and susceptibility to root-knot nematodes. MYCORRHIZA 2020; 30:555-566. [PMID: 32647969 DOI: 10.1007/s00572-020-00976-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
This study investigates the impact of the alteration of the monolignol biosynthesis pathway on the establishment of the in vitro interaction of poplar roots either with a mutualistic ectomycorrhizal fungus or with a pathogenic root-knot nematode. Overall, the five studied transgenic lines downregulated for caffeoyl-CoA O-methyltransferase (CCoAOMT), caffeic acid O-methyltransferase (COMT), cinnamoyl-CoA reductase (CCR), cinnamyl alcohol dehydrogenase (CAD) or both COMT and CAD displayed a lower mycorrhizal colonisation percentage, indicating a lower ability for establishing mutualistic interaction than the wild-type. The susceptibility to root-knot nematode infection was variable in the five lines, and the CAD-deficient line was found to be less susceptible than the wild-type. We discuss these phenotypic differences in the light of the large shifts in the metabolic profile and gene expression pattern occurring between roots of the CAD-deficient line and wild-type. A role of genes related to trehalose metabolism, phytohormones, and cell wall construction in the different mycorrhizal symbiosis efficiency and nematode sensitivity between these two lines is suggested. Overall, these results show that the alteration of plant metabolism caused by the repression of a single gene within phenylpropanoid pathway results in significant alterations, at the root level, in the response towards mutualistic and pathogenic associates. These changes may constrain plant fitness and biomass production, which are of economic importance for perennial industrial crops such as poplar.
Collapse
Affiliation(s)
- Marc Behr
- Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, B-6041, Gosselies, Belgium
| | - Fabien Baldacci-Cresp
- Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, B-6041, Gosselies, Belgium
| | - Annegret Kohler
- Unité Mixte de Recherche 1136, Interactions Arbres-Microorganismes, Laboratoire d'Excellence ARBRE, Centre INRAE Grand-Est-Nancy, INRAE-Université de Lorraine, 54280, Champenoux, France
| | - Kris Morreel
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
| | - Geert Goeminne
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
- VIB Metabolomics Core, 9052, Ghent, Belgium
| | - Rebecca Van Acker
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
| | - Claire Veneault-Fourrey
- Unité Mixte de Recherche 1136, Interactions Arbres-Microorganismes, Laboratoire d'Excellence ARBRE, Centre INRAE Grand-Est-Nancy, INRAE-Université de Lorraine, 54280, Champenoux, France
| | - Adeline Mol
- Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, B-6041, Gosselies, Belgium
| | | | - Wout Boerjan
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
| | | | - Mondher El Jaziri
- Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, B-6041, Gosselies, Belgium
| | - Marie Baucher
- Laboratoire de Biotechnologie Végétale, Université libre de Bruxelles (ULB), Rue des Professeurs Jeener et Brachet 12, B-6041, Gosselies, Belgium.
| |
Collapse
|
8
|
Abraham PE, Matthiadis A, Hettich RL, Kalluri UC. Molecular Remodeling in Populus PdKOR RNAi Roots Profiled Using LC-MS/MS Proteomics. Proteomics 2020; 20:e2000067. [PMID: 32846035 DOI: 10.1002/pmic.202000067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/11/2020] [Indexed: 11/07/2022]
Abstract
Plant endo-β-1,4-glucanases belonging to the Glycoside Hydrolase Family 9 have functional roles in cell wall biosynthesis and remodeling via endohydrolysis of (1→4)-β-d-glucosidic linkages. Modification of cell wall chemistry via RNA interference (RNAi)-mediated downregulation of Populus deltoides KORRIGAN (PdKOR), an endo-β-1,4-glucanase familygene was shown to have functional consequences on the composition of secondary metabolome and the ability of modified roots to interact with beneficial microbes. The molecular remodeling that underlies the observed differences at metabolic, physiological, and morphological levels in roots is not well understood. Here a liquid chromatography (LC)-tandem mass spectrometry (MS/MS)-based proteome profiling approach is used to survey the molecular remodeling in root tissues of PdKOR and control plants. A total of 14316 peptides are identified and these mapped to 7139 P. deltoides proteins. Based on 90% sequence identity, the measured protein accessions represent 1187 functional protein groups. Analysis of Gene Ontology (GO) categories and specific individual proteins show differential expression of proteins relevant to plant-microbe interactions, cell wall chemistry, and metabolism. The new proteome dataset serves as a useful resource for deriving new hypotheses and empirical testing pertaining to functional roles of proteins and pathways in differential priming of plant roots to interactions with microbes.
Collapse
Affiliation(s)
- Paul E Abraham
- Chemical Sciences Division, P. O. BOX 2008, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6422, USA
| | - Anna Matthiadis
- Biosciences Division, P. O. BOX 2008, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6422, USA
| | - Robert L Hettich
- Chemical Sciences Division, P. O. BOX 2008, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6422, USA
| | - Udaya C Kalluri
- Biosciences Division, P. O. BOX 2008, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6422, USA
| |
Collapse
|
9
|
Brandon AG, Scheller HV. Engineering of Bioenergy Crops: Dominant Genetic Approaches to Improve Polysaccharide Properties and Composition in Biomass. FRONTIERS IN PLANT SCIENCE 2020; 11:282. [PMID: 32218797 PMCID: PMC7078332 DOI: 10.3389/fpls.2020.00282] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/25/2020] [Indexed: 05/24/2023]
Abstract
Large-scale, sustainable production of lignocellulosic bioenergy from biomass will depend on a variety of dedicated bioenergy crops. Despite their great genetic diversity, prospective bioenergy crops share many similarities in the polysaccharide composition of their cell walls, and the changes needed to optimize them for conversion are largely universal. Therefore, biomass modification strategies that do not depend on genetic background or require mutant varieties are extremely valuable. Due to their preferential fermentation and conversion by microorganisms downstream, the ideal bioenergy crop should contain a high proportion of C6-sugars in polysaccharides like cellulose, callose, galactan, and mixed-linkage glucans. In addition, the biomass should be reduced in inhibitors of fermentation like pentoses and acetate. Finally, the overall complexity of the plant cell wall should be modified to reduce its recalcitrance to enzymatic deconstruction in ways that do no compromise plant health or come at a yield penalty. This review will focus on progress in the use of a variety of genetically dominant strategies to reach these ideals. Due to the breadth and volume of research in the field of lignin bioengineering, this review will instead focus on approaches to improve polysaccharide component plant biomass. Carbohydrate content can be dramatically increased by transgenic overexpression of enzymes involved in cell wall polysaccharide biosynthesis. Additionally, the recalcitrance of the cell wall can be reduced via the overexpression of native or non-native carbohydrate active enzymes like glycosyl hydrolases or carbohydrate esterases. Some research in this area has focused on engineering plants that accumulate cell wall-degrading enzymes that are sequestered to organelles or only active at very high temperatures. The rationale being that, in order to avoid potential negative effects of cell wall modification during plant growth, the enzymes could be activated post-harvest, and post-maturation of the cell wall. A potentially significant limitation of this approach is that at harvest, the cell wall is heavily lignified, making the substrates for these enzymes inaccessible and their activity ineffective. Therefore, this review will only include research employing enzymes that are at least partially active under the ambient conditions of plant growth and cell wall development.
Collapse
Affiliation(s)
- Andrew G. Brandon
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Henrik V. Scheller
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
10
|
Tuskan GA, Muchero W, Tschaplinski TJ, Ragauskas AJ. Population-level approaches reveal novel aspects of lignin biosynthesis, content, composition and structure. Curr Opin Biotechnol 2019; 56:250-257. [PMID: 30925430 DOI: 10.1016/j.copbio.2019.02.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 10/27/2022]
Abstract
Population-level studies enabled by high-throughput phenotyping have revealed significant variation in lignin characteristics including content, S:G:H ratio, inter-unit linkage distributions, and molecular weights across multiple plant species. Coupled with genome-wide association mapping studies (GWAS) targeted at linking genetic mutations to phenotype, significant progress has been made in associating putative causal mutations to variation in lignin characteristics. Despite this progress, there are few examples, in which these associations have been molecularly validated to provide new insights into the genetic regulation of lignin biosynthesis. Given a recent report of a GWAS-discovered 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase moonlighting as a transcriptional regulator of lignin biosynthesis, the potential to bridge scientific disciplines in order to uncover hidden elements of lignin biosynthesis has been demonstrated, offering a path to alter lignin characteristics via genetic manipulation in order to expedite lignin valorization. To maximize this potential, however, there is a crucial need for (1) broader surveys of naturally varying diverse plant populations and (2) analytical platforms that can resolve subtle properties at fine chemical and biological scales.
Collapse
Affiliation(s)
- Gerald A Tuskan
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States.
| | - Wellington Muchero
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Timothy J Tschaplinski
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Arthur J Ragauskas
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; University of Tennessee Governor's Chair, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| |
Collapse
|
11
|
Badmi R, Payyavula RS, Bali G, Guo HB, Jawdy SS, Gunter LE, Yang X, Winkeler KA, Collins C, Rottmann WH, Yee K, Rodriguez M, Sykes RW, Decker SR, Davis MF, Ragauskas AJ, Tuskan GA, Kalluri UC. A New Calmodulin-Binding Protein Expresses in the Context of Secondary Cell Wall Biosynthesis and Impacts Biomass Properties in Populus. FRONTIERS IN PLANT SCIENCE 2018; 9:1669. [PMID: 30568662 PMCID: PMC6290091 DOI: 10.3389/fpls.2018.01669] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/26/2018] [Indexed: 05/21/2023]
Abstract
A greater understanding of biosynthesis, signaling and regulatory pathways involved in determining stem growth and secondary cell wall chemistry is important for enabling pathway engineering and genetic optimization of biomass properties. The present study describes a new functional role of PdIQD10, a Populus gene belonging to the IQ67-Domain1 family of IQD genes, in impacting biomass formation and chemistry. Expression studies showed that PdIQD10 has enhanced expression in developing xylem and tension-stressed tissues in Populus deltoides. Molecular dynamics simulation and yeast two-hybrid interaction experiments suggest interactions with two calmodulin proteins, CaM247 and CaM014, supporting the sequence-predicted functional role of the PdIQD10 as a calmodulin-binding protein. PdIQD10 was found to interact with specific Populus isoforms of the Kinesin Light Chain protein family, shown previously to function as microtubule-guided, cargo binding and delivery proteins in Arabidopsis. Subcellular localization studies showed that PdIQD10 localizes in the nucleus and plasma membrane regions. Promoter-binding assays suggest that a known master transcriptional regulator of secondary cell wall biosynthesis (PdWND1B) may be upstream of an HD-ZIP III gene that is in turn upstream of PdIQD10 gene in the transcriptional network. RNAi-mediated downregulation of PdIQD10 expression resulted in plants with altered biomass properties including higher cellulose, wall glucose content and greater biomass quantity. These results present evidence in support of a new functional role for an IQD gene family member, PdIQD10, in secondary cell wall biosynthesis and biomass formation in Populus.
Collapse
Affiliation(s)
- Raghuram Badmi
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Center for Bioenergy Innovation and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Raja S. Payyavula
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Center for Bioenergy Innovation and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Garima Bali
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Georgia Institute of Technology, Atlanta, GA, United States
| | - Hao-Bo Guo
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Sara S. Jawdy
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Center for Bioenergy Innovation and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Lee E. Gunter
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Center for Bioenergy Innovation and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Xiaohan Yang
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Center for Bioenergy Innovation and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | | | | | | | - Kelsey Yee
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Center for Bioenergy Innovation and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Miguel Rodriguez
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Center for Bioenergy Innovation and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Robert W. Sykes
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- National Renewable Energy Laboratory, Golden, CO, United States
| | - Stephen R. Decker
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- National Renewable Energy Laboratory, Golden, CO, United States
| | - Mark F. Davis
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- National Renewable Energy Laboratory, Golden, CO, United States
| | - Arthur J. Ragauskas
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Gerald A. Tuskan
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Center for Bioenergy Innovation and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Udaya C. Kalluri
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Center for Bioenergy Innovation and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
12
|
Kesten C, Menna A, Sánchez-Rodríguez C. Regulation of cellulose synthesis in response to stress. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:106-113. [PMID: 28892802 DOI: 10.1016/j.pbi.2017.08.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/27/2017] [Accepted: 08/18/2017] [Indexed: 05/05/2023]
Abstract
The cell wall is a complex polysaccharide network that provides stability and protection to the plant and is one of the first layers of biotic and abiotic stimuli perception. A controlled remodeling of the primary cell wall is essential for the plant to adapt its growth to environmental stresses. Cellulose, the main component of plant cell walls is synthesized by plasma membrane-localized cellulose synthases moving along cortical microtubule tracks. Recent advancements demonstrate a tight regulation of cellulose synthesis at the primary cell wall by phytohormone networks. Stress-induced perturbations at the cell wall that modify cellulose synthesis and microtubule arrangement activate similar phytohormone-based stress response pathways. The integration of stress perception at the primary cell wall and downstream responses are likely to be tightly regulated by phytohormone signaling pathways in the context of cellulose synthesis and microtubule arrangement.
Collapse
Affiliation(s)
- Christopher Kesten
- Department of Biology, Eidgenössiche Technische Hochschule Zurich, 8092 Zurich, Switzerland
| | - Alexandra Menna
- Department of Biology, Eidgenössiche Technische Hochschule Zurich, 8092 Zurich, Switzerland
| | - Clara Sánchez-Rodríguez
- Department of Biology, Eidgenössiche Technische Hochschule Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
13
|
Biotechnology for bioenergy dedicated trees: meeting future energy demands. ACTA ACUST UNITED AC 2017; 73:15-32. [DOI: 10.1515/znc-2016-0185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/26/2017] [Indexed: 11/15/2022]
Abstract
Abstract
With the increase in human demands for energy, purpose-grown woody crops could be part of the global renewable energy solution, especially in geographical regions where plantation forestry is feasible and economically important. In addition, efficient utilization of woody feedstocks would engage in mitigating greenhouse gas emissions, decreasing the challenge of food and energy security, and resolving the conflict between land use for food or biofuel production. This review compiles existing knowledge on biotechnological and genomics-aided improvements of biomass performance of purpose-grown poplar, willow, eucalyptus and pine species, and their relative hybrids, for efficient and sustainable bioenergy applications. This includes advancements in tree in vitro regeneration, and stable expression or modification of selected genes encoding desirable traits, which enhanced growth and yield, wood properties, site adaptability, and biotic and abiotic stress tolerance. Genetic modifications used to alter lignin/cellulose/hemicelluloses ratio and lignin composition, towards effective lignocellulosic feedstock conversion into cellulosic ethanol, are also examined. Biotech-trees still need to pass challengeable regulatory authorities’ processes, including biosafety and risk assessment analyses prior to their commercialization release. Hence, strategies developed to contain transgenes, or to mitigate potential transgene flow risks, are discussed.
Collapse
|
14
|
Yang Y, Yoo CG, Winkeler KA, Collins CM, Hinchee MAW, Jawdy SS, Gunter LE, Engle NL, Pu Y, Yang X, Tschaplinski TJ, Ragauskas AJ, Tuskan GA, Chen JG. Overexpression of a Domain of Unknown Function 231-containing protein increases O-xylan acetylation and cellulose biosynthesis in Populus. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:311. [PMID: 29299061 PMCID: PMC5744390 DOI: 10.1186/s13068-017-0998-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/14/2017] [Indexed: 05/02/2023]
Abstract
BACKGROUND Domain of Unknown Function 231-containing proteins (DUF231) are plant specific and their function is largely unknown. Studies in the model plants Arabidopsis and rice suggested that some DUF231 proteins act in the process of O-acetyl substitution of hemicellulose and esterification of pectin. However, little is known about the function of DUF231 proteins in woody plant species. RESULTS This study provides evidence supporting that one member of DUF231 family proteins in the woody perennial plant Populus deltoides (genotype WV94), PdDUF231A, has a role in the acetylation of xylan and affects cellulose biosynthesis. A total of 52 DUF231-containing proteins were identified in the Populus genome. In P. deltoides transgenic lines overexpressing PdDUF231A (OXPdDUF231A), glucose and cellulose contents were increased. Consistent with these results, the transcript levels of cellulose biosynthesis-related genes were increased in the OXPdDUF231A transgenic lines. Furthermore, the relative content of total acetylated xylan was increased in the OXPdDUF231A transgenic lines. Enzymatic saccharification assays revealed that the rate of glucose release increased in OXPdDUF231A transgenic lines. Plant biomass productivity was also increased in OXPdDUF231A transgenic lines. CONCLUSIONS These results suggest that PdDUF231A affects cellulose biosynthesis and plays a role in the acetylation of xylan. PdDUF231A is a promising target for genetic modification for biofuel production because biomass productivity and compositional quality can be simultaneously improved through overexpression.
Collapse
Affiliation(s)
- Yongil Yang
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Chang Geun Yoo
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- UT-ORNL Joint Institute for Biological Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | | | | | | | - Sara S. Jawdy
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Lee E. Gunter
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Nancy L. Engle
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Yunqiao Pu
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- UT-ORNL Joint Institute for Biological Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Xiaohan Yang
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Timothy J. Tschaplinski
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Arthur J. Ragauskas
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- UT-ORNL Joint Institute for Biological Science, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996 USA
- Department of Forestry, Wildlife, and Fisheries, University of Tennessee, Knoxville, TN 37996 USA
| | - Gerald A. Tuskan
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Jin-Gui Chen
- BioEnergy Science Center and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| |
Collapse
|
15
|
Fan C, Feng S, Huang J, Wang Y, Wu L, Li X, Wang L, Tu Y, Xia T, Li J, Cai X, Peng L. AtCesA8-driven OsSUS3 expression leads to largely enhanced biomass saccharification and lodging resistance by distinctively altering lignocellulose features in rice. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:221. [PMID: 28932262 PMCID: PMC5603028 DOI: 10.1186/s13068-017-0911-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/08/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Biomass recalcitrance and plant lodging are two complex traits that tightly associate with plant cell wall structure and features. Although genetic modification of plant cell walls can potentially reduce recalcitrance for enhancing biomass saccharification, it remains a challenge to maintain a normal growth with enhanced biomass yield and lodging resistance in transgenic plants. Sucrose synthase (SUS) is a key enzyme to regulate carbon partitioning by providing UDP-glucose as substrate for cellulose and other polysaccharide biosynthesis. Although SUS transgenic plants have reportedly exhibited improvement on the cellulose and starch based traits, little is yet reported about SUS impacts on both biomass saccharification and lodging resistance. In this study, we selected the transgenic rice plants that expressed OsSUS3 genes when driven by the AtCesA8 promoter specific for promoting secondary cell wall cellulose synthesis in Arabidopsis. We examined biomass saccharification and lodging resistance in the transgenic plants and detected their cell wall structures and wall polymer features. RESULTS During two-year field experiments, the selected AtCesA8::SUS3 transgenic plants maintained a normal growth with slightly increased biomass yields. The four independent transgenic lines exhibited much higher biomass enzymatic saccharification and bioethanol production under chemical pretreatments at P < 0.01 levels, compared with the controls of rice cultivar and empty vector transgenic line. Notably, all transgenic lines showed a consistently enhanced lodging resistance with the increasing extension and pushing forces. Correlation analysis suggested that the reduced cellulose crystallinity was a major factor for largely enhanced biomass saccharification and lodging resistance in transgenic rice plants. In addition, the cell wall thickenings with the increased cellulose and hemicelluloses levels should also contribute to plant lodging resistance. Hence, this study has proposed a mechanistic model that shows how OsSUS3 regulates cellulose and hemicelluloses biosyntheses resulting in reduced cellulose crystallinity and increased wall thickness, thereby leading to large improvements of both biomass saccharification and lodging resistance in transgenic rice plants. CONCLUSIONS This study has demonstrated that the AtCesA8::SUS3 transgenic rice plants exhibited largely improved biomass saccharification and lodging resistance by reducing cellulose crystallinity and increasing cell wall thickness. It also suggests a powerful genetic approach for cell wall modification in bioenergy crops.
Collapse
Affiliation(s)
- Chunfen Fan
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shengqiu Feng
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiangfeng Huang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanting Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Leiming Wu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xukai Li
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lingqiang Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yuanyuan Tu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tao Xia
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jingyang Li
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- HaiKou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, 570102 China
| | - Xiwen Cai
- Department of Plant Science, North Dakota State University, Fargo, ND USA
| | - Liangcai Peng
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|