1
|
Aguilar F, Salazar M, Fuentes L, Calderini D, Jerez A, Contreras C. Increased Temperature Effects During Fruit Growth and Maturation on the Fruit Quality, Sensory and Antioxidant Properties of Raspberry ( Rubus idaeus L.) cv. Heritage. Foods 2025; 14:1201. [PMID: 40238340 PMCID: PMC11988984 DOI: 10.3390/foods14071201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
Red raspberries are valued for their color, flavor, and health-promoting organic compounds, which may be affected by increased temperatures due to climate change. This work aimed to provide new information on the response of raspberry cv. "Heritage" to thermal increase and its impact on fruit quality and perceived flavor. The study was conducted during two seasons in two locations with contrasting agroclimatic conditions. A zone with high background temperatures (central orchard) and low background temperatures (southern orchard) were studied. The treatments were three heating chambers installed at the fruit set, increasing the ambient temperature by ~4 °C, and untreated controls. Heat-treated raspberries were larger than the controls but showed softer fruit. Soluble solids were lower in treated fruit, while titratable acidity did not show a consistent pattern between treatments or orchards. Flavonoid content and anthocyanins did not present a clear pattern for both orchards and seasons. Heated raspberries had lower vitamin C in both years and orchards. The sensory analysis revealed differences only in color uniformity in the heated fruit from the central zone. Increased temperatures will affect the quality and nutritional aspects of the raspberries; however, at a sensory level, these changes may not be perceived.
Collapse
Affiliation(s)
- Francisca Aguilar
- Instituto de Producción y Sanidad Vegetal (IPSV), Facultad de Ciencias Agrarias y Alimentarias, Universidad Austral de Chile, Valdivia 5090000, Chile; (F.A.); (D.C.)
| | - Martina Salazar
- Centro Regional de Estudios en Alimentos Saludables (CREAS), Avenida Universidad 330, Valparaíso 2373223, Chile; (M.S.); (L.F.)
| | - Lida Fuentes
- Centro Regional de Estudios en Alimentos Saludables (CREAS), Avenida Universidad 330, Valparaíso 2373223, Chile; (M.S.); (L.F.)
- Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2950, Valparaíso 2340025, Chile
| | - Daniel Calderini
- Instituto de Producción y Sanidad Vegetal (IPSV), Facultad de Ciencias Agrarias y Alimentarias, Universidad Austral de Chile, Valdivia 5090000, Chile; (F.A.); (D.C.)
| | - Alejandro Jerez
- Laboratorio de Farmacia (Instrumentación Analítica), Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Carolina Contreras
- Instituto de Producción y Sanidad Vegetal (IPSV), Facultad de Ciencias Agrarias y Alimentarias, Universidad Austral de Chile, Valdivia 5090000, Chile; (F.A.); (D.C.)
| |
Collapse
|
2
|
Bai S, Tao X, Hu J, Chen H, Wu J, Zhang F, Cai J, Wu G, Meng J. Flavonoids profile and antioxidant capacity of four wine grape cultivars and their wines grown in the Turpan Basin of China, the hottest wine region in the world. Food Chem X 2025; 26:102301. [PMID: 40092410 PMCID: PMC11907473 DOI: 10.1016/j.fochx.2025.102301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/19/2025] Open
Abstract
This study analyzed the flavonoid profiles and antioxidant capacities of berries and wines from four wine grape cultivars (Vitis vinifera cv. Cabernet Sauvignon, Marselan, Saperavi, and Syrah) cultivated in the Turpan Basin, the hottest wine region globally. A total of 43 anthocyanins and 66 non-anthocyanin flavonoids were identified using ultra-high performance liquid chromatography (UPLC-MSE). Combining ABTS, DPPH and FRAP assays, Saperavi showed the highest anthocyanin concentration, contributing to its intense color, while Cabernet Sauvignon exhibited the strongest antioxidant capacity. Additionally, Syrah demonstated the highest retention of flavonols and flavan-3-ols during winemaking, enhancing its antioxidant properties. The flavonoid composition and antioxidant response patterns differed across cultivars. Marselan presented a balanced flavonoid profile, with moderate levels of anthocyanins and other flavonoids, resulting in stable color and antioxidant performance. These findings provide insight into varietal adaptability and biochemical performance under extreme high-temperature conditions, which are valuable for viticultural strategies in hot regions.
Collapse
Affiliation(s)
- Shijian Bai
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Xinjiang Uygur Autonomous Region Research and Development Center for Protected Agriculture and Characteristic Agriculture, Shanshan, Xinjiang 838200, China
| | - Xiaoqing Tao
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinge Hu
- Xinjiang Uygur Autonomous Region Research and Development Center for Protected Agriculture and Characteristic Agriculture, Shanshan, Xinjiang 838200, China
| | - Huawei Chen
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiuyun Wu
- Turpan Experimental Station, Xinjiang Academy of Agricultural Sciences, Turpan, Xinjiang 83800, China
| | - Fuchun Zhang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Junshe Cai
- Xinjiang Uygur Autonomous Region Research and Development Center for Protected Agriculture and Characteristic Agriculture, Shanshan, Xinjiang 838200, China
| | - Guohong Wu
- Xinjiang Uygur Autonomous Region Research and Development Center for Protected Agriculture and Characteristic Agriculture, Shanshan, Xinjiang 838200, China
| | - Jiangfei Meng
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
3
|
Peli M, Ambrosini S, Sorio D, Pasquarelli F, Zamboni A, Varanini Z. The soil application of a plant-derived protein hydrolysate speeds up selectively the ripening-specific processes in table grape. PHYSIOLOGIA PLANTARUM 2025; 177:e70033. [PMID: 39723731 DOI: 10.1111/ppl.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/31/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
Plant-derived biostimulants have gained attention in agricultural practices for their potential to enhance crop quality and resilience. In this study, we investigated the effects of applying a maize gluten-derived protein hydrolysate at the soil level in vineyards on berry quality in a table grape variety, the Black Magic early table grapevine, during veraison. Our results demonstrate significant improvements in various parameters 14 days after application, including increased anthocyanin levels, enhanced sugar accumulation, and larger berry diameter while maintaining berry firmness. Transcriptomic analysis revealed mechanisms underlying these effects, highlighting the biostimulant's ability to expedite ripening processes while selectively modulating genes associated with cell wall metabolism, thus explaining the observed preservation of berry firmness. Furthermore, the treatment with a gluten-derived protein hydrolysate enhanced the grapevine's resilience to abiotic and biotic stresses, and several related genes were affected. This study sheds light on the potential of plant-derived biostimulants in grapevine cultivation, emphasizing the need for further research to elucidate their mechanisms and optimize agricultural practices.
Collapse
Affiliation(s)
- Marika Peli
- Biotechnology Department, University of Verona, Verona, Italy
| | | | - Daniela Sorio
- Centro Piattaforme Tecnologiche, University of Verona, Verona, Italy
| | | | - Anita Zamboni
- Biotechnology Department, University of Verona, Verona, Italy
| | - Zeno Varanini
- Biotechnology Department, University of Verona, Verona, Italy
| |
Collapse
|
4
|
Sun Y, Zheng Y, Wang W, Yao H, Ali Z, Xiao M, Ma Z, Li J, Zhou W, Cui J, Yu K, Liu Y. VvFHY3 links auxin and endoplasmic reticulum stress to regulate grape anthocyanin biosynthesis at high temperatures. THE PLANT CELL 2024; 37:koae303. [PMID: 39539042 DOI: 10.1093/plcell/koae303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/25/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Anthocyanins affect quality in fruits such as grape (Vitis vinifera). High temperatures reduce anthocyanin levels by suppressing the expression of anthocyanin biosynthesis genes and decreasing the biosynthetic rate. However, the regulatory mechanisms that coordinate these 2 processes remain largely unknown. In this study, we demonstrate that high-temperature-mediated inhibition of anthocyanin biosynthesis in grape berries depends on the auxin and endoplasmic reticulum (ER) stress pathways. Inactivation of these pathways restores anthocyanin accumulation under high temperatures. We identified and characterized FAR-RED ELONGATED HYPOCOTYL3 (FHY3), a high-temperature-modulated transcription factor that activates multiple anthocyanin biosynthesis genes by binding to their promoters. The auxin response factor VvARF3 interacts with VvFHY3 and represses its transactivation activity, antagonizing VvFHY3-induced anthocyanin biosynthesis. Additionally, we found that the ER stress sensor VvbZIP17 represses anthocyanin biosynthesis. VvFHY3 suppresses VvbZIP17 activity by directly binding to the VvbZIP17 promoter to repress its transcription and by physically interacting with VvbZIP17 to block its DNA binding ability. Furthermore, AUXIN RESPONSE FACTOR 3 (ARF3) interferes with the VvFHY3-VvbZIP17 interaction, releasing VvbZIP17 to activate the unfolded protein response and further suppress anthocyanin production. Our results unravel the VvARF3-VvFHY3-VvbZIP17 regulatory module, which links the auxin and ER stress pathways to coordinately repress anthocyanin structural gene expression and biosynthesis under high-temperature stress.
Collapse
Affiliation(s)
- Yanzhao Sun
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yanyan Zheng
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Wenyuan Wang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Heng Yao
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zain Ali
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Mengwei Xiao
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhaodong Ma
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jingjing Li
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Wenfei Zhou
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Jing Cui
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Kun Yu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yang Liu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Shi T, Su Y, Lan Y, Duan C, Yu K. The molecular basis of flavonoid biosynthesis response to water, light, and temperature in grape berries. FRONTIERS IN PLANT SCIENCE 2024; 15:1441893. [PMID: 39258302 PMCID: PMC11384997 DOI: 10.3389/fpls.2024.1441893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024]
Abstract
Flavonoids, including proanthocyanidins (PAs), anthocyanins and flavonols are essential secondary metabolites that contribute to the nutritional value and sensory quality of grape berry and red wine. Advances in molecular biology technology have led to substantial progress in understanding the regulation of flavonoid biosynthesis. The influence of terroir on grape berries and wine has garnered increasing attention, yet its comprehensive regulatory network remains underexplored. In terms of application, environmental factors such as water, light, and temperature are more easily regulated in grapevines compared to soil conditions. Therefore, we summarize their effects on flavonoid content and composition, constructing a network that links environmental factors, hormones, and metabolites to provide a deeper understanding of the underlying mechanisms. This review enriches the knowledge of the regulatory network mechanisms governing flavonoid responses to environmental factors in grapes.
Collapse
Affiliation(s)
- Tianci Shi
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yue Su
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yibin Lan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Changqing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Keji Yu
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
6
|
Yao X, Wu Y, Lan Y, Cui Y, Shi T, Duan C, Pan Q. Effect of Cluster-Zone Leaf Removal at Different Stages on Cabernet Sauvignon and Marselan ( Vitis vinifera L.) Grape Phenolic and Volatile Profiles. PLANTS (BASEL, SWITZERLAND) 2024; 13:1543. [PMID: 38891351 PMCID: PMC11174890 DOI: 10.3390/plants13111543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
This study investigated the effect of leaf removal at three stages of grape development on the phenolic and volatile profiles of Cabernet Sauvignon and Marselan grapevines for two consecutive years in the Jieshi Mountain region, an area of eastern China with high summer rainfall. The results indicated that cluster-zone leaf removal generally reduced the titratable acidity of both varieties, but did not affect the total soluble solids of grape berries. Leaf-removal treatments increased the anthocyanin and flavonol content of berries in both varieties. However, in Cabernet Sauvignon, leaf removal negatively affected the norisoprenoid compounds, with a more pronounced impact observed when the leaf removal was conducted at an early stage. This negative effect may be related to a decrease in the levels of violaxanthin and neoxanthin, potential precursors of vitisprine and β-damascenone. In contrast, the removal of leaves had no effect on the norisoprenoid aroma of Marselan grapes.
Collapse
Affiliation(s)
- Xuechen Yao
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.Y.); (Y.W.); (Y.L.); (C.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing 100083, China
| | - Yangpeng Wu
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.Y.); (Y.W.); (Y.L.); (C.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing 100083, China
| | - Yibin Lan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.Y.); (Y.W.); (Y.L.); (C.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing 100083, China
| | - Yanzhi Cui
- Bodega Langes Co., Ltd., Qinghuangdao 066600, China; (Y.C.); (T.S.)
| | - Tonghua Shi
- Bodega Langes Co., Ltd., Qinghuangdao 066600, China; (Y.C.); (T.S.)
| | - Changqing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.Y.); (Y.W.); (Y.L.); (C.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing 100083, China
| | - Qiuhong Pan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.Y.); (Y.W.); (Y.L.); (C.D.)
- Key Laboratory of Viticulture and Enology, Ministry of Agricultural and Rural Affairs, Beijing 100083, China
| |
Collapse
|
7
|
Dou F, Phillip FO, Liu G, Zhu J, Zhang L, Wang Y, Liu H. Transcriptomic and physiological analyses reveal different grape varieties response to high temperature stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1313832. [PMID: 38525146 PMCID: PMC10957553 DOI: 10.3389/fpls.2024.1313832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/17/2024] [Indexed: 03/26/2024]
Abstract
High temperatures affect grape yield and quality. Grapes can develop thermotolerance under extreme temperature stress. However, little is known about the changes in transcription that occur because of high-temperature stress. The heat resistance indices and transcriptome data of five grape cultivars, 'Xinyu' (XY), 'Miguang' (MG), 'Summer Black' (XH), 'Beihong' (BH), and 'Flame seedless' (FL), were compared in this study to evaluate the similarities and differences between the regulatory genes and to understand the mechanisms of heat stress resistance differences. High temperatures caused varying degrees of damage in five grape cultivars, with substantial changes observed in gene expression patterns and enriched pathway responses between natural environmental conditions (35 °C ± 2 °C) and extreme high temperature stress (40 °C ± 2 °C). Genes belonging to the HSPs, HSFs, WRKYs, MYBs, and NACs transcription factor families, and those involved in auxin (IAA) signaling, abscisic acid (ABA) signaling, starch and sucrose pathways, and protein processing in the endoplasmic reticulum pathway, were found to be differentially regulated and may play important roles in the response of grape plants to high-temperature stress. In conclusion, the comparison of transcriptional changes among the five grape cultivars revealed a significant variability in the activation of key pathways that influence grape response to high temperatures. This enhances our understanding of the molecular mechanisms underlying grape response to high-temperature stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Huaifeng Liu
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Crops, Agricultural College, Department of Horticulture, Shihezi University, Shihezi, China
| |
Collapse
|
8
|
Kishor PBK, Guddimalli R, Kulkarni J, Singam P, Somanaboina AK, Nandimandalam T, Patil S, Polavarapu R, Suravajhala P, Sreenivasulu N, Penna S. Impact of Climate Change on Altered Fruit Quality with Organoleptic, Health Benefit, and Nutritional Attributes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17510-17527. [PMID: 37943146 DOI: 10.1021/acs.jafc.3c03312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
As a consequence of global climate change, acute water deficit conditions, soil salinity, and high temperature have been on the rise in their magnitude and frequency, which have been found to impact plant growth and development negatively. However, recent evidence suggests that many fruit plants that face moderate abiotic stresses can result in beneficial effects on the postharvest storage characters of the fruits. Salinity, drought, and high temperature conditions stimulate the synthesis of abscisic acid (ABA), and secondary metabolites, which are vital for fruit quality. The secondary metabolites like phenolic acids and anthocyanins that accumulate under abiotic stress conditions have antioxidant activity, and therefore, such fruits have health benefits too. It has been noticed that fruits accumulate more sugar and anthocyanins owing to upregulation of phenylpropanoid pathway enzymes. The novel information that has been generated thus far indicates that the growth environment during fruit development influences the quality components of the fruits. But the quality depends on the trade-offs between productivity, plant defense, and the frequency, duration, and intensity of stress. In this review, we capture the current knowledge of the irrigation practices for optimizing fruit production in arid and semiarid regions and enhancement in the quality of fruit with the application of exogenous ABA and identify gaps that exist in our understanding of fruit quality under abiotic stress conditions.
Collapse
Affiliation(s)
- P B Kavi Kishor
- Department of Genetics, Osmania University, Hyderabad 500 007, India
| | | | - Jayant Kulkarni
- Department of Botany, Savithribai Phule Pune University, Pune 411 007, India
| | - Prashant Singam
- Department of Genetics, Osmania University, Hyderabad 500 007, India
| | - Anil Kumar Somanaboina
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research Deemed to be University, Vadlamudi, Guntur 522 213, Andhra Pradesh, India
| | - Tejaswi Nandimandalam
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research Deemed to be University, Vadlamudi, Guntur 522 213, Andhra Pradesh, India
| | - Swaroopa Patil
- Department of Botany, Shivaji University, Kolhapur 416 004, Maharashtra, India
| | - Rathnagiri Polavarapu
- Genomix Molecular Diagnostics Pvt. Ltd., Pragathi Nagar, Kukatapally, Hyderabad 500 072, India
| | - Prashanth Suravajhala
- Amrita School of Biotechnology, Amrita Vishwavidyapeetham, Clappana, 690 525, Amritapuri, Vallikavu, Kerala, India & Bioclues.org, Hyderabad, India
| | - Nese Sreenivasulu
- Consumer-Driven Grain Quality and Nutrition Research Unit, International Rice Research Institute, Los Banos, DAPO Box 7777, Metro Manil 1301, Philippines
| | - Suprasanna Penna
- Amity Centre for Nuclear Biotechnology, Amity Institute of Biotechnology, Amity University of Maharashtra, Mumbai 410 206, India
| |
Collapse
|
9
|
Zhan Z, Zhang Y, Geng K, Xue X, Deloire A, Li D, Wang Z. Effects of Vine Water Status on Malate Metabolism and γ-Aminobutyric Acid (GABA) Pathway-Related Amino Acids in Marselan ( Vitis vinifera L.) Grape Berries. Foods 2023; 12:4191. [PMID: 38231685 DOI: 10.3390/foods12234191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 01/19/2024] Open
Abstract
Malic acid is the predominant organic acid in grape berries, and its content is affected by abiotic factors such as temperature (fruit zone microclimate) and water (vine water status). The objectives of this study were to explore the potential mechanisms behind the effects of vine water status on the biosynthesis and degradation of berry malic acid and the potential downstream effects on berry metabolism. This study was conducted over two growing seasons in 2021 and 2022, comprising three watering regimes: no water stress (CK), light water stress (LWS), and moderate water stress (MWS). Compared to CK, a significantly higher level of malic acid was found in berries from the MWS treatment when the berry was still hard and green (E-L 33) in both years. However, water stress reduced the malic acid content at the ripe berry harvest (E-L 38) stage. The activities of NAD-malate dehydrogenase (NAD-MDH) and pyruvate kinase (PK) were enhanced by water stress. Except for the E-L 33 stage, the activity of phosphoenolpyruvate carboxylase (PEPC) was reduced by water stress. The highest phosphoenolpyruvate carboxykinase (PEPCK) activity was observed at the berry veraison (E-L 35) stage and coincided with the onset of a decrease in the malate content. Meanwhile, the expression of VvPEPCK was consistent with its enzyme activity. This study showed that water stress changed the content of some free amino acids (GABA, proline, leucine, aspartate, and glutamate), two of which (glutamate and GABA) are primary metabolites of the GABA pathway.
Collapse
Affiliation(s)
- Zhennan Zhan
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
- Ningxia Wine and Desertifcation Control Vocational and Technical College, Yinchuan 750199, China
| | - Yanxia Zhang
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
- Shanxi Academy Agricultural Sciences, Pomology Institute, Shanxi Agricultural University, Taiyuan 030006, China
| | - Kangqi Geng
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Xiaobin Xue
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Alain Deloire
- Department of Biology-Ecology, L'Institut Agro, University of Montpellier, 34060 Montpellier, France
| | - Dongmei Li
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Zhenping Wang
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
10
|
Matamala MF, Bastías RM, Urra I, Calderón-Orellana A, Campos J, Albornoz K. Rain Cover and Netting Materials Differentially Affect Fruit Yield and Quality Traits in Two Highbush Blueberry Cultivars via Changes in Sunlight and Temperature Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:3556. [PMID: 37896020 PMCID: PMC10610296 DOI: 10.3390/plants12203556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
The use of covers to protect blueberry orchards from adverse weather events has increased due to the variability in climate patterns, but the effects of rain covers and netting materials on yield and fruit quality have not been studied yet. This research evaluated the simultaneous effect of an LDPE plastic cover, a woven cover, and netting material on environmental components (UV light, PAR, NIR, and growing degree days (GDDs)), plant performance (light interception, leaf area index, LAI, yield, and flower development), and fruit quality traits (firmness, total soluble solids, and acidity) in two blueberry cultivars. On average, UV transmission under the netting was 11% and 43% higher compared to that under woven and LDPE plastic covers, while NIR transmission was 8-13% higher with both types of rain covers, with an increase in fruit air temperature and GDDs. Yield was 27% higher under the woven cover with respect to netting, but fruit firmness values under the netting were 12% higher than those of the LDPE plastic cover. Light interception, LAI, and flower development explained 64% (p = 0.0052) of the yield variation due to the cover material's effect. The obtained results suggest that the type of cover differentially affects yield and fruit quality in blueberries due to the specific light and temperature conditions generated under these materials.
Collapse
Affiliation(s)
- María F. Matamala
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Concepción, Chillán 3780000, Chile; (M.F.M.); (I.U.); (A.C.-O.)
| | - Richard M. Bastías
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Concepción, Chillán 3780000, Chile; (M.F.M.); (I.U.); (A.C.-O.)
| | - Ignacio Urra
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Concepción, Chillán 3780000, Chile; (M.F.M.); (I.U.); (A.C.-O.)
| | - Arturo Calderón-Orellana
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Concepción, Chillán 3780000, Chile; (M.F.M.); (I.U.); (A.C.-O.)
| | - Jorge Campos
- Departamento de Producción Animal, Facultad de Agronomía, Universidad de Concepción, Chillán 3780000, Chile;
| | - Karin Albornoz
- Department of Food, Nutrition, and Packaging Sciences, Coastal Research and Education Center, Clemson University, 2700 Savannah Highway, Charleston, SC 29414, USA;
| |
Collapse
|
11
|
Hewitt S, Hernández-Montes E, Dhingra A, Keller M. Impact of heat stress, water stress, and their combined effects on the metabolism and transcriptome of grape berries. Sci Rep 2023; 13:9907. [PMID: 37336951 DOI: 10.1038/s41598-023-36160-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/30/2023] [Indexed: 06/21/2023] Open
Abstract
Recurring heat and drought episodes present challenges to the sustainability of grape production worldwide. We investigated the impacts of heat and drought stress on transcriptomic and metabolic responses of berries from two wine grape varieties. Cabernet Sauvignon and Riesling grapevines were subjected to one of four treatments during early fruit ripening: (1) drought stress only, (2) heat stress only, (3) simultaneous drought and heat stress, (4) no drought or heat stress (control). Berry metabolites, especially organic acids, were analyzed, and time-course transcriptome analysis was performed on samples before, during, and after the stress episode. Both alone and in conjunction with water stress, heat stress had a much more significant impact on berry organic acid content, pH, and titratable acidity than water stress. This observation contrasts with previous reports for leaves, which responded more strongly to water stress, indicating that grape berries display a distinct, organ-specific response to environmental stresses. Consistent with the metabolic changes, the global transcriptomic analysis revealed that heat stress had a more significant impact on gene expression in grape berries than water stress in both varieties. The differentially expressed genes were those associated with the tricarboxylic acid cycle and glyoxylate cycle, mitochondrial electron transport and alternative respiration, glycolysis and gluconeogenesis, carbohydrate allocation, ascorbate metabolism, and abiotic stress signaling pathways. Knowledge regarding how environmental stresses, alone and in combination, impact the berry metabolism of different grape varieties will form the basis for developing recommendations for climate change mitigation strategies and genetic improvement.
Collapse
Affiliation(s)
- Seanna Hewitt
- Department of Horticulture, Washington State University, Pullman, WA, USA
| | - Esther Hernández-Montes
- Department of Viticulture and Enology, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, USA
- Department of Agricultural Production, CEIGRAM, Universidad Politécnica de Madrid, Madrid, Spain
| | - Amit Dhingra
- Department of Horticulture, Washington State University, Pullman, WA, USA.
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, USA.
| | - Markus Keller
- Department of Horticulture, Washington State University, Pullman, WA, USA.
- Department of Viticulture and Enology, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, USA.
| |
Collapse
|
12
|
Moukarzel R, Parker AK, Schelezki OJ, Gregan SM, Jordan B. Bunch microclimate influence amino acids and phenolic profiles of Pinot noir grape berries. FRONTIERS IN PLANT SCIENCE 2023; 14:1162062. [PMID: 37351210 PMCID: PMC10282841 DOI: 10.3389/fpls.2023.1162062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/05/2023] [Indexed: 06/24/2023]
Abstract
Introduction The increase of temperature due to climate change at different phenological stages of grapevine has already been demonstrated to affect accumulation of primary and secondary metabolites in grape berries. This has a significant implication for Pinot noir especially in New Zealand context as these compounds can have direct and indirect effects on wine quality. Methods This study investigates how varying bunch microclimate through changes in temperature applied at veraison stage can affect: fresh weight, total soluble solids, the accumulation of anthocyanins, total phenolics and amino acids of the grape berries. This was studied over two growing seasons (2018/19 and 2019/20) with Pinot noir vines being grown at two different temperatures in controlled environment (CE) chambers. The vines were exposed to 800 µmol/m2/s irradiance with diurnal changes in day (22°C or 30°C) and night (15°C) temperatures. This experimental set up enabled us to determine the accumulation of these metabolite at harvest (both seasons) and throughout berry development (second season). Results and discussion The results showed that berry weight was not influenced by temperature increase. The total soluble solids (TSS) were significantly increased at 30°C, however, this was not at the expense of berry weight (i.e., water loss). Anthocyanin content was reduced at higher temperature in the first season but there was no change in phenolic content in response to temperature treatments in either season. The concentrations of total amino acids at harvest increased in response to the higher temperature in the second season only. In addition, in the time course analysis of the second season, the accumulation of amino acids was increased at mid-ripening and ripening stage with the increased temperature. Significant qualitative changes in amino acid composition specifically the α-ketoglutarate family (i.e., glutamine, arginine, and proline) were found between the two temperatures. Significance This study is the first to provide detailed analysis and quantification of individual amino acids and phenolics in Pinot noir in response to changes in temperature applied at veraison which could aid to develop adaptation strategies for viticulture in the future.
Collapse
Affiliation(s)
- Romy Moukarzel
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Amber K. Parker
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Olaf J. Schelezki
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | | | - Brian Jordan
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| |
Collapse
|
13
|
Chen H, Liu X, Li S, Yuan L, Mu H, Wang Y, Li Y, Duan W, Fan P, Liang Z, Wang L. The class B heat shock factor HSFB1 regulates heat tolerance in grapevine. HORTICULTURE RESEARCH 2023; 10:uhad001. [PMID: 36938570 PMCID: PMC10018785 DOI: 10.1093/hr/uhad001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/28/2022] [Indexed: 06/01/2023]
Abstract
Grape is a widely cultivated crop with high economic value. Most cultivars derived from mild or cooler climates may not withstand increasing heat stress. Therefore, dissecting the mechanisms of heat tolerance in grapes is of particular significance. Here, we performed comparative transcriptome analysis of Vitis davidii 'Tangwei' (heat tolerant) and Vitis vinifera 'Jingxiu' (heat sensitive) grapevines after exposure to 25°C, 40°C, or 45°C for 2 h. More differentially expressed genes (DEGs) were detected in 'Tangwei' than in 'Jingxiu' in response to heat stress, and the number of DEGs increased with increasing treatment temperatures. We identified a class B Heat Shock Factor, HSFB1, which was significantly upregulated in 'Tangwei', but not in 'Jingxiu', at high temperature. VdHSFB1 from 'Tangwei' and VvHSFB1 from 'Jingxiu' differ in only one amino acid, and both showed similar transcriptional repression activities. Overexpression and RNA interference of HSFB1 in grape indicated that HSFB1 positively regulates the heat tolerance. Moreover, the heat tolerance of HSFB1-overexpressing plants was positively correlated to HSFB1 expression level. The activity of the VdHSFB1 promoter is higher than that of VvHSFB1 under both normal and high temperatures. Promoter analysis showed that more TATA-box and AT~TATA-box cis-elements are present in the VdHSFB1 promoter than the VvHSFB1 promoter. The promoter sequence variations between VdHSFB1 and VvHSFB1 likely determine the HSFB1 expression levels that influence heat tolerance of the two grape germplasms with contrasting thermotolerance. Collectively, we validated the role of HSFB1 in heat tolerance, and the knowledge gained will advance our ability to breed heat-tolerant grape cultivars.
Collapse
Affiliation(s)
- Haiyang Chen
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xinna Liu
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shenchang Li
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Yuan
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546, USA
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Huayuan Mu
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Wang
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Yang Li
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Wei Duan
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Peige Fan
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | | |
Collapse
|
14
|
Fernandez O, Lemaître-Guillier C, Songy A, Robert-Siegwald G, Lebrun MH, Schmitt-Kopplin P, Larignon P, Adrian M, Fontaine F. The Combination of Both Heat and Water Stresses May Worsen Botryosphaeria Dieback Symptoms in Grapevine. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12040753. [PMID: 36840101 PMCID: PMC9961737 DOI: 10.3390/plants12040753] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 06/12/2023]
Abstract
(1) Background: Grapevine trunk diseases (GTDs) have become a global threat to vineyards worldwide. These diseases share three main common features. First, they are caused by multiple pathogenic micro-organisms. Second, these pathogens often maintain a long latent phase, which makes any research in pathology and symptomatology challenging. Third, a consensus is raising to pinpoint combined abiotic stresses as a key factor contributing to disease symptom expression. (2) Methods: We analyzed the impact of combined abiotic stresses in grapevine cuttings artificially infected by two fungi involved in Botryosphaeria dieback (one of the major GTDs), Neofusicoccum parvum and Diplodia seriata. Fungal-infected and control plants were subjected to single or combined abiotic stresses (heat stress, drought stress or both). Disease intensity was monitored thanks to the measurement of necrosis area size. (3) Results and conclusions: Overall, our results suggest that combined stresses might have a stronger impact on disease intensity upon infection by the less virulent pathogen Diplodia seriata. This conclusion is discussed through the impact on plant physiology using metabolomic and transcriptomic analyses of leaves sampled for the different conditions.
Collapse
Affiliation(s)
- Olivier Fernandez
- Unité Résistance Induite et Bioprotection des Plantes EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | | | - Aurélie Songy
- Unité Résistance Induite et Bioprotection des Plantes EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | | | - Marc-Henri Lebrun
- Research Group Genomics of Plant-Pathogen Interactions, Research Unit Biologie et Gestion des Risques en Agriculture, UR 1290 BIOGER, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Philippe Schmitt-Kopplin
- Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | | | - Marielle Adrian
- Agroécologie, Institut Agro Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Florence Fontaine
- Unité Résistance Induite et Bioprotection des Plantes EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, Université de Reims Champagne-Ardenne, 51100 Reims, France
| |
Collapse
|
15
|
Marigliano LE, Yu R, Torres N, Medina-Plaza C, Oberholster A, Kurtural SK. Overhead photoselective shade films mitigate effects of climate change by arresting flavonoid and aroma composition degradation in wine. FRONTIERS IN PLANT SCIENCE 2023; 14:1085939. [PMID: 36778687 PMCID: PMC9912179 DOI: 10.3389/fpls.2023.1085939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Overhead photoselective shade films installed in vineyards improve berry composition in hot grape-growing regions. The aim of the study was to evaluate the flavonoid and aroma profiles and composition of wines from Cabernet Sauvignon grapes (Vitis vinifera L.) treated with partial solar radiation exclusion. METHODS Experimental design consisted in a randomized experiment with four shade films (D1, D3, D4, D5) with differing solar radiation spectra transmittance and compared to an uncovered control (C0) performed over two seasons (2021 and 2022) in Oakville (CA, USA). Berries were collected by hand at harvest and individual vinifications for each treatment and season were conducted in triplicates. Then, wine chemical composition, flavonoid and aromatic profiles were analyzed. RESULTS The wines from D4 treatment had greater color intensity and total phenolic index due to co-pigmentation with anthocyanins. Shade film wines D5 and D1 from the 2020 vintage demonstrated increased total anthocyanins in the hotter of the two experimental years. In 2021, reduced cluster temperatures optimized total anthocyanins in D4 wines. Reduced cluster temperatures modulated anthocyanin acylation, methylation and hydroxylation in shade film wines. Volatile aroma composition was analyzed using gas chromatography mass spectroscopy (GCMS) and D4 wines exhibited a more fruity and pleasant aroma profile than C0 wines. DISCUSSION Results provided evidence that partial solar radiation exclusion in the vineyard using overhead shade films directly improved flavonoid and aroma profiles of resultant wines under hot vintage conditions, providing a tool for combatting air temperatures and warmer growing conditions associated with climate change.
Collapse
|
16
|
Zhu F, Sun Y, Jadhav SS, Cheng Y, Alseekh S, Fernie AR. The Plant Metabolic Changes and the Physiological and Signaling Functions in the Responses to Abiotic Stress. Methods Mol Biol 2023; 2642:129-150. [PMID: 36944876 DOI: 10.1007/978-1-0716-3044-0_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Global climate change has altered, and will further alter, rainfall patterns and temperatures likely causing more frequent drought and heat waves, which will consequently exacerbate abiotic stresses of plants and significantly decrease the yield and quality of crops. On the one hand, the global demand for food is ever-increasing owing to the rapid increase of the human population. On the other hand, metabolic responses are one of the most important mechanisms by which plants adapt to and survive to abiotic stresses. Here we therefore summarize recent progresses including the plant primary and secondary metabolic responses to abiotic stresses and their function in plant resistance acting as antioxidants, osmoregulatory, and signaling factors, which enrich our knowledge concerning commonalities of plant metabolic responses to abiotic stresses, including their involvement in signaling processes. Finally, we discuss potential methods of metabolic fortification of crops in order to improve their abiotic stress tolerance.
Collapse
Affiliation(s)
- Feng Zhu
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Yuming Sun
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Sagar Sudam Jadhav
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Yunjiang Cheng
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria.
| |
Collapse
|
17
|
Rogiers SY, Greer DH, Liu Y, Baby T, Xiao Z. Impact of climate change on grape berry ripening: An assessment of adaptation strategies for the Australian vineyard. FRONTIERS IN PLANT SCIENCE 2022; 13:1094633. [PMID: 36618637 PMCID: PMC9811181 DOI: 10.3389/fpls.2022.1094633] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Compressed vintages, high alcohol and low wine acidity are but a few repercussions of climate change effects on Australian viticulture. While warm and cool growing regions may have different practical concerns related to climate change, they both experience altered berry and must composition and potentially reduced desirable wine characteristics and market value. Storms, drought and uncertain water supplies combined with excessive heat not only depress vine productivity through altered physiology but can have direct consequences on the fruit. Sunburn, shrivelling and altered sugar-flavour-aroma balance are becoming more prevalent while bushfires can result in smoke taint. Moreover, distorted pest and disease cycles and changes in pathogen geographical distribution have altered biotic stress dynamics that require novel management strategies. A multipronged approach to address these challenges may include alternative cultivars and rootstocks or changing geographic location. In addition, modifying and incorporating novel irrigation regimes, vine architecture and canopy manipulation, vineyard floor management, soil amendments and foliar products such as antitranspirants and other film-forming barriers are potential levers that can be used to manage the effects of climate change. The adoption of technology into the vineyard including weather, plant and soil sensors are giving viticulturists extra tools to make quick decisions, while satellite and airborne remote sensing allow the adoption of precision farming. A coherent and comprehensive approach to climate risk management, with consideration of the environment, ensures that optimum production and exceptional fruit quality is maintained. We review the preliminary findings and feasibility of these new strategies in the Australian context.
Collapse
Affiliation(s)
- Suzy Y. Rogiers
- New South Wales Department of Primary Industries, Wollongbar, NSW, Australia
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Dennis H. Greer
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Yin Liu
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, Australia
- School of Agriculture Environmental and Veterinary Science, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Tintu Baby
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Zeyu Xiao
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, Australia
| |
Collapse
|
18
|
Botton A, Girardi F, Ruperti B, Brilli M, Tijero V, Eccher G, Populin F, Schievano E, Riello T, Munné-Bosch S, Canton M, Rasori A, Cardillo V, Meggio F. Grape Berry Responses to Sequential Flooding and Heatwave Events: A Physiological, Transcriptional, and Metabolic Overview. PLANTS (BASEL, SWITZERLAND) 2022; 11:3574. [PMID: 36559686 PMCID: PMC9788187 DOI: 10.3390/plants11243574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Grapevine cultivation, such as the whole horticulture, is currently challenged by several factors, among which the extreme weather events occurring under the climate change scenario are the most relevant. Within this context, the present study aims at characterizing at the berry level the physiological response of Vitis vinifera cv. Sauvignon Blanc to sequential stresses simulated under a semi-controlled environment: flooding at bud-break followed by multiple summer stress (drought plus heatwave) occurring at pre-vèraison. Transcriptomic and metabolomic assessments were performed through RNASeq and NMR, respectively. A comprehensive hormone profiling was also carried out. Results pointed out a different response to the heatwave in the two situations. Flooding caused a developmental advance, determining a different physiological background in the berry, thus affecting its response to the summer stress at both transcriptional levels, with the upregulation of genes involved in oxidative stress responses, and metabolic level, with the increase in osmoprotectants, such as proline and other amino acids. In conclusion, sequential stress, including a flooding event at bud-break followed by a summer heatwave, may impact phenological development and berry ripening, with possible consequences on berry and wine quality. A berry physiological model is presented that may support the development of sustainable vineyard management solutions to improve the water use efficiency and adaptation capacity of actual viticultural systems to future scenarios.
Collapse
Affiliation(s)
- Alessandro Botton
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
- Interdepartmental Research Centre for Viticulture and Enology—CIRVE, University of Padova, Via XXVIII Aprile 14, Conegliano, 31015 Treviso, Italy
| | - Francesco Girardi
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
| | - Benedetto Ruperti
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
- Interdepartmental Research Centre for Viticulture and Enology—CIRVE, University of Padova, Via XXVIII Aprile 14, Conegliano, 31015 Treviso, Italy
| | - Matteo Brilli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Veronica Tijero
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
| | - Giulia Eccher
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
| | - Francesca Populin
- Unit of Fruit Crop Genetics and Breeding, Research and Innovation Centre—CRI, Edmund Mach Foundation—FEM, Via E. Mach 1, San Michele all’Adige, 38098 Trento, Italy
| | - Elisabetta Schievano
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Tobia Riello
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Diagonal 643, 08017 Barcelona, Spain
| | - Monica Canton
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
| | - Angela Rasori
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
| | - Valerio Cardillo
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
| | - Franco Meggio
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
- Interdepartmental Research Centre for Viticulture and Enology—CIRVE, University of Padova, Via XXVIII Aprile 14, Conegliano, 31015 Treviso, Italy
| |
Collapse
|
19
|
Liu X, Chen H, Li S, Lecourieux D, Duan W, Fan P, Liang Z, Wang L. Natural variations of HSFA2 enhance thermotolerance in grapevine. HORTICULTURE RESEARCH 2022; 10:uhac250. [PMID: 36643748 PMCID: PMC9832954 DOI: 10.1093/hr/uhac250] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/31/2022] [Indexed: 06/02/2023]
Abstract
Heat stress limits growth and development of crops including grapevine which is a popular fruit in the world. Genetic variability in crops thermotolerance is not well understood. We identified and characterized heat stress transcription factor HSFA2 in heat sensitive Vitis vinifera 'Jingxiu' (named as VvHSFA2) and heat tolerant Vitis davidii 'Tangwei' (named as VdHSFA2). The transcriptional activation activities of VdHSFA2 are higher than VvHSFA2, the variation of single amino acid (Thr315Ile) in AHA1 motif leads to the difference of transcription activities between VdHSFA2 and VvHSFA2. Based on 41 Vitis germplasms, we found that HSFA2 is differentiated at coding region among heat sensitive V. vinifera, and heat tolerant Vitis davidii and Vitis quinquangularis. Genetic evidence demonstrates VdHSFA2 and VvHSFA2 are positive regulators in grape thermotolerance, and the former can confer higher thermotolerance than the latter. Moreover, VdHSFA2 can regulate more target genes than VvHSFA2. As a target gene of both VdHSFA2 and VvHSFA2, overexpression of MBF1c enhanced the grape thermotolerance whereas dysfunction of MBF1c resulted in thermosensitive phenotype. Together, our results revealed that VdHSFA2 confers higher thermotolerance than VvHSFA2, and MBF1c acts as their target gene to induce thermotolerance. The VdHSFA2 may be adopted for molecular breeding in grape thermotolerance.
Collapse
Affiliation(s)
- Xinna Liu
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyang Chen
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shenchang Li
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - David Lecourieux
- EGFV, Bordeaux Sciences Agro, INRAE, ISVV, Bordeaux University, Villenave d'Ornon F-33882, France
| | - Wei Duan
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Peige Fan
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | | |
Collapse
|
20
|
Antolín MC, Salinas E, Fernández A, Gogorcena Y, Pascual I, Irigoyen JJ, Goicoechea N. Prospecting the Resilience of Several Spanish Ancient Varieties of Red Grape under Climate Change Scenarios. PLANTS (BASEL, SWITZERLAND) 2022; 11:2929. [PMID: 36365382 PMCID: PMC9653837 DOI: 10.3390/plants11212929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Climate change results in warmer air temperatures and an uncertain amount and distribution of annual precipitations, which will directly impact rainfed crops, such as the grapevine. Traditionally, ancient autochthones grapevine varieties have been substituted by modern ones with higher productivity. However, this homogenization of genotypes reduces the genetic diversity of vineyards which could make their ability to adapt to challenges imposed by future climate conditions difficult. Therefore, this work aimed to assess the response of four ancient grapevine varieties to high temperatures under different water availabilities, focusing on plant water relations, grape technological and phenolic maturity, and the antioxidant capacity of the must. METHODS The study was conducted on fruit-bearing cuttings grown in pots in temperature-gradient greenhouses. A two-factorial design was established where two temperature regimes, ambient and elevated (ambient + 4 °C), were combined with two water regimes, full irrigation and post-veraison deficit irrigation, during fruit ripening. RESULTS There were significant differences among the ancient varieties regarding plant water relations and fruit quality. CONCLUSION This research underlines the importance of evaluating the behavior of ancient grapevine varieties that could offer good options for the adaptation of viticulture to future climate conditions.
Collapse
Affiliation(s)
- María Carmen Antolín
- Plant Stress Physiology Group (Associated Unit to CSIC, EEAD, Zaragoza), Universidad de Navarra-BIOMA, 31008 Pamplona, Spain
| | - Eduardo Salinas
- Plant Stress Physiology Group (Associated Unit to CSIC, EEAD, Zaragoza), Universidad de Navarra-BIOMA, 31008 Pamplona, Spain
| | - Ana Fernández
- Plant Stress Physiology Group (Associated Unit to CSIC, EEAD, Zaragoza), Universidad de Navarra-BIOMA, 31008 Pamplona, Spain
| | - Yolanda Gogorcena
- Genomics of Fruit Trees and Grapevine Group, Estación Experimental de Aula Dei (EEAD), Consejo Superior de Investigaciones Científicas (CSIC), 50059 Zaragoza, Spain
| | - Inmaculada Pascual
- Plant Stress Physiology Group (Associated Unit to CSIC, EEAD, Zaragoza), Universidad de Navarra-BIOMA, 31008 Pamplona, Spain
| | - Juan José Irigoyen
- Plant Stress Physiology Group (Associated Unit to CSIC, EEAD, Zaragoza), Universidad de Navarra-BIOMA, 31008 Pamplona, Spain
| | - Nieves Goicoechea
- Plant Stress Physiology Group (Associated Unit to CSIC, EEAD, Zaragoza), Universidad de Navarra-BIOMA, 31008 Pamplona, Spain
| |
Collapse
|
21
|
Savoi S, Santiago A, Orduña L, Matus JT. Transcriptomic and metabolomic integration as a resource in grapevine to study fruit metabolite quality traits. FRONTIERS IN PLANT SCIENCE 2022; 13:937927. [PMID: 36340350 PMCID: PMC9630917 DOI: 10.3389/fpls.2022.937927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Transcriptomics and metabolomics are methodologies being increasingly chosen to perform molecular studies in grapevine (Vitis vinifera L.), focusing either on plant and fruit development or on interaction with abiotic or biotic factors. Currently, the integration of these approaches has become of utmost relevance when studying key plant physiological and metabolic processes. The results from these analyses can undoubtedly be incorporated in breeding programs whereby genes associated with better fruit quality (e.g., those enhancing the accumulation of health-promoting compounds) or with stress resistance (e.g., those regulating beneficial responses to environmental transition) can be used as selection markers in crop improvement programs. Despite the vast amount of data being generated, integrative transcriptome/metabolome meta-analyses (i.e., the joint analysis of several studies) have not yet been fully accomplished in this species, mainly due to particular specificities of metabolomic studies, such as differences in data acquisition (i.e., different compounds being investigated), unappropriated and unstandardized metadata, or simply no deposition of data in public repositories. These meta-analyses require a high computational capacity for data mining a priori, but they also need appropriate tools to explore and visualize the integrated results. This perspective article explores the universe of omics studies conducted in V. vinifera, focusing on fruit-transcriptome and metabolome analyses as leading approaches to understand berry physiology, secondary metabolism, and quality. Moreover, we show how omics data can be integrated in a simple format and offered to the research community as a web resource, giving the chance to inspect potential gene-to-gene and gene-to-metabolite relationships that can later be tested in hypothesis-driven research. In the frame of the activities promoted by the COST Action CA17111 INTEGRAPE, we present the first grapevine transcriptomic and metabolomic integrated database (TransMetaDb) developed within the Vitis Visualization (VitViz) platform (https://tomsbiolab.com/vitviz). This tool also enables the user to conduct and explore meta-analyses utilizing different experiments, therefore hopefully motivating the community to generate Findable, Accessible, Interoperable and Reusable (F.A.I.R.) data to be included in the future.
Collapse
Affiliation(s)
- Stefania Savoi
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | - Antonio Santiago
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - Luis Orduña
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| |
Collapse
|
22
|
Campos-Arguedas F, Sarrailhé G, Nicolle P, Dorais M, Brereton NJB, Pitre FE, Pedneault K. Different Temperature and UV Patterns Modulate Berry Maturation and Volatile Compounds Accumulation in Vitis sp. FRONTIERS IN PLANT SCIENCE 2022; 13:862259. [PMID: 35845654 PMCID: PMC9280473 DOI: 10.3389/fpls.2022.862259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/24/2022] [Indexed: 06/08/2023]
Abstract
Volatile compounds (VCs) in grapevine berries play an important role in wine quality; however, such compounds and vine development can be sensitive to environmental conditions. Due to this sensitivity, changes in temperature patterns due to global warming are likely to further impact grape production and berry composition. The aim of this study was to determine the possible effects of different growing-degree day accumulation patterns on berry ripening and composition at harvest. An experimental field was conducted using Vitis sp. L'Acadie blanc, in Nova Scotia, Canada. Using on-the-row mini-greenhouses, moderate temperature increase and reduced ultraviolet (UV) exposure were triggered in grapevines during pre-veraison (inflorescence to the beginning of berry softening), post-veraison (berry softening to full maturity), and whole season (inflorescence to full maturity), while controls were left without treatment. Free and bound VCs were extracted from berries sampled at three different phenological stages between veraison and maturity before analysis by gas chromatography-mass spectrometry (GC-MS). Berries from grapevines exposed to higher temperatures during early berry development (pre-veraison and whole) accumulated significantly higher concentrations of benzene derivatives 2-phenylethanol and benzyl alcohol at harvest, but lower concentrations of hydroxy-methoxy-substituted volatile phenols, terpenes, and C13-norisoprenoids than the control berries. These results illustrate the importance of different environmental interactions in berry composition and suggest that temperature could potentially modulate phenylpropanoid and mevalonate metabolism in developing berries. This study provides insights into the relationships between abiotic conditions and secondary metabolism in grapevine and highlights the significance of early developmental stages on berry quality at harvest.
Collapse
Affiliation(s)
- Francisco Campos-Arguedas
- Department of Science, Université Sainte-Anne, Church Point, NS, Canada
- Centre de Recherche et d'Innovation sur les Végétaux, Département de Phytologie, Université Laval, Québec, QC, Canada
| | - Guillaume Sarrailhé
- Department of Science, Université Sainte-Anne, Church Point, NS, Canada
- Institut de Recherche en Biologie Végétale, Université de Montréal et Jardin botanique de Montréal, Montréal, QC, Canada
| | - Paméla Nicolle
- Department of Science, Université Sainte-Anne, Church Point, NS, Canada
| | - Martine Dorais
- Centre de Recherche et d'Innovation sur les Végétaux, Département de Phytologie, Université Laval, Québec, QC, Canada
| | - Nicholas J. B. Brereton
- Institut de Recherche en Biologie Végétale, Université de Montréal et Jardin botanique de Montréal, Montréal, QC, Canada
| | - Frederic E. Pitre
- Institut de Recherche en Biologie Végétale, Université de Montréal et Jardin botanique de Montréal, Montréal, QC, Canada
| | - Karine Pedneault
- Department of Science, Université Sainte-Anne, Church Point, NS, Canada
- Institut de Recherche en Biologie Végétale, Université de Montréal et Jardin botanique de Montréal, Montréal, QC, Canada
| |
Collapse
|
23
|
Orduña L, Li M, Navarro-Payá D, Zhang C, Santiago A, Romero P, Ramšak Ž, Magon G, Höll J, Merz P, Gruden K, Vannozzi A, Cantu D, Bogs J, Wong DCJ, Huang SSC, Matus JT. Direct regulation of shikimate, early phenylpropanoid, and stilbenoid pathways by Subgroup 2 R2R3-MYBs in grapevine. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:529-547. [PMID: 35092714 DOI: 10.1111/tpj.15686] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 05/08/2023]
Abstract
The stilbenoid pathway is responsible for the production of resveratrol in grapevine (Vitis vinifera L.). A few transcription factors (TFs) have been identified as regulators of this pathway but the extent of this control has not been deeply studied. Here we show how DNA affinity purification sequencing (DAP-Seq) allows for the genome-wide TF-binding site interrogation in grape. We obtained 5190 and 4443 binding events assigned to 4041 and 3626 genes for MYB14 and MYB15, respectively (approximately 40% of peaks located within −10 kb of transcription start sites). DAP-Seq of MYB14/MYB15 was combined with aggregate gene co-expression networks (GCNs) built from more than 1400 transcriptomic datasets from leaves, fruits, and flowers to narrow down bound genes to a set of high confidence targets. The analysis of MYB14, MYB15, and MYB13, a third uncharacterized member of Subgroup 2 (S2), showed that in addition to the few previously known stilbene synthase (STS) targets, these regulators bind to 30 of 47 STS family genes. Moreover, all three MYBs bind to several PAL, C4H, and 4CL genes, in addition to shikimate pathway genes, the WRKY03 stilbenoid co-regulator and resveratrol-modifying gene candidates among which ROMT2-3 were validated enzymatically. A high proportion of DAP-Seq bound genes were induced in the activated transcriptomes of transient MYB15-overexpressing grapevine leaves, validating our methodological approach for delimiting TF targets. Overall, Subgroup 2 R2R3-MYBs appear to play a key role in binding and directly regulating several primary and secondary metabolic steps leading to an increased flux towards stilbenoid production. The integration of DAP-Seq and reciprocal GCNs offers a rapid framework for gene function characterization using genome-wide approaches in the context of non-model plant species and stands up as a valid first approach for identifying gene regulatory networks of specialized metabolism.
Collapse
Affiliation(s)
- Luis Orduña
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46908, Valencia, Spain
| | - Miaomiao Li
- Center for Genomics and Systems Biology, Department of Biology, New York University, USA
| | - David Navarro-Payá
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46908, Valencia, Spain
| | - Chen Zhang
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46908, Valencia, Spain
| | - Antonio Santiago
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46908, Valencia, Spain
| | - Pablo Romero
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46908, Valencia, Spain
| | - Živa Ramšak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Gabriele Magon
- Department of Agronomy, Food, Natural resources, Animals, and Environment (DAFNAE), University of Padova, Legnaro, 35020, Italy
| | - Janine Höll
- Dienstleistungszentrum Ländlicher Raum Rheinpfalz, Viticulture and Enology Group, Neustadt/W, Germany
| | - Patrick Merz
- Dienstleistungszentrum Ländlicher Raum Rheinpfalz, Viticulture and Enology Group, Neustadt/W, Germany
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Alessandro Vannozzi
- Department of Agronomy, Food, Natural resources, Animals, and Environment (DAFNAE), University of Padova, Legnaro, 35020, Italy
| | - Dario Cantu
- Department of Viticulture and Enology, University of California Davis, Davis, California, USA
| | - Jochen Bogs
- Dienstleistungszentrum Ländlicher Raum Rheinpfalz, Viticulture and Enology Group, Neustadt/W, Germany
| | - Darren C J Wong
- Ecology and Evolution, Research School of Biology, The Australian National University, Acton, Australia
| | - Shao-Shan Carol Huang
- Center for Genomics and Systems Biology, Department of Biology, New York University, USA
| | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46908, Valencia, Spain
| |
Collapse
|
24
|
de Rosas I, Deis L, Baldo Y, Cavagnaro JB, Cavagnaro PF. High Temperature Alters Anthocyanin Concentration and Composition in Grape Berries of Malbec, Merlot, and Pinot Noir in a Cultivar-Dependent Manner. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070926. [PMID: 35406906 PMCID: PMC9003205 DOI: 10.3390/plants11070926] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 05/27/2023]
Abstract
Climate is determinant for grapevine geographical distribution, berry attributes, and wine quality. Due to climate change, a 2−4 °C increase in mean diurnal temperature is predicted by the end of the century for the most important Argentine viticulture region. We hypothesize that such temperature increase will affect color intensity and other quality attributes of red grapes and wines. The present study investigated the effect of high temperature (HT) on anthocyanin concentration and composition, pH, and resveratrol and solids content in berries of three major wine-producing varieties during fruit ripening in two seasons. To this end, a structure that increased mean diurnal temperature by 1.5−2.0 °C at berry sites, compared to Control (C) plants grown without such structure, was implemented in field grown vineyards of Malbec, Merlot, and Pinot Noir. Results revealed a cultivar-dependent response to HT conditions, with Malbec and Pinot Noir berries exhibiting significant decreases in total anthocyanin concentration (TAC) at veraison and harvest, respectively, while Merlot maintained an unaffected pigment content under HT. The decrease in TAC was associated with reduced levels of delphinidin, cyanidin, petunidin, peonidin, and malvidin glycosides, and increased ratios of acylated (AA)/non-acylated anthocyanins (NAA), suggesting pigment acylation as a possible stress-response mechanism for attenuating HT negative effects. Under HT, Pinot Noir, which does not produce AA, was the only cultivar with lower TAC at harvest (p < 0.05). pH, resveratrol, and solids content were not affected by HT. Our results predict high, medium, and low plasticity with regard to color quality attributes for Malbec, Merlot, and Pinot Noir, respectively, in the context of climate change.
Collapse
Affiliation(s)
- Inés de Rosas
- Plant Physiology Laboratory, Faculty of Agricultural Sciences, National University of Cuyo, Almirante Brown 500, Mendoza M5528 AHB, Argentina; (I.d.R.); (L.D.); (J.B.C.)
| | - Leonor Deis
- Plant Physiology Laboratory, Faculty of Agricultural Sciences, National University of Cuyo, Almirante Brown 500, Mendoza M5528 AHB, Argentina; (I.d.R.); (L.D.); (J.B.C.)
- Plant Physiology Laboratory, Institution of Agricultural Biology of Mendoza, Faculty of Agricultural Sciences, National University of Cuyo and Conicet, Almirante Brown 500, Chacras de Coria M5505 AHB, Argentina
| | - Yésica Baldo
- National Viticulture Institute (INV), Av. San Martín 430, Mendoza M5528 AHB, Argentina;
| | - Juan B. Cavagnaro
- Plant Physiology Laboratory, Faculty of Agricultural Sciences, National University of Cuyo, Almirante Brown 500, Mendoza M5528 AHB, Argentina; (I.d.R.); (L.D.); (J.B.C.)
- Plant Physiology Laboratory, Institution of Agricultural Biology of Mendoza, Faculty of Agricultural Sciences, National University of Cuyo and Conicet, Almirante Brown 500, Chacras de Coria M5505 AHB, Argentina
| | - Pablo F. Cavagnaro
- National Scientific and Technical Research Council (CONICET), Faculty of Agricultural Sciences, National Agricultural Technology Institute (INTA) E.E.A. La Consulta, National University of Cuyo and Conicet, Ex Ruta 40 s/n, San Carlos, La Consulta 5567, Mendoza M5528 AHB, Argentina
| |
Collapse
|
25
|
Navarro-Payá D, Santiago A, Orduña L, Zhang C, Amato A, D’Inca E, Fattorini C, Pezzotti M, Tornielli GB, Zenoni S, Rustenholz C, Matus JT. The Grape Gene Reference Catalogue as a Standard Resource for Gene Selection and Genetic Improvement. FRONTIERS IN PLANT SCIENCE 2022; 12:803977. [PMID: 35111182 PMCID: PMC8801485 DOI: 10.3389/fpls.2021.803977] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/20/2021] [Indexed: 05/06/2023]
Abstract
Effective crop improvement, whether through selective breeding or biotech strategies, is largely dependent on the cumulative knowledge of a species' pangenome and its containing genes. Acquiring this knowledge is specially challenging in grapevine, one of the oldest fruit crops grown worldwide, which is known to have more than 30,000 genes. Well-established research communities studying model organisms have created and maintained, through public and private funds, a diverse range of online tools and databases serving as repositories of genomes and gene function data. The lack of such resources for the non-model, but economically important, Vitis vinifera species has driven the need for a standardised collection of genes within the grapevine community. In an effort led by the Integrape COST Action CA17111, we have recently developed the first grape gene reference catalogue, where genes are ascribed to functional data, including their accession identifiers from different genome-annotation versions (https://integrape.eu/resources/genes-genomes/). We present and discuss this gene repository together with a validation-level scheme based on varied supporting evidence found in current literature. The catalogue structure and online submission form provided permits community curation. Finally, we present the Gene Cards tool, developed within the Vitis Visualization (VitViz) platform, to visualize the data collected in the catalogue and link gene function with tissue-specific expression derived from public transcriptomic data. This perspective article aims to present these resources to the community as well as highlight their potential use, in particular for plant-breeding applications.
Collapse
Affiliation(s)
- David Navarro-Payá
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Valencia, Spain
| | - Antonio Santiago
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Valencia, Spain
| | - Luis Orduña
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Valencia, Spain
| | - Chen Zhang
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Valencia, Spain
| | - Alessandra Amato
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Erica D’Inca
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Chiara Fattorini
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Mario Pezzotti
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Sara Zenoni
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Valencia, Spain
| |
Collapse
|
26
|
Dinis LT, Bernardo S, Yang C, Fraga H, Malheiro AC, Moutinho-Pereira J, Santos JA. Mediterranean viticulture in the context of climate change. CIÊNCIA E TÉCNICA VITIVINÍCOLA 2022. [DOI: 10.1051/ctv/ctv20223702139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The exposure of viticulture to climate change and extreme weather conditions makes the winemaking sector particularly vulnerable, being one of its major challenges in the current century. While grapevine is considered a highly tolerant crop to several abiotic stresses, Mediterranean areas are frequently affected by adverse environmental factors, namely water scarcity, heat and high irradiance, and are especially vulnerable to climate change. Due to the high socio-economic value of this sector in Europe, the study of adaptation strategies to mitigate the negative climate change impacts are of main importance for its sustainability and competitiveness. Adaptation strategies include all the set of actions and processes that can be performed in response to climate change. It is crucial to improve agronomic strategies to offset the loss of productivity and likely changes in production and fruit quality. It is important to look for new insights concerning response mechanisms to these stresses to advance with more effective and precise measures. These measures should be adjusted to local terroirs and regional climate change projections for the sustainable development of the winemaking sector. This review describes the direct climate change impacts (on phenology, physiology, yield and berry quality), risks, and uncertainties for Mediterranean viticulture, as well as a set of canopy, soil and water management practices that winegrowers can use to adapt their vines to warmer and drier conditions.
Collapse
|
27
|
Rybalko E, Ostroukhova E, Peskova I, Romanov A, Boyko V. Crimean autochthonous grape varieties as a factor of high-quality winemaking in a changing climate. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20225301001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
An increase in ambient temperature affects the quality of wines, which is largely due to a change in the metabolism of phenolic substances in grapes. A possible solution to the problem is the use of autochthonous varieties adapted to unfavorable conditions. The influence of agroecological conditions of 4 vineyards on the phenolic complex of the Crimean grape variety ‘Kokur Belyi’ has been studied. Methods of geoinformation and mathematical modeling, HPLC were used. It is established: vineyards differ in heat resources in the row: Vilino < Privetnoe < Solnechnaya Dolina < Morskoe. An increase in the heat supply of territories caused the accumulation of phenolic acids, flavonols, (+)-D-catechine and procyanidins B4 in grape seeds and a decrease in the content of phenolic acids, (-)-epicatechine, procyanidins B3 in skin and pulp. The highest content of procyanidins in seeds and the lowest content of monomeric phenolic components in skin and pulp was determined in grapes from the village of Morskoye. Grapes from Vilino contain 3.7 times less procyanidins in the seeds, 6.5 and 3.6 times more monomeric components in the skin and pulp. Conclusion: the heat supply of vineyards contributes to both the biosynthesis of monomeric phenolic components and their polymerization during the ripening of grapes, leads to a significant differentiation of the phenolic complex of grapes ‘Kokur Belyi’.
Collapse
|
28
|
Modesti M, Shmuleviz R, Macaluso M, Bianchi A, Venturi F, Brizzolara S, Zinnai A, Tonutti P. Pre-processing Cooling of Harvested Grapes Induces Changes in Berry Composition and Metabolism, and Affects Quality and Aroma Traits of the Resulting Wine. Front Nutr 2021; 8:728510. [PMID: 34901102 PMCID: PMC8652203 DOI: 10.3389/fnut.2021.728510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Due to the greenhouse gas increase, grapes are often exposed to high temperatures in several growing areas especially during the final developmental stages, and this is particularly true when early ripening cultivars are harvested. This may cause undesirable effects on berry metabolism and composition and wine quality, particularly concerning the aroma profile. Harvesting at night or keeping the harvested grapes in cold rooms before vinification are empirical protocols applied in specific viticultural areas. To study the effects of decreasing berry temperature after harvest, white-skinned berries (cv Vermentino) were maintained at 4 or 10°C for 24 or 48 h before processing (pre-cooling). Control grapes were kept at 22°C. Grapes cooled at 10°C for 24 and 48 h resulted richer in polyphenols and showed a significant up-regulation of genes involved in polyphenols biosynthesis (i.e., VvPAL, VvSTS2, and VvFLS1). Similar behavior was observed in samples kept at 4°C for 48 h. Pre-cooling induced specific changes in the volatile organic compound (VOC) profiles. In particular, higher amounts of a specific subcategory of terpenes, namely sesquiterpenes, were detected in cooled samples. The induction of the expression of key genes involved in terpenoids biosynthesis (VvHDR, VvDX3, VvTER, VvGT14) was detected in cooled grapes, with variable effects depending on temperature and treatment duration. In both cooled samples, the evolution of alcoholic fermentation followed a regular trend but ended earlier. Higher phenolic content was detected in wines obtained from the 10°C-treated grapes. Higher residual concentration of malic acid at the end of fermentation was detected in wine samples from grapes pre-cooled at 4°C. Sesquiterpenes also showed a general increase in wines from cooled grapes, especially after pre-cooling at 10°C for 48 h. Different sensory profiles characterized the wine samples, with the best scores in terms of general pleasantness obtained by the wine produced from grapes pre-cooled at 4°C for 24 h. These results demonstrate that pre-cooling harvested grapes induces specific effect on the VOC profile and other quality parameters of Vermentino wine, and this appears to be the result of specific metabolic and compositional changes occurring in the berries.
Collapse
Affiliation(s)
| | - Ron Shmuleviz
- Life Science Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Monica Macaluso
- Department of Agricultural, Food and Agro-Environmental Sciences (DAFE), University of Pisa, Pisa, Italy
| | - Alessandro Bianchi
- Department of Agricultural, Food and Agro-Environmental Sciences (DAFE), University of Pisa, Pisa, Italy
| | - Francesca Venturi
- Department of Agricultural, Food and Agro-Environmental Sciences (DAFE), University of Pisa, Pisa, Italy.,Interdepartmental Research Center, Nutraceuticals and Food for Health, University of Pisa, Pisa, Italy
| | | | - Angela Zinnai
- Department of Agricultural, Food and Agro-Environmental Sciences (DAFE), University of Pisa, Pisa, Italy.,Interdepartmental Research Center, Nutraceuticals and Food for Health, University of Pisa, Pisa, Italy
| | - Pietro Tonutti
- Life Science Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| |
Collapse
|
29
|
Rienth M, Vigneron N, Walker RP, Castellarin SD, Sweetman C, Burbidge CA, Bonghi C, Famiani F, Darriet P. Modifications of Grapevine Berry Composition Induced by Main Viral and Fungal Pathogens in a Climate Change Scenario. FRONTIERS IN PLANT SCIENCE 2021; 12:717223. [PMID: 34956249 PMCID: PMC8693719 DOI: 10.3389/fpls.2021.717223] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 11/01/2021] [Indexed: 06/14/2023]
Abstract
The grapevine is subject to high number of fungal and viral diseases, which are responsible for important economic losses in the global wine sector every year. These pathogens deteriorate grapevine berry quality either directly via the modulation of fruit metabolic pathways and the production of endogenous compounds associated with bad taste and/or flavor, or indirectly via their impact on vine physiology. The most common and devastating fungal diseases in viticulture are gray mold, downy mildew (DM), and powdery mildew (PM), caused, respectively by Botrytis cinerea, Plasmopara viticola, and Erysiphe necator. Whereas B. cinerea mainly infects and deteriorates the ripening fruit directly, deteriorations by DM and PM are mostly indirect via a reduction of photosynthetic leaf area. Nevertheless, mildews can also infect berries at certain developmental stages and directly alter fruit quality via the biosynthesis of unpleasant flavor compounds that impair ultimate wine quality. The grapevine is furthermore host of a wide range of viruses that reduce vine longevity, productivity and berry quality in different ways. The most widespread virus-related diseases, that are known nowadays, are Grapevine Leafroll Disease (GLRD), Grapevine Fanleaf Disease (GFLD), and the more recently characterized grapevine red blotch disease (GRBD). Future climatic conditions are creating a more favorable environment for the proliferation of most virus-insect vectors, so the spread of virus-related diseases is expected to increase in most wine-growing regions. However, the impact of climate change on the evolution of fungal disease pressure will be variable and depending on region and pathogen, with mildews remaining certainly the major phytosanitary threat in most regions because their development rate is to a large extent temperature-driven. This paper aims to provide a review of published literature on most important grapevine fungal and viral pathogens and their impact on grape berry physiology and quality. Our overview of the published literature highlights gaps in our understanding of plant-pathogen interactions, which are valuable for conceiving future research programs dealing with the different pathogens and their impacts on grapevine berry quality and metabolism.
Collapse
Affiliation(s)
- Markus Rienth
- Changins College for Viticulture and Oenology, University of Sciences and Art Western Switzerland, Nyon, Switzerland
| | - Nicolas Vigneron
- Changins College for Viticulture and Oenology, University of Sciences and Art Western Switzerland, Nyon, Switzerland
| | - Robert P. Walker
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Simone Diego Castellarin
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Crystal Sweetman
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| | - Crista A. Burbidge
- School of Agriculture and Food, Commonwealth Scientific and Industrial Research Organization (CSIRO), Glen Osmond, SA, Australia
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova Agripolis, Legnaro, Italy
| | - Franco Famiani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Philippe Darriet
- Univ. Bordeaux, Unité de recherche Œnologie EA 4577, USC 1366 INRAE, Institut des Sciences de la Vigne et du Vin, Villenave d’Ornon, France
| |
Collapse
|
30
|
Zhao YW, Wang CK, Huang XY, Hu DG. Anthocyanin stability and degradation in plants. PLANT SIGNALING & BEHAVIOR 2021; 16:1987767. [PMID: 34686106 PMCID: PMC9208790 DOI: 10.1080/15592324.2021.1987767] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Anthocyanins, a flavonoid group of polyphenolic compounds, have evolved in plants since the land was colonized by plants. These bioactive compounds play critical roles in diverse physiological processes. They are synthesized in the cytosol and transported into the vacuole for storage or to other destinations, where they function as bioactive molecules. The mechanisms of anthocyanin synthesis and transport have been well studied. However, the precise regulation of the mechanisms of anthocyanin degradation remains to be elucidated. In this review, we highlight recent progress in the understanding of the characteristics and functions of anthocyanins and class III peroxidases, as well as of the existing evidence of the effects of class III peroxidases on the degradation of anthocyanins and the possible regulatory mechanisms involved.
Collapse
Affiliation(s)
- Yu-Wen Zhao
- National Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai’an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Chu-Kun Wang
- National Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai’an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Xiao-Yu Huang
- National Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai’an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Da-Gang Hu
- National Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai’an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| |
Collapse
|
31
|
Chen K, Hu Y, Chen L, Zhang J, Qiao H, Li W, Zhang K, Fang Y. Role of dehydration temperature on flavonoids composition and free-form volatile profile of raisins during the drying process. Food Chem 2021; 374:131747. [PMID: 34875429 DOI: 10.1016/j.foodchem.2021.131747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/27/2022]
Abstract
This study investigated the metabolic differences of 'Zicui' raisins produced at different drying temperatures (30 °C, 40 °C and 50 °C). Glucose, fructose, malic acid, shikimic acid and succinic acid contents were the highest in raisins dried at 50 °C. Compared with others, the drying temperature of 40 °C was more conducive to the accumulation of chalcones, dihydroflavones, dihydroflavonols, flavanols, flavonoid carbonosides, proanthocyanidins, and other phenols, while the drying temperature of 30 °C was more conducive to the accumulation of anthocyanins, flavonoid, and flavonols. Most volatile ketones and acids accumulated more in raisins produced at 30 °C, of which the content of 2,6-dimethyl-4-heptanone with sweet odour reached 70.34 μg/L, significantly higher than that in other raisins. Overall, the appropriate drying temperature should be selected according to the demand for specific nutritional or aromatic metabolites during raisins production.
Collapse
Affiliation(s)
- Keqin Chen
- College of Enology, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China
| | - Yujie Hu
- College of Enology, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China
| | - Li Chen
- College of Enology, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China
| | - Junxia Zhang
- College of Enology, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China
| | - Haorong Qiao
- College of Enology, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China
| | - Wanping Li
- College of Enology, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China
| | - Kekun Zhang
- College of Enology, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China.
| | - Yulin Fang
- College of Enology, Heyang Viti-Viniculture Station, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
32
|
Wang W, Li D, Quan G, Wang X, Xi Z. Effects of leaf removal on hexose accumulation and the expression of sugar unloading-related genes in syrah grapes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:1072-1082. [PMID: 34619641 DOI: 10.1016/j.plaphy.2021.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Leaf removal (LR) around the cluster zone is a common practice for regulating grape quality. The purpose of this study was to assess the effects of cluster-zone leaf removal, applied at the pea-size stage of berry development, on berry soluble sugar, organic acid and phenolic compound, sugar unloading-related gene expression of Vitis. vinifera L. Syrah. Four different severities of leaf removal were applied: no leaf removal (Control), removing 2 leaves above the cluster (LR1), removing 4 leaves above the cluster (LR2), and removing 6 leaves above the cluster (LR3). The three leaf removal treatments (LR), especially removing 4 leaves (LR2), resulted in significantly higher reducing sugar, soluble sugar (glucose, fructose and sucrose), total anthocyanin and citric acid contents as compared to the control group during ripening for both vintages. At harvest, the LR treatments increased the transcript abundance of most sugar unloading-related genes. In addition, VvHT3, VvHT5, VvSUC11, VvSUC12, VvSS and VvcwINV were positively correlated with both reducing sugar contents and soluble sugar contents. Our results suggest that removing 4 leaves above the cluster is useful for improving the quality of Syrah (Vitis vinifera L.) grapes in cool climate regions with excessive leaves. These findings provide insights into the molecular basis of the relationship between leaf removing and hexose (glucose and fructose) accumulation in the grape berries.
Collapse
Affiliation(s)
- Wen Wang
- College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Dandan Li
- College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - GuiRong Quan
- College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xuefei Wang
- College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhumei Xi
- College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China; Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
33
|
Monder H, Maillard M, Chérel I, Zimmermann SD, Paris N, Cuéllar T, Gaillard I. Adjustment of K + Fluxes and Grapevine Defense in the Face of Climate Change. Int J Mol Sci 2021; 22:10398. [PMID: 34638737 PMCID: PMC8508874 DOI: 10.3390/ijms221910398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 12/18/2022] Open
Abstract
Grapevine is one of the most economically important fruit crops due to the high value of its fruit and its importance in winemaking. The current decrease in grape berry quality and production can be seen as the consequence of various abiotic constraints imposed by climate changes. Specifically, produced wines have become too sweet, with a stronger impression of alcohol and fewer aromatic qualities. Potassium is known to play a major role in grapevine growth, as well as grape composition and wine quality. Importantly, potassium ions (K+) are involved in the initiation and maintenance of the berry loading process during ripening. Moreover, K+ has also been implicated in various defense mechanisms against abiotic stress. The first part of this review discusses the main negative consequences of the current climate, how they disturb the quality of grape berries at harvest and thus ultimately compromise the potential to obtain a great wine. In the second part, the essential electrical and osmotic functions of K+, which are intimately dependent on K+ transport systems, membrane energization, and cell K+ homeostasis, are presented. This knowledge will help to select crops that are better adapted to adverse environmental conditions.
Collapse
Affiliation(s)
- Houssein Monder
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, F-34060 Montpellier, France; (H.M.); (M.M.); (I.C.); (S.D.Z.); (N.P.)
| | - Morgan Maillard
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, F-34060 Montpellier, France; (H.M.); (M.M.); (I.C.); (S.D.Z.); (N.P.)
| | - Isabelle Chérel
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, F-34060 Montpellier, France; (H.M.); (M.M.); (I.C.); (S.D.Z.); (N.P.)
| | - Sabine Dagmar Zimmermann
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, F-34060 Montpellier, France; (H.M.); (M.M.); (I.C.); (S.D.Z.); (N.P.)
| | - Nadine Paris
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, F-34060 Montpellier, France; (H.M.); (M.M.); (I.C.); (S.D.Z.); (N.P.)
| | - Teresa Cuéllar
- CIRAD, UMR AGAP, Univ Montpellier, INRAE, Institut Agro, F-34398 Montpellier, France;
| | - Isabelle Gaillard
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, F-34060 Montpellier, France; (H.M.); (M.M.); (I.C.); (S.D.Z.); (N.P.)
| |
Collapse
|
34
|
Phenolics composition and contents, as the key quality parameters of table grapes, may be influenced obviously and differently in response to short-term high temperature. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Iqbal N, Umar S, Khan NA, Corpas FJ. Crosstalk between abscisic acid and nitric oxide under heat stress: exploring new vantage points. PLANT CELL REPORTS 2021; 40:1429-1450. [PMID: 33909122 DOI: 10.1007/s00299-021-02695-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/05/2021] [Indexed: 05/22/2023]
Abstract
Heat stress adversely affects plants growth potential. Global warming is reported to increase in the intensity, frequency, and duration of heatwaves, eventually affecting ecology, agriculture and economy. With an expected increase in average temperature by 2-3 °C over the next 30-50 years, crop production is facing a severe threat to sub-optimum growth conditions. Abscisic acid (ABA) and nitric oxide (NO) are growth regulators that are involved in the adaptation to heat stress by affecting each other and changing the adaptation process. The interaction between these molecules has been discussed in various studies in general or under stress conditions; however, regarding high temperature, their interaction has little been worked out. In the present review, the focus is shifted on the role of these molecules under heat stress emphasizing the different possible interactions between ABA and NO as both regulate stomatal closure and other molecules including hydrogen peroxide (H2O2), hydrogen sulfide (H2S), antioxidants, proline, glycine betaine, calcium (Ca2+) and heat shock protein (HSP). Exploring the crosstalk between ABA and NO with other molecules under heat stress will provide us with a comprehensive knowledge of plants mechanism of heat tolerance which could be useful to develop heat stress-resistant varieties.
Collapse
Affiliation(s)
- Noushina Iqbal
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.
| | - Shahid Umar
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Nafees A Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, 18080, Granada, Spain.
| |
Collapse
|
36
|
Romero H, Pott DM, Vallarino JG, Osorio S. Metabolomics-Based Evaluation of Crop Quality Changes as a Consequence of Climate Change. Metabolites 2021; 11:461. [PMID: 34357355 PMCID: PMC8303867 DOI: 10.3390/metabo11070461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/16/2022] Open
Abstract
Fruit composition determines the fruit quality and, consequently, consumer acceptance. As fruit quality can be modified by environmental conditions, it will be impacted by future alterations produced by global warming. Therefore, agricultural activities will be influenced by the changes in climatological conditions in cultivable areas, which could have a high socioeconomic impact if fruit production and quality decline. Currently, different stresses are being applied to several cultivated species to evaluate their impact on fruit metabolism and plant performance. With the use of metabolomic tools, these changes can be precisely measured, allowing us to determine changes in the patterns of individual compounds. As these changes depend on both the stress severity and the specific species involved and even on the specific cultivar, individual analysis must be conducted. To date, the most-studied crops have mainly been crops that are widely cultivated and have a high socioeconomic impact. In the near future, with the development of these metabolomic strategies, their implementation will be extended to other species, which will allow the adaptation of cultivation conditions and the development of varieties with high adaptability to climatological changes.
Collapse
Affiliation(s)
- Helena Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Campus de Teatinos, 29071 Málaga, Spain; (H.R.); (D.M.P.)
| | - Delphine M. Pott
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Campus de Teatinos, 29071 Málaga, Spain; (H.R.); (D.M.P.)
| | - José G. Vallarino
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, 29071 Malaga, Spain;
| | - Sonia Osorio
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Campus de Teatinos, 29071 Málaga, Spain; (H.R.); (D.M.P.)
| |
Collapse
|
37
|
Potential Contribution of Climate Change to the Protein Haze of White Wines from the French Southwest Region. Foods 2021; 10:foods10061355. [PMID: 34208203 PMCID: PMC8230832 DOI: 10.3390/foods10061355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to evaluate the role played by climatic conditions during grape ripening in the protein instability of white wines produced in the French southwest region. For this purpose, basic wine analyses were carried out on 268 musts and the corresponding wines, all produced during the 2016, 2017, 2018, and 2019 vintages, with distinctive climatic conditions. Qualitative and quantitative variables were correlated with levels of protein haze determined by heat test (80 °C/2 h) in the wines using analysis of covariance (ANCOVA), principal component analysis (PCA), and classification and regression trees (CART). Our results show that the climatic change, with the increase in temperatures, and the decrease in precipitation during the grape ripening phase, tends to enhance the risk of protein instability in wines. Indeed, the values of pH, titratable acidity, and malic acid concentrations of the musts, which are good indicators of the conditions in which the grapes ripened and of the level of ripeness of the grapes, were also the variables that correlated best with the protein haze. By measuring these parameters at harvest before alcoholic fermentation, it may be possible to predict the risk of protein haze, and thus early and precisely adapt the stabilization treatment to be applied.
Collapse
|
38
|
Arrizabalaga-Arriazu M, Gomès E, Morales F, Irigoyen JJ, Pascual I, Hilbert G. Impact of 2100-Projected Air Temperature, Carbon Dioxide, and Water Scarcity on Grape Primary and Secondary Metabolites of Different Vitis vinifera cv. Tempranillo Clones. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6172-6185. [PMID: 34033469 DOI: 10.1021/acs.jafc.1c01412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The exploration of the grapevine (Vitis vinifera L.) intra-varietal diversity can be an interesting approach for the adaptation of viticulture to climate change. We evaluated the response of four Tempranillo clones to simulated year-2100-expected air temperature, CO2, and relative humidity (RH) conditions: climate change (CC; 28 °C/18 °C, 700 μmol mol-1 CO2, and 35%/53% RH) vs current situation conditions (CS; 24 °C/14 °C, 400 μmol mol-1 CO2, and 45%/63% RH), under two irrigation regimes, "well-watered" (WW) vs "water deficit" (WD). The treatments were applied to fruit-bearing cuttings grown under research-oriented greenhouse controlled conditions. CC increased sugar accumulation and hastened grape phenology, an effect that was mitigated by water deficit. Both CC and water deficit modified amino acid concentrations and accumulation profiles with different intensities, depending on the clone. Combined CC and water deficit decreased anthocyanins and the anthocyanin to total soluble solids (TSS) ratio. The results suggest differences in the response of the clones to the 2100-projected conditions, which are not always solely explained by differences observed in the ripening dynamics. Among the clones studied, RJ43 and CL306 were the most affected by CC/WD conditions; meanwhile, 1084 was globally less affected than the other clones.
Collapse
Affiliation(s)
- Marta Arrizabalaga-Arriazu
- Faculty of Sciences, Plant Stress Physiology Group, Associated Unit to CSIC (EEAD, Zaragoza, and ICVV, Logroño), Universidad de Navarra, Irunlarrea, 1, 31008 Pamplona, Spain
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d'Ornon, France
| | - Eric Gomès
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d'Ornon, France
| | - Fermín Morales
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Avenida Pamplona 123, 31192 Mutilva, Spain
| | - Juan José Irigoyen
- Faculty of Sciences, Plant Stress Physiology Group, Associated Unit to CSIC (EEAD, Zaragoza, and ICVV, Logroño), Universidad de Navarra, Irunlarrea, 1, 31008 Pamplona, Spain
| | - Inmaculada Pascual
- Faculty of Sciences, Plant Stress Physiology Group, Associated Unit to CSIC (EEAD, Zaragoza, and ICVV, Logroño), Universidad de Navarra, Irunlarrea, 1, 31008 Pamplona, Spain
| | - Ghislaine Hilbert
- EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882 Villenave d'Ornon, France
| |
Collapse
|
39
|
Schwendel BH, Anekal PV, Zarate E, Bang KW, Guo G, Grey AC, Pinu FR. Mass Spectrometry-Based Metabolomics to Investigate the Effect of Mechanical Shaking on Sauvignon Blanc Berry Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4918-4933. [PMID: 33856217 DOI: 10.1021/acs.jafc.1c00413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Previous commercial studies carried out in New Zealand showed that mechanical shaking significantly reduced the incidence of Botrytis cinerea infection in wine grapes. However, the reasons behind this reduction are not well understood. Here, we employed a metabolomics approach to gain insights into the biochemical changes that occur in grape berries due to mechanical shaking. Berry samples were analyzed using three different analytical approaches including gas chromatography and mass spectrometry (MS), liquid chromatography and MS, and imaging mass spectrometry (IMS). Combined data provided a comprehensive overview of metabolic changes in grape berry, indicating the initiation of different stress mitigation strategies to overcome the effect of mechanical shaking. Berry primary metabolism was distinctly altered in the green berries in response to mechanical shaking, while secondary metabolism significantly changed in berries collected after veraison. Pathway analysis showed upregulation of metabolites related to nitrogen and lipid metabolism in the berries from shaken vines when compared with controls. From IMS data, we observed an accumulation of different groups of metabolites including phenolic compounds and amino and fatty acids in the areas near to the skin of berries from shaken vines. This observation suggests that mechanical shaking caused an accumulation of these metabolites, which may be associated with the formation of a protective barrier, leading to the reduction in B. cinerea infection in berries from mechanically shaken vines.
Collapse
Affiliation(s)
- Brigitte Heike Schwendel
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4474, New Zealand
| | - Praju Vikas Anekal
- School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Biomedical Imaging Research Unit, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Erica Zarate
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Kyung Whan Bang
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - George Guo
- School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Angus C Grey
- School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Biomedical Imaging Research Unit, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Farhana R Pinu
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
| |
Collapse
|
40
|
Chen K, Sun J, Li Z, Zhang J, Li Z, Chen L, Li W, Fang Y, Zhang K. Postharvest Dehydration Temperature Modulates the Transcriptomic Programme and Flavonoid Profile of Grape Berries. Foods 2021; 10:foods10030687. [PMID: 33807052 PMCID: PMC8005005 DOI: 10.3390/foods10030687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/14/2021] [Accepted: 03/20/2021] [Indexed: 12/19/2022] Open
Abstract
Raisins are a popular and nutritious snack that is produced through the dehydration of postharvest grape berries under high temperature (HT). However, the response of the endogenous metabolism of white grape varieties to postharvest dehydration under different temperature have not been fully elucidated to date. In this study, the white grape cultivar ‘Xiangfei’ was chosen to investigate the effect of dehydration at 50 °C, 40 °C, and 30 °C on the transcriptomic programme and metabolite profiles of grape berries. Postharvest dehydration promoted the accumulation of soluble sugar components and organic acids in berries. The content of gallic acid and its derivatives increased during the dehydration process and the temperature of 40 °C was the optimal for flavonoids and proanthocyanidins accumulation. High-temperature dehydration stress might promote the accumulation of gallic acid by increasing the expression levels of their biosynthesis related genes and regulating the production of NADP+ and NADPH. Compared with that at 30 °C, dehydration at 40 °C accelerated the transcription programme of 7654 genes and induced the continuous upregulation of genes related to the heat stress response and redox homeostasis in each stage. The results of this study indicate that an appropriate dehydration temperature should be selected and applied when producing polyphenols-rich raisins.
Collapse
|
41
|
Burbidge CA, Ford CM, Melino VJ, Wong DCJ, Jia Y, Jenkins CLD, Soole KL, Castellarin SD, Darriet P, Rienth M, Bonghi C, Walker RP, Famiani F, Sweetman C. Biosynthesis and Cellular Functions of Tartaric Acid in Grapevines. FRONTIERS IN PLANT SCIENCE 2021; 12:643024. [PMID: 33747023 PMCID: PMC7970118 DOI: 10.3389/fpls.2021.643024] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/09/2021] [Indexed: 05/29/2023]
Abstract
Tartaric acid (TA) is an obscure end point to the catabolism of ascorbic acid (Asc). Here, it is proposed as a "specialized primary metabolite", originating from carbohydrate metabolism but with restricted distribution within the plant kingdom and lack of known function in primary metabolic pathways. Grapes fall into the list of high TA-accumulators, with biosynthesis occurring in both leaf and berry. Very little is known of the TA biosynthetic pathway enzymes in any plant species, although recently some progress has been made in this space. New technologies in grapevine research such as the development of global co-expression network analysis tools and genome-wide association studies, should enable more rapid progress. There is also a lack of information regarding roles for this organic acid in plant metabolism. Therefore this review aims to briefly summarize current knowledge about the key intermediates and enzymes of TA biosynthesis in grapes and the regulation of its precursor, ascorbate, followed by speculative discussion around the potential roles of TA based on current knowledge of Asc metabolism, TA biosynthetic enzymes and other aspects of fruit metabolism.
Collapse
Affiliation(s)
| | | | | | - Darren Chern Jan Wong
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT, Australia
| | - Yong Jia
- Western Barley Genetic Alliance, Murdoch University, Perth, WA, Australia
| | | | - Kathleen Lydia Soole
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Simone Diego Castellarin
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Philippe Darriet
- Université Bordeaux, Unité de recherche OEnologie, EA 4577, USC 1366 INRAE, Institut des Sciences de la Vigne et du Vin, Villenave d’Ornon, France
| | - Markus Rienth
- University of Sciences and Art Western Switzerland, Changins College for Viticulture and Oenology, Nyon, Switzerland
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Robert Peter Walker
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Franco Famiani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Crystal Sweetman
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
42
|
Gomès É, Maillot P, Duchêne É. Molecular Tools for Adapting Viticulture to Climate Change. FRONTIERS IN PLANT SCIENCE 2021; 12:633846. [PMID: 33643361 PMCID: PMC7902699 DOI: 10.3389/fpls.2021.633846] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/19/2021] [Indexed: 05/04/2023]
Abstract
Adaptation of viticulture to climate change includes exploration of new geographical areas, new training systems, new management practices, or new varieties, both for rootstocks and scions. Molecular tools can be defined as molecular approaches used to study DNAs, RNAs, and proteins in all living organisms. We present here the current knowledge about molecular tools and their potential usefulness in three aspects of grapevine adaptation to the ongoing climate change. (i) Molecular tools for understanding grapevine response to environmental stresses. A fine description of the regulation of gene expression is a powerful tool to understand the physiological mechanisms set up by the grapevine to respond to abiotic stress such as high temperatures or drought. The current knowledge on gene expression is continuously evolving with increasing evidence of the role of alternative splicing, small RNAs, long non-coding RNAs, DNA methylation, or chromatin activity. (ii) Genetics and genomics of grapevine stress tolerance. The description of the grapevine genome is more and more precise. The genetic variations among genotypes are now revealed with new technologies with the sequencing of very long DNA molecules. High throughput technologies for DNA sequencing also allow now the genetic characterization at the same time of hundreds of genotypes for thousands of points in the genome, which provides unprecedented datasets for genotype-phenotype associations studies. We review the current knowledge on the genetic determinism of traits for the adaptation to climate change. We focus on quantitative trait loci and molecular markers available for developmental stages, tolerance to water stress/water use efficiency, sugar content, acidity, and secondary metabolism of the berries. (iii) Controlling the genome and its expression to allow breeding of better-adapted genotypes. High-density DNA genotyping can be used to select genotypes with specific interesting alleles but genomic selection is also a powerful method able to take into account the genetic information along the whole genome to predict a phenotype. Modern technologies are also able to generate mutations that are possibly interesting for generating new phenotypes but the most promising one is the direct editing of the genome at a precise location.
Collapse
Affiliation(s)
- Éric Gomès
- EGFV, University of Bordeaux – Bordeaux Sciences-Agro – INRAE, Villenave d’Ornon, France
| | - Pascale Maillot
- SVQV, INRAE – University of Strasbourg, Colmar, France
- University of Haute Alsace, Mulhouse, France
| | - Éric Duchêne
- SVQV, INRAE – University of Strasbourg, Colmar, France
| |
Collapse
|
43
|
Lu HC, Chen WK, Wang Y, Bai XJ, Cheng G, Duan CQ, Wang J, He F. Effect of the Seasonal Climatic Variations on the Accumulation of Fruit Volatiles in Four Grape Varieties Under the Double Cropping System. FRONTIERS IN PLANT SCIENCE 2021; 12:809558. [PMID: 35154206 PMCID: PMC8829325 DOI: 10.3389/fpls.2021.809558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/20/2021] [Indexed: 05/17/2023]
Abstract
The double cropping system has been widely applied in many subtropical viticultural regions. In the 2-year study of 2014-2015, four grape varieties were selected to analyze their fruit volatile compounds in four consecutive seasons in the Guangxi region of South China, which had a typical subtropical humid monsoon climate. Results showed that berries of winter seasons had higher concentrations of terpenes, norisoprenoids, and C6/C9 compounds in "Riesling," "Victoria," and "Muscat Hamburg" grapes in both of the two vintages. However, in the "Cabernet Sauvignon" grapes, only the berries of the 2014 winter season had higher terpene concentrations, but lower norisoprenoid concentrations than those of the corresponding summer season. The Pearson correlation analysis showed the high temperature was the main climate factor that affected volatile compounds between the summer and winter seasons. Hexanal, γ-terpinene, terpinen-4-ol, cis-furan linalool oxide, and trans-pyran linalool oxide were all negatively correlated with the high-temperature hours in all of the four varieties. Transcriptome analysis showed that the upregulated VviDXSs, VviPSYs, and VviCCDs expressions might contribute to the accumulations of terpenes or norisoprenoids in the winter berries of these varieties. Our results provided insights into how climate parameters affected grape volatiles under the double cropping system, which might improve the understanding of the grape berries in response to the climate changes accompanied by extreme weather conditions in the future.
Collapse
Affiliation(s)
- Hao-Cheng Lu
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Wei-Kai Chen
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yu Wang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xian-Jin Bai
- Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Guo Cheng
- Grape and Wine Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Chang-Qing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jun Wang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Fei He
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing, China
- *Correspondence: Fei He,
| |
Collapse
|
44
|
Rybalko E, Ostroukhova E, Levchenko S. Spatial distribution of Crimean agroecological resources as a factor of variability of the main and secondary metabolites of grapes. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20213901001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The work is aimed at identifying the relationship between agroecological conditions and the formation of carbohydrate-acid and phenolic grape complexes. The agro-climatic parameters of 14 cv. ‘Cabernet Sauvignon’ industrial vineyards located in five wine-growing regions of Crimea have been determined using the methods of geoinformation and mathematical modeling. According to the similarity of 9 agro-climatic characteristics, the vineyards are united into 6 clusters, significantly different from each other. The dispersion of the main and secondary metabolites of grapes, as well as technological indicators based on them in the harvest from the selected clusters, has been established. According to the combined mass concentration of anthocyanins in berries, potential amount of extractable anthocyanins, anthocyanin extractability, monophenolmonooxygenase activity, glucoacidimetric index and grape ripeness index the selected vineyard clusters are discriminated with Wilks L. = 0.09 at α<0.00001. Sugar content, active acidity index, glucoacidimetric index, and grape ripeness index were found to correlate inversely with the amount of precipitation during the growing season; anthocyanin extractability correlates directly with the Huglin and Winkler indices; monophenolmonooxygenase activity with the sum of active temperatures above 10 °C, Huglin index, total precipitation per year and growing season.
Collapse
|
45
|
Rienth M, Vigneron N, Darriet P, Sweetman C, Burbidge C, Bonghi C, Walker RP, Famiani F, Castellarin SD. Grape Berry Secondary Metabolites and Their Modulation by Abiotic Factors in a Climate Change Scenario-A Review. FRONTIERS IN PLANT SCIENCE 2021; 12:643258. [PMID: 33828576 PMCID: PMC8020818 DOI: 10.3389/fpls.2021.643258] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/02/2021] [Indexed: 05/20/2023]
Abstract
Temperature, water, solar radiation, and atmospheric CO2 concentration are the main abiotic factors that are changing in the course of global warming. These abiotic factors govern the synthesis and degradation of primary (sugars, amino acids, organic acids, etc.) and secondary (phenolic and volatile flavor compounds and their precursors) metabolites directly, via the regulation of their biosynthetic pathways, or indirectly, via their effects on vine physiology and phenology. Several hundred secondary metabolites have been identified in the grape berry. Their biosynthesis and degradation have been characterized and have been shown to occur during different developmental stages of the berry. The understanding of how the different abiotic factors modulate secondary metabolism and thus berry quality is of crucial importance for breeders and growers to develop plant material and viticultural practices to maintain high-quality fruit and wine production in the context of global warming. Here, we review the main secondary metabolites of the grape berry, their biosynthesis, and how their accumulation and degradation is influenced by abiotic factors. The first part of the review provides an update on structure, biosynthesis, and degradation of phenolic compounds (flavonoids and non-flavonoids) and major aroma compounds (terpenes, thiols, methoxypyrazines, and C13 norisoprenoids). The second part gives an update on the influence of abiotic factors, such as water availability, temperature, radiation, and CO2 concentration, on berry secondary metabolism. At the end of the paper, we raise some critical questions regarding intracluster berry heterogeneity and dilution effects and how the sampling strategy can impact the outcome of studies on the grapevine berry response to abiotic factors.
Collapse
Affiliation(s)
- Markus Rienth
- Changins College for Viticulture and Oenology, University of Sciences and Art Western Switzerland, Nyon, Switzerland
- *Correspondence: Markus Rienth
| | - Nicolas Vigneron
- Changins College for Viticulture and Oenology, University of Sciences and Art Western Switzerland, Nyon, Switzerland
| | - Philippe Darriet
- Unité de recherche Œnologie EA 4577, USC 1366 INRAE, Bordeaux, France
- Institut des Sciences de la Vigne et du Vin CS 50008, Villenave d'Ornon, France
| | - Crystal Sweetman
- College of Science & Engineering, Flinders University, Bedford Park, SA, Australia
| | - Crista Burbidge
- Agriculture and Food (Commonwealth Scientific and Industrial Research Organisation), Glen Osmond, SA, Australia
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova Agripolis, Legnaro, Italy
| | - Robert Peter Walker
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Franco Famiani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Simone Diego Castellarin
- Faculty of Land and Food Systems, Wine Research Centre, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
46
|
Antolín MC, Toledo M, Pascual I, Irigoyen JJ, Goicoechea N. The Exploitation of Local Vitis vinifera L. Biodiversity as a Valuable Tool to Cope with Climate Change Maintaining Berry Quality. PLANTS 2020; 10:plants10010071. [PMID: 33396405 PMCID: PMC7824074 DOI: 10.3390/plants10010071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022]
Abstract
(1) Background: The associated increase in global mean surface temperature together with raised atmospheric carbon dioxide (CO2) concentration is exerting a profound influence on grapevine development (phenology) and grape quality. The exploitation of the local genetic diversity based on the recovery of ancient varieties has been proposed as an interesting option to cope with climate change and maintaining grape quality. Therefore, this research aimed to characterize the potential fruit quality of genotypes from seven local old grapevine varieties grown under climate change conditions. (2) Methods: The study was carried out on fruit-bearing cuttings (one cluster per plant) that were grown in pots in temperature gradient greenhouses (TGG). Two treatments were applied from fruit set to maturity: (1) ambient CO2 (400 ppm) and temperature (T) (ACAT) and (2) elevated CO2 (700 ppm) and temperature (T + 4 °C) (ECET). (3) Results: Results showed that some of the old genotypes tested remained quite stable during the climate change conditions in terms of fruit quality (mainly, total soluble solids and phenolic content) and of must antioxidant properties. (4) Conclusion: This research underlines the usefulness of exploiting local grapevine diversity to cope with climate change successfully, although further studies under field conditions and with whole plants are needed before extrapolating the results to the vineyard.
Collapse
|
47
|
Gashu K, Sikron Persi N, Drori E, Harcavi E, Agam N, Bustan A, Fait A. Temperature Shift Between Vineyards Modulates Berry Phenology and Primary Metabolism in a Varietal Collection of Wine Grapevine. FRONTIERS IN PLANT SCIENCE 2020; 11:588739. [PMID: 33391301 PMCID: PMC7774500 DOI: 10.3389/fpls.2020.588739] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/16/2020] [Indexed: 05/31/2023]
Abstract
Global climate change and the expected increase in temperature are altering the relationship between geography and grapevine (V. vinifera) varietal performance, and the implications of which are yet to be fully understood. We investigated berry phenology and biochemistry of 30 cultivars, 20 red and 10 white, across three seasons (2017-2019) in response to a consistent average temperature difference of 1.5°C during the growing season between two experimental sites. The experiments were conducted at Ramat Negev (RN) and Ramon (MR) vineyards, located in the Negev desert, Israel. A significant interaction between vineyard location, season, and variety affected phenology and berry indices. The warmer RN site was generally associated with an advanced phenological course for the white cultivars, which reached harvest up to 2 weeks earlier than at the MR site. The white cultivars also showed stronger correlation between non-consecutive phenological stages than did the red ones. In contrast, harvest time of red cultivars considerably varied according to seasons and sites. Warmer conditions extended fruit developmental phases, causing berry shriveling and cluster collapse in a few cultivars such as Pinot Noir, Ruby Cabernet, and Tempranillo. Analyses of organic acid content suggested differences between red and white cultivars in the content of malate, tartrate, and citrate in response to the temperature difference between sites. However, generally, cultivars at lower temperatures exhibited lower concentrations of pulp organic acids at véraison, but acid degradation until harvest was reduced, compared to the significant pace of acid decline at the warmer site. Sugars showed the greatest differences between sites in both white and red berries at véraison, but differences were seasonal dependent. At harvest, cultivars of both groups exhibited significant variation in hexose/sucrose ratio, and the averages of which varied from 1.6 to 2.9. Hexose/sucrose ratio was significantly higher among the red cultivars at the warmer RN, while this tendency was very slight among white cultivars. White cultivars seem to harbor a considerable degree of resilience due to a combination of earlier and shorter ripening phase, which avoids most of the summer heat. Taken together, our study demonstrates that the extensive genetic capacity of V. vinifera bears significant potential and plasticity to withstand the temperature increase associated with climate change.
Collapse
Affiliation(s)
- Kelem Gashu
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Noga Sikron Persi
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Elyashiv Drori
- Department of Chemical Engineering, Ariel University, Ariel, Israel
- The Grape and Wine Research Center, Eastern Regional R&D Center, Ariel, Israel
| | - Eran Harcavi
- Ministry of Agriculture and Rural Development, Agricultural Extension Service – Shaham, Beit Dagan, Israel
| | - Nurit Agam
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Amnon Bustan
- Ramat Negev Desert Agro-Research Center, Ramat Negev Works Ltd., Haluza, Israel
| | - Aaron Fait
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
48
|
Ryu S, Han JH, Cho JG, Jeong JH, Lee SK, Lee HJ. High temperature at veraison inhibits anthocyanin biosynthesis in berry skins during ripening in 'Kyoho' grapevines. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 157:219-228. [PMID: 33129068 DOI: 10.1016/j.plaphy.2020.10.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
We examined the effects of high temperature (HT) at veraison (the onset of ripening) on coloration and anthocyanin biosynthesis in berry skins of 'Kyoho' grapevines (Vitis labruscana L.). The vines were subjected to control, HT (6 °C higher than the control for 10 days), and intermittent HT (IHT; 6 °C higher than the control for 4 days followed by control temperature for 3 days and then 6 °C higher than the control for another 3 days) conditions from 50 to 60 days after full bloom (DAFB) in temperature-controlled rooms. Under control conditions, berry skins were tinted purple from 55 DAFB and turned to reddish-purple thereafter until 80 DAFB, concurrently with the anthocyanin accumulation. The HT and IHT treatments greatly inhibited the coloration and anthocyanin accumulation, with greater inhibition by the HT treatment. The HT and IHT treatments significantly inhibited the expressions of early (EBGs) and late anthocyanin biosynthetic genes (LBGs), and the transcription factor gene VlMYBA2. Abscisic acid (ABA) contents in the control berry skins increased from 50 DAFB, peaked at 55 DAFB, and decreased thereafter. The HT and IHT treatments reduced the increase in ABA contents, with no significant difference between HT- and IHT-treated vines. Gibberellin (GA) contents decreased during veraison in the berry skins of control and IHT-treated vines, but remained unchanged in those of HT-treated vines. These results suggest that the coloration and anthocyanin biosynthesis in berry skins are associated with changes in the ABA/GA ratio.
Collapse
Affiliation(s)
- Suhyun Ryu
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Wanju, 55365, Republic of Korea; Department of Plant Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeom Hwa Han
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Wanju, 55365, Republic of Korea
| | - Jung Gun Cho
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Wanju, 55365, Republic of Korea
| | - Jae Hoon Jeong
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Wanju, 55365, Republic of Korea
| | - Seul Ki Lee
- Fruit Research Division, National Institute of Horticultural and Herbal Science, Wanju, 55365, Republic of Korea
| | - Hee Jae Lee
- Department of Plant Science, Seoul National University, Seoul, 08826, Republic of Korea; Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
49
|
Lecourieux D, Kappel C, Claverol S, Pieri P, Feil R, Lunn JE, Bonneu M, Wang L, Gomès E, Delrot S, Lecourieux F. Proteomic and metabolomic profiling underlines the stage- and time-dependent effects of high temperature on grape berry metabolism. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1132-1158. [PMID: 31829525 DOI: 10.1111/jipb.12894] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/05/2019] [Indexed: 05/19/2023]
Abstract
Climate change scenarios predict an increase in mean air temperatures and in the frequency, intensity, and length of extreme temperature events in many wine-growing regions worldwide. Because elevated temperature has detrimental effects on berry growth and composition, it threatens the economic and environmental sustainability of wine production. Using Cabernet Sauvignon fruit-bearing cuttings, we investigated the effects of high temperature (HT) on grapevine berries through a label-free shotgun proteomic analysis coupled to a complementary metabolomic study. Among the 2,279 proteins identified, 592 differentially abundant proteins were found in berries exposed to HT. The gene ontology categories "stress," "protein," "secondary metabolism," and "cell wall" were predominantly altered under HT. High temperatures strongly impaired carbohydrate and energy metabolism, and the effects depended on the stage of development and duration of treatment. Transcript amounts correlated poorly with protein expression levels in HT berries, highlighting the value of proteomic studies in the context of heat stress. Furthermore, this work reveals that HT alters key proteins driving berry development and ripening. Finally, we provide a list of differentially abundant proteins that can be considered as potential markers for developing or selecting grape varieties that are better adapted to warmer climates or extreme heat waves.
Collapse
Affiliation(s)
- David Lecourieux
- UMR1287 EGFV, INRAE, Bordeaux Sciences Agro, Bordeaux University, ISVV, 33140, Villenave d'Ornon, France
| | - Christian Kappel
- Institut of Biochemistry and Biology, Potsdam University, D-14476, Potsdam, Germany
| | - Stéphane Claverol
- Proteome Platform, Bordeaux Functional Genomic Center, Bordeaux University, 33076, Bordeaux, France
| | - Philippe Pieri
- UMR1287 EGFV, INRAE, Bordeaux Sciences Agro, Bordeaux University, ISVV, 33140, Villenave d'Ornon, France
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Marc Bonneu
- Proteome Platform, Bordeaux Functional Genomic Center, Bordeaux University, 33076, Bordeaux, France
| | - Lijun Wang
- Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Eric Gomès
- UMR1287 EGFV, INRAE, Bordeaux Sciences Agro, Bordeaux University, ISVV, 33140, Villenave d'Ornon, France
| | - Serge Delrot
- UMR1287 EGFV, INRAE, Bordeaux Sciences Agro, Bordeaux University, ISVV, 33140, Villenave d'Ornon, France
| | - Fatma Lecourieux
- UMR1287 EGFV, CNRS, INRAE, Bordeaux Sciences Agro, Bordeaux University, ISVV, 33140, Villenave d'Ornon, France
| |
Collapse
|
50
|
Single berry reconstitution prior to RNA-sequencing reveals novel insights into transcriptomic remodeling by leafroll virus infections in grapevines. Sci Rep 2020; 10:12905. [PMID: 32737411 PMCID: PMC7395792 DOI: 10.1038/s41598-020-69779-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/08/2020] [Indexed: 01/21/2023] Open
Abstract
Leafroll viruses are among the most devastating pathogens in viticulture and are responsible for major economic losses in the wine industry. However, the molecular interactions underlying the effects on fruit quality deterioration are not well understood. The few molecular studies conducted on berries from infected vines, associated quality decreases with the repression of key genes in sugar transport and anthocyanin biosynthesis. Sampling protocols in these studies did however not account for berry heterogeneity and potential virus induced phenological shifts, which could have biased the molecular information. In the present study, we adopted an innovative individual berry sampling protocol to produce homogeneous batches for RNA extraction, thereby circumventing berry heterogeneity and compensating for virus induced phenological shifts. This way a characterization of the transcriptomic modulation by viral infections was possible and explain why our results differ significantly from previously reported repression of anthocyanin biosynthesis and sugar metabolism. The present study provides new insights into the berry transcriptome modulation by leafroll infection, highlighting the virus induced upregulation of plant innate immunity as well as an increased responsiveness of the early ripening berry to biotic stressors. The study furthermore emphasizes the importance of sampling protocols in physiological studies on grapevine berry metabolism.
Collapse
|