1
|
Adamik L, Dou PS, Philippe G, Blanc R, Vásquez-Ocmín P, Marti G, Langin T, Bonhomme L. Suboptimal pre-anthesis water status mitigates wheat susceptibility to fusarium head blight and triggers specific metabolic responses. Sci Rep 2025; 15:11773. [PMID: 40189612 PMCID: PMC11973212 DOI: 10.1038/s41598-025-96159-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/26/2025] [Indexed: 04/09/2025] Open
Abstract
The impact of abiotic challenges on plant physiology reshapes plant-pathogen interactions by modulating the plant immune responses. In wheat, the development of Fusarium Head Blight (FHB) is heavily influenced by environmental conditions, especially during the pre-anthesis stage, just before fungal infection occurs. The early stages of infection are thus likely conditioned by prior environmental changes with consequences on the disease outcome that require further characterization. In this study, we aimed to assess the impact of pre-anthesis water depletion followed by rapid rehydration at inoculation on the expression of FHB-related molecular determinants with emphasis on susceptibility factors and metabolism-related processes. Water depletion altered plant physiology and its effects remained detectable after three days after rehydration, leading to significantly reduced FHB symptoms. Dual-transcriptomics, combined with untargeted metabolomics, revealed two key findings including (i) extensive metabolic changes specific to prior water stress, and (ii) the strong conservation of previously identified candidate susceptibility genes regulation. Considering the combined stress effects, a unique response signature emerged, highlighting that immune responses are strongly interwoven with physiological adjustments. Our findings provide new insights into the trade-offs that plants make under multiple challenges and identify original wheat metabolic determinants that may improve FHB resistance even in suboptimal physiological conditions.
Collapse
Affiliation(s)
- Larissa Adamik
- Université Clermont Auvergne, INRAE, GDEC, 63000, Clermont-Ferrand, France
| | - Paul Samir Dou
- Université Clermont Auvergne, INRAE, GDEC, 63000, Clermont-Ferrand, France
- Université Clermont Auvergne, INRAE, UMR Herbivores, VetAgroSup, Saint-Genès- Champanelle, France
| | - Géraldine Philippe
- Université Clermont Auvergne, INRAE, GDEC, 63000, Clermont-Ferrand, France
| | - Richard Blanc
- Université Clermont Auvergne, INRAE, GDEC, 63000, Clermont-Ferrand, France
| | - Pedro Vásquez-Ocmín
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Guillaume Marti
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
- Laboratoire de Recherche en Sciences Végétales, Metatoul-AgromiX Platform, Université de Toulouse, CNRS, INP, 24 Chemin de Borde Rouge, Auzeville, Auzeville-Tolosane, 31320, France
| | - Thierry Langin
- Université Clermont Auvergne, INRAE, GDEC, 63000, Clermont-Ferrand, France
| | - Ludovic Bonhomme
- Université Clermont Auvergne, INRAE, GDEC, 63000, Clermont-Ferrand, France.
| |
Collapse
|
2
|
Choudhary A, Senthil-Kumar M. Drought: A context-dependent damper and aggravator of plant diseases. PLANT, CELL & ENVIRONMENT 2024; 47:2109-2126. [PMID: 38409868 DOI: 10.1111/pce.14863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/04/2024] [Accepted: 02/10/2024] [Indexed: 02/28/2024]
Abstract
Drought dynamically influences the interactions between plants and pathogens, thereby affecting disease outbreaks. Understanding the intricate mechanistic aspects of the multiscale interactions among plants, pathogens, and the environment-known as the disease triangle-is paramount for enhancing the climate resilience of crop plants. In this review, we systematically compile and comprehensively analyse current knowledge on the influence of drought on the severity of plant diseases. We emphasise that studying these stresses in isolation is not sufficient to predict how plants respond to combined stress from both drought and pathogens. The impact of drought and pathogens on plants is complex and multifaceted, encompassing the activation of antagonistic signalling cascades in response to stress factors. The nature, intensity, and temporality of drought and pathogen stress occurrence significantly influence the outcome of diseases. We delineate the drought-sensitive nodes of plant immunity and highlight the emerging points of crosstalk between drought and defence signalling under combined stress. The limited mechanistic understanding of these interactions is acknowledged as a key research gap in this area. The information synthesised herein will be crucial for crafting strategies for the accurate prediction and mitigation of future crop disease risks, particularly in the context of a changing climate.
Collapse
|
3
|
Meline V, Hendrich CG, Truchon AN, Caldwell D, Hiles R, Leuschen-Kohl R, Tran T, Mitra RM, Allen C, Iyer-Pascuzzi AS. Tomato deploys defence and growth simultaneously to resist bacterial wilt disease. PLANT, CELL & ENVIRONMENT 2023; 46:3040-3058. [PMID: 36213953 DOI: 10.1111/pce.14456] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Plant disease limits crop production, and host genetic resistance is a major means of control. Plant pathogenic Ralstonia causes bacterial wilt disease and is best controlled with resistant varieties. Tomato wilt resistance is multigenic, yet the mechanisms of resistance remain largely unknown. We combined metaRNAseq analysis and functional experiments to identify core Ralstonia-responsive genes and the corresponding biological mechanisms in wilt-resistant and wilt-susceptible tomatoes. While trade-offs between growth and defence are common in plants, wilt-resistant plants activated both defence responses and growth processes. Measurements of innate immunity and growth, including reactive oxygen species production and root system growth, respectively, validated that resistant plants executed defence-related processes at the same time they increased root growth. In contrast, in wilt-susceptible plants roots senesced and root surface area declined following Ralstonia inoculation. Wilt-resistant plants repressed genes predicted to negatively regulate water stress tolerance, while susceptible plants repressed genes predicted to promote water stress tolerance. Our results suggest that wilt-resistant plants can simultaneously promote growth and defence by investing in resources that act in both processes. Infected susceptible plants activate defences, but fail to grow and so succumb to Ralstonia, likely because they cannot tolerate the water stress induced by vascular wilt.
Collapse
Affiliation(s)
- Valerian Meline
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Connor G Hendrich
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin, USA
| | - Alicia N Truchon
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin, USA
| | - Denise Caldwell
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Rachel Hiles
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Rebecca Leuschen-Kohl
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Tri Tran
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Raka M Mitra
- Department of Biology, Carleton College, Northfield, Minnesota, USA
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin, USA
| | - Anjali S Iyer-Pascuzzi
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
4
|
Wang Y, Wu W, Zhang L, Jiang H, Mei L. Variations in amino acids caused by drought stress mediate the predisposition of Carya cathayensis to Botryosphaeria canker disease. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4628-4641. [PMID: 37129574 DOI: 10.1093/jxb/erad161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Abiotic stresses can affect the outcome of plant-pathogen interactions, mostly by predisposing the host plant to infection; however, the crosstalk between pathogens and plants related to such predisposition remains unclear. Here, we investigated the predisposition of Carya cathayensis to infection by the fungal pathogen Botryosphaeria dothidea (Bd) caused by drought in the host plant. High levels of drought stress resulted in a significant increase in plant susceptibility to Bd. Drought significantly induced the accumulation of H2O2 and the free amino acids Pro, Leu, and Ile, and in the phloem tissues of plants, and decreased the content of non-structural carbohydrates. In vitro assays showed that Bd was sensitive to H2O2; however, Pro played a protective role against exogenous H2O2. Leu, Ile, and Pro induced asexual reproduction of Bd. Our results provide the first analysis of how drought predisposes C. cathayensis to Botrysphaeria canker via amino acid accumulation in the host plant, and we propose a model that integrates the plant-pathogen interactions involved.
Collapse
Affiliation(s)
- Yongjun Wang
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Wenbin Wu
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Liqin Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, 313000, Zhejiang, China
| | - Hong Jiang
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Li Mei
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| |
Collapse
|
5
|
Dias MC, Caldeira C, Gastauer M, Ramos S, Oliveira G. Cross-species transcriptomes reveal species-specific and shared molecular adaptations for plants development on iron-rich rocky outcrops soils. BMC Genomics 2022; 23:313. [PMID: 35439930 PMCID: PMC9020022 DOI: 10.1186/s12864-022-08449-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/23/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Canga is the Brazilian term for the savanna-like vegetation harboring several endemic species on iron-rich rocky outcrops, usually considered for mining activities. Parkia platycephala Benth. and Stryphnodendron pulcherrimum (Willd.) Hochr. naturally occur in the cangas of Serra dos Carajás (eastern Amazonia, Brazil) and the surrounding forest, indicating high phenotypic plasticity. The morphological and physiological mechanisms of the plants' establishment in the canga environment are well studied, but the molecular adaptative responses are still unknown. To understand these adaptative responses, we aimed to identify molecular mechanisms that allow the establishment of these plants in the canga environment. RESULTS Plants were grown in canga and forest substrates collected in the Carajás Mineral Province. RNA was extracted from pooled leaf tissue, and RNA-seq paired-end reads were assembled into representative transcriptomes for P. platycephala and S. pulcherrimum containing 31,728 and 31,311 primary transcripts, respectively. We identified both species-specific and core molecular responses in plants grown in the canga substrate using differential expression analyses. In the species-specific analysis, we identified 1,112 and 838 differentially expressed genes for P. platycephala and S. pulcherrimum, respectively. Enrichment analyses showed that unique biological processes and metabolic pathways were affected for each species. Comparative differential expression analysis was based on shared single-copy orthologs. The overall pattern of ortholog expression was species-specific. Even so, we identified almost 300 altered genes between plants in canga and forest substrates with conserved responses in the two species. The genes were functionally associated with the response to light stimulus and the circadian rhythm pathway. CONCLUSIONS Plants possess species-specific adaptative responses to cope with the substrates. Our results also suggest that plants adapted to both canga and forest environments can adjust the circadian rhythm in a substrate-dependent manner. The circadian clock gene modulation might be a central mechanism regulating the plants' development in the canga substrate in the studied legume species. The mechanism may be shared as a common mechanism to abiotic stress compensation in other native species.
Collapse
Affiliation(s)
- Mariana Costa Dias
- Instituto Tecnológico Vale, Rua Boaventura da Silva 955, Belém, Pará, CEP 66055-090, Brazil
- Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, Minas Gerais, CEP 31270-901, Brazil
| | - Cecílio Caldeira
- Instituto Tecnológico Vale, Rua Boaventura da Silva 955, Belém, Pará, CEP 66055-090, Brazil
| | - Markus Gastauer
- Instituto Tecnológico Vale, Rua Boaventura da Silva 955, Belém, Pará, CEP 66055-090, Brazil
| | - Silvio Ramos
- Instituto Tecnológico Vale, Rua Boaventura da Silva 955, Belém, Pará, CEP 66055-090, Brazil
| | - Guilherme Oliveira
- Instituto Tecnológico Vale, Rua Boaventura da Silva 955, Belém, Pará, CEP 66055-090, Brazil.
| |
Collapse
|
6
|
FLS2–RBOHD–PIF4 Module Regulates Plant Response to Drought and Salt Stress. Int J Mol Sci 2022; 23:ijms23031080. [PMID: 35163000 PMCID: PMC8835674 DOI: 10.3390/ijms23031080] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/17/2022] Open
Abstract
As sessile organisms, plants are constantly challenged by several environmental stresses. Different kinds of stress often occur simultaneously, leading to the accumulation of reactive oxygen species (ROS) produced by respiratory burst oxidase homolog (RBOHD) and calcium fluctuation in cells. Extensive studies have revealed that flagellin sensitive 2 (FLS2) can sense the infection by pathogenic microorganisms and activate cellular immune response by regulating intracellular ROS and calcium signals, which can also be activated during plant response to abiotic stress. However, little is known about the roles of FLS2 and RBOHD in regulating abiotic stress. In this study, we found that although the fls2 mutant showed tolerance, the double mutant rbohd rbohf displayed hypersensitivity to abiotic stress, similar to its performance in response to immune stress. An analysis of the transcriptome of the fls2 mutant and rbohd rbohf double mutant revealed that phytochrome interacting factor 4 (PIF4) acted downstream of FLS2 and RBOHD to respond to the abiotic stress. Further analysis showed that both FLS2 and RBOHD regulated the response of plants to drought and salt stress by regulating the expression of PIF4. These findings revealed an FLS2–RBOHD–PIF4 module in regulating plant response to biotic and abiotic stresses.
Collapse
|
7
|
Leitão ST, Santos C, Araújo SDS, Rubiales D, Vaz Patto MC. Shared and tailored common bean transcriptomic responses to combined fusarium wilt and water deficit. HORTICULTURE RESEARCH 2021; 8:149. [PMID: 34193847 PMCID: PMC8245569 DOI: 10.1038/s41438-021-00583-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
Common bean (Phaseolus vulgaris L.), one of the most consumed food legumes worldwide, is threatened by two main constraints that are found frequently together in nature, water deficit (WD) and fusarium wilt (Fop). To understand the shared and unique responses of common bean to Fop and WD, we analyzed the transcriptomic changes and phenotypic responses in two accessions, one resistant and one susceptible to both stresses, exposed to single and combined stresses. Physiological responses (photosynthetic performance and pigments quantification) and disease progression were also assessed. The combined FopWD imposition negatively affected the photosynthetic performance and increased the susceptible accession disease symptoms. The susceptible accession revealed a higher level of transcriptional changes than the resistant one, and WD single stress triggered the highest transcriptional changes. While 89 differentially expressed genes were identified exclusively in combined stresses for the susceptible accession, 35 were identified in the resistant one. These genes belong mainly to "stress", "signaling", "cell wall", "hormone metabolism", and "secondary metabolism" functional categories. Among the up-regulated genes with higher expression in the resistant accession, the cysteine-rich secretory, antigen 5 and Pr-1 (CAP) superfamily protein, a ribulose bisphosphate carboxylase family protein, and a chitinase A seem promising targets for multiple stress breeding.
Collapse
Affiliation(s)
- Susana T Leitão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - Carmen Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Susana de Sousa Araújo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Association BLC3 - Technology and Innovation Campus, Centre Bio R&D Unit, Lagares da Beira, Portugal
| | - Diego Rubiales
- Institute for Sustainable Agriculture, CSIC, Córdoba, Spain
| | - Maria Carlota Vaz Patto
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
8
|
Zarattini M, Farjad M, Launay A, Cannella D, Soulié MC, Bernacchia G, Fagard M. Every cloud has a silver lining: how abiotic stresses affect gene expression in plant-pathogen interactions. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1020-1033. [PMID: 33188434 PMCID: PMC7904152 DOI: 10.1093/jxb/eraa531] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/10/2020] [Indexed: 05/03/2023]
Abstract
Current environmental and climate changes are having a pronounced influence on the outcome of plant-pathogen interactions, further highlighting the fact that abiotic stresses strongly affect biotic interactions at various levels. For instance, physiological parameters such as plant architecture and tissue organization together with primary and specialized metabolism are affected by environmental constraints, and these combine to make an individual plant either a more or less suitable host for a given pathogen. In addition, abiotic stresses can affect the timely expression of plant defense and pathogen virulence. Indeed, several studies have shown that variations in temperature, and in water and mineral nutrient availability affect the expression of plant defense genes. The expression of virulence genes, known to be crucial for disease outbreak, is also affected by environmental conditions, potentially modifying existing pathosystems and paving the way for emerging pathogens. In this review, we summarize our current knowledge on the impact of abiotic stress on biotic interactions at the transcriptional level in both the plant and the pathogen side of the interaction. We also perform a metadata analysis of four different combinations of abiotic and biotic stresses, which identifies 197 common modulated genes with strong enrichment in Gene Ontology terms related to defense . We also describe the multistress-specific responses of selected defense-related genes.
Collapse
Affiliation(s)
- Marco Zarattini
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- PhotoBioCatalysis Unit – Crop Production and Biostimulation Lab (CPBL), Interfaculty School of Bioengineers, Université Libre de Bruxelles (ULB), CP150, Avenue F.D. Roosevelt 50, Brussels, Belgium
| | - Mahsa Farjad
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Alban Launay
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - David Cannella
- PhotoBioCatalysis Unit – Crop Production and Biostimulation Lab (CPBL), Interfaculty School of Bioengineers, Université Libre de Bruxelles (ULB), CP150, Avenue F.D. Roosevelt 50, Brussels, Belgium
| | - Marie-Christine Soulié
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
- Sorbonne Universités, UPMC Univ. Paris 06, UFR 927, 4 place Jussieu, Paris, France
| | - Giovanni Bernacchia
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Borsari 46, Ferrara, Italy
| | - Mathilde Fagard
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| |
Collapse
|
9
|
Zandalinas SI, Fritschi FB, Mittler R. Signal transduction networks during stress combination. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1734-1741. [PMID: 31665392 DOI: 10.1093/jxb/erz486] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/18/2019] [Indexed: 05/18/2023]
Abstract
Episodes of heat waves combined with drought can have a devastating impact on agricultural production worldwide. These conditions, as well as many other types of stress combinations, impose unique physiological and developmental demands on plants and require the activation of dedicated pathways. Here, we review recent RNA sequencing studies of stress combination in plants, and conduct a meta-analysis of the transcriptome response of plants to different types of stress combination. Our analysis reveals that each different stress combination is accompanied by its own set of stress combination-specific transcripts, and that the response of different transcription factor families is unique to each stress combination. The alarming rate of increase in global temperatures, coupled with the predicted increase in future episodes of extreme weather, highlight an urgent need to develop crop plants with enhanced tolerance to stress combination. The uniqueness and complexity of the physiological and molecular response of plants to each different stress combination, highlighted here, demonstrate the daunting challenge we face in accomplishing this goal. Dedicated efforts combining field experimentation, omics, and network analyses, coupled with advanced phenotyping and breeding methods, will be needed to address specific crops and particular stress combinations relevant to maintaining our future food chain secured.
Collapse
Affiliation(s)
- Sara I Zandalinas
- Bond Life Sciences Center, Interdisciplinary Plant Group, and Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO USA
| | - Felix B Fritschi
- Bond Life Sciences Center, Interdisciplinary Plant Group, and Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO USA
| | - Ron Mittler
- Bond Life Sciences Center, Interdisciplinary Plant Group, and Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO USA
| |
Collapse
|
10
|
Devi SJSR, Singh K, Umakanth B, Vishalakshi B, Rao KVS, Suneel B, Sharma SK, Kadambari GKM, Prasad MS, Senguttvel P, Syamaladevi DP, Madhav MS. Identification and Characterization of a Large Effect QTL from Oryza glumaepatula Revealed Pi68(t) as Putative Candidate Gene for Rice Blast Resistance. RICE (NEW YORK, N.Y.) 2020; 13:17. [PMID: 32166467 PMCID: PMC7067966 DOI: 10.1186/s12284-020-00378-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/02/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Field resistance is often effective and durable as compared to vertical resistance. The introgression line (INGR15002) derived from O. glumaepatula has proven broad spectrum field resistance for both leaf and neck blast. RESULTS Quantitative Trait Loci (QTL) analysis of INGR15002, led to the identification of two major QTL - qBL3 contributing about 34% and 32% phenotypic variance towards leaf and neck blast resistance, respectively and qBL7 contributing about 25% of phenotypic variance for leaf blast. Further, qBL3 was fine mapped, narrowed down to 300 kb region and a linked SNP maker was identified. By combining mapping with microarray analysis, a candidate gene, Os03g0281466 (malectin-serine threonine kinase), was identified in the fine mapped region and named as Pi68(t). The nucleotide variations in the coding as well as upstream region of the gene was identified through cloning and sequence analysis of Pi68(t) alleles. These significant variations led to the non-synonymous changes in the protein as well as variations (presence/absence) in four important motifs (W-box element; MYC element; TCP element; BIHD1OS) at promoter region those are associated with resistance and susceptible reactions. The effect of qBL3 was validated by its introgression into BPT5204 (susceptible variety) through marker-assisted selection and progeny exhibiting resistance to both leaf and neck blast was identified. Further, the utility of linked markers of Pi68(t) in the blast breeding programs was demonstrated in elite germplasm lines. CONCLUSIONS This is the first report on the identification and characterization of major effect QTL from O. glumaepatula, which led to the identification of a putative candidate gene, Pi68(t), which confers field resistance to leaf as well as neck blast in rice.
Collapse
Affiliation(s)
- S. J. S. Rama Devi
- Crop Improvement Division, Indian Institute of Rice Research, Hyderabad-30, India
| | - Kuldeep Singh
- Department of Plant Breeding and Genetics, P.A.U, Ludhiana, Punjab India
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
- School of Agricultural Biotechnology, P.A.U, Ludhiana, Punjab India
| | - B. Umakanth
- Crop Improvement Division, Indian Institute of Rice Research, Hyderabad-30, India
| | - B. Vishalakshi
- Crop Improvement Division, Indian Institute of Rice Research, Hyderabad-30, India
| | | | - B. Suneel
- Crop Improvement Division, Indian Institute of Rice Research, Hyderabad-30, India
| | - S. K. Sharma
- Plant Pathology Division, ICAR Research Complex for NEH Region, Manipur Centre, Imphal, India
- Plant Pathology Division, Indian Institute of Rice Research, Hyderabad-30, India
| | | | - M. S. Prasad
- Plant Pathology Division, ICAR Research Complex for NEH Region, Manipur Centre, Imphal, India
| | - P. Senguttvel
- Crop Improvement Division, Indian Institute of Rice Research, Hyderabad-30, India
| | - Divya P. Syamaladevi
- Crop Improvement Division, Indian Institute of Rice Research, Hyderabad-30, India
| | - M. S. Madhav
- Crop Improvement Division, Indian Institute of Rice Research, Hyderabad-30, India
- Crop Improvement Section, IIRR, Hyderabad, 500 030 India
| |
Collapse
|
11
|
Leitão ST, Malosetti M, Song Q, van Eeuwijk F, Rubiales D, Vaz Patto MC. Natural Variation in Portuguese Common Bean Germplasm Reveals New Sources of Resistance Against Fusarium oxysporum f. sp. phaseoli and Resistance-Associated Candidate Genes. PHYTOPATHOLOGY 2020; 110:633-647. [PMID: 31680652 DOI: 10.1094/phyto-06-19-0207-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Common bean (Phaseolus vulgaris) is one of the most consumed legume crops in the world, and Fusarium wilt, caused by the fungus Fusarium oxysporum f. sp. phaseoli, is one of the major diseases affecting its production. Portugal holds a very promising common bean germplasm with an admixed genetic background that may reveal novel genetic resistance combinations between the original Andean and Mesoamerican gene pools. To identify new sources of Fusarium wilt resistance and detect resistance-associated single-nucleotide polymorphisms (SNPs), we explored, for the first time, a diverse collection of the underused Portuguese common bean germplasm by using genome-wide association analyses. The collection was evaluated for Fusarium wilt resistance under growth chamber conditions, with the highly virulent F. oxysporum f. sp. phaseoli strain FOP-SP1 race 6. Fourteen of the 162 Portuguese accessions evaluated were highly resistant and 71 intermediate. The same collection was genotyped with DNA sequencing arrays, and SNP-resistance associations were tested via a mixed linear model accounting for the genetic relatedness between accessions. The results from the association mapping revealed nine SNPs associated with resistance on chromosomes Pv04, Pv05, Pv07, and Pv08, indicating that Fusarium wilt resistance is under oligogenic control. Putative candidate genes related to phytoalexin biosynthesis, hypersensitive response, and plant primary metabolism were identified. The results reported here highlight the importance of exploring underused germplasm for new sources of resistance and provide new genomic targets for the development of functional markers to support selection in future disease resistance breeding programs.
Collapse
Affiliation(s)
- Susana T Leitão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | - Qijan Song
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD, U.S.A
| | | | - Diego Rubiales
- Institute for Sustainable Agriculture, CSIC, Córdoba, Spain
| | - Maria Carlota Vaz Patto
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
12
|
Gupta A, Sinha R, Fernandes JL, Abdelrahman M, Burritt DJ, Tran LSP. Phytohormones regulate convergent and divergent responses between individual and combined drought and pathogen infection. Crit Rev Biotechnol 2020; 40:320-340. [DOI: 10.1080/07388551.2019.1710459] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Aarti Gupta
- Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Joel Lars Fernandes
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Mostafa Abdelrahman
- Arid Land Research Center, Tottori University, Tottori, Japan
- Botany Department, Faculty of Science, Aswan University, Aswan, Egypt
| | | | - Lam-Son Phan Tran
- Plant Stress Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
13
|
Galarneau ERA, Lawrence DP, Travadon R, Baumgartner K. Drought Exacerbates Botryosphaeria Dieback Symptoms in Grapevines and Confounds Host-based Molecular Markers of Infection by Neofusicoccum parvum. PLANT DISEASE 2019; 103:1738-1745. [PMID: 31082329 DOI: 10.1094/pdis-09-18-1549-re] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Neofusicoccum parvum, causal fungus of the grapevine trunk disease Botryosphaeria dieback, attacks the wood of Vitis vinifera. Because lesions are internal, using putative host-based markers of infection from leaves for diagnosis is a nondestructive option. However, their specificity under drought stress is unknown. Potted 'Cabernet-Sauvignon' were inoculated with N. parvum in the greenhouse after wounding (IW), and with wounded and nonwounded noninoculated controls. At 2 weeks postinoculation (WPI), half of the plants were severely stressed (SS), receiving 30% water volume of the well-watered (WW) plants. Larger lesions at 12 WPI among IW-SS plants, compared with all other treatments, revealed an interactive effect of inoculation and drought on lesion length. Expression of eight putative marker genes was analyzed in leaves by qPCR at the onset of drought stress, and at 8 and 12 WPI. One marker showed consistent over-expression at 8 WPI in IW plants, regardless of water treatment, suggesting specificity to infection. By 12 WPI, higher expression of seven genes in all SS plants (across inoculation treatments) revealed specificity to drought. Cross-reactivity of markers to drought, therefore, limits their utility for disease diagnosis in the field, where drought induced by climate and deficit irrigation is common.
Collapse
Affiliation(s)
- Erin R A Galarneau
- 1 Department of Plant Pathology, University of California, Davis, CA 95616
| | - Daniel P Lawrence
- 1 Department of Plant Pathology, University of California, Davis, CA 95616
| | - Renaud Travadon
- 1 Department of Plant Pathology, University of California, Davis, CA 95616
| | - Kendra Baumgartner
- 2 United States Department of Agriculture-Agricultural Research Service, Crops Pathology and Genetics Research Unit, Davis, CA 95616
| |
Collapse
|
14
|
Jiang N, Fan X, Lin W, Wang G, Cai K. Transcriptome Analysis Reveals New Insights into the Bacterial Wilt Resistance Mechanism Mediated by Silicon in Tomato. Int J Mol Sci 2019; 20:ijms20030761. [PMID: 30754671 PMCID: PMC6387441 DOI: 10.3390/ijms20030761] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/30/2019] [Accepted: 02/04/2019] [Indexed: 12/20/2022] Open
Abstract
Bacterial wilt is a devastating disease of tomato caused by soilborne pathogenic bacterium Ralstonia solanacearum. Previous studies found that silicon (Si) can increase tomato resistance against R. solanacearum, but the exact molecular mechanism remains unclear. RNA sequencing (RNA-Seq) technology was used to investigate the dynamic changes of root transcriptome profiles between Si-treated (+Si) and untreated (−Si) tomato plants at 1, 3, and 7 days post-inoculation with R. solanacearum. The contents of salicylic acid (SA), ethylene (ET), and jasmonic acid (JA) and the activity of defense-related enzymes in roots of tomato in different treatments were also determined. The burst of ET production in roots was delayed, and SA and JA contents were altered in Si treatment. The transcriptional response to R. solanacearum infection of the +Si plants was quicker than that of the untreated plants. The expression levels of differentially-expressed genes involved in pathogen-associated molecular pattern-triggered immunity (PTI), oxidation resistance, and water-deficit stress tolerance were upregulated in the Si-treated plants. Multiple hormone-related genes were differentially expressed in the Si-treated plants. Si-mediated resistance involves mechanisms other than SA- and JA/ET-mediated stress responses. We propose that Si-mediated tomato resistance to R. solanacearum is associated with activated PTI-related responses and enhanced disease resistance and tolerance via several signaling pathways. Such pathways are mediated by multiple hormones (e.g., SA, JA, ET, and auxin), leading to diminished adverse effects (e.g., senescence, water-deficit, salinity and oxidative stress) normally caused by R. solanacearum infection. This finding will provide an important basis to further characterize the role of Si in enhancing plant resistance against biotic stress.
Collapse
Affiliation(s)
- Nihao Jiang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
- Institute of Tropical and Subtropical Ecology, South China Agricultural University, Guangzhou 510642, China.
| | - Xueying Fan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
- Institute of Tropical and Subtropical Ecology, South China Agricultural University, Guangzhou 510642, China.
| | - Weipeng Lin
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
- Tea Research Institute, Guangdong Academy of Agricultural Science/Guangdong Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Guoping Wang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Kunzheng Cai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
- Institute of Tropical and Subtropical Ecology, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
15
|
Tani E, Kizis D, Markellou E, Papadakis I, Tsamadia D, Leventis G, Makrogianni D, Karapanos I. Cultivar-Dependent Responses of Eggplant ( Solanum melongena L.) to Simultaneous Verticillium dahliae Infection and Drought. FRONTIERS IN PLANT SCIENCE 2018; 9:1181. [PMID: 30150998 PMCID: PMC6099113 DOI: 10.3389/fpls.2018.01181] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/24/2018] [Indexed: 05/22/2023]
Abstract
Several studies regarding the imposition of stresses simultaneously in plants have shown that plant responses are different under individual and combined stress. Pathogen infection in combination with drought can act both additively and antagonistically, suggesting a tailored-made plant response to these stresses. The aforementioned combination of stresses can be considered as one of the most important factors affecting global crop production. In the present research we studied eggplant responses to simultaneous Verticillium dahliae infection and drought with respect to the application of the individual stresses alone and investigated the extent to which these responses were cultivar dependent. Two eggplant cultivars (Skoutari and EMI) with intermediate resistance to V. dahliae were subjected to combined stress for a 3-week period. Significant differences in plant growth, several physiological and biochemical parameters (photosynthesis rate, leaf gas exchanges, Malondialdehyde, Proline) and gene expression, were found between plants subjected to combined and individual stresses. Furthermore, plant growth and molecular (lipid peroxidation, hydrogen peroxide, gene expression levels) changes highlight a clear discrimination between the two cultivars in response to simultaneous V. dahliae infection and drought. Our results showed that combined stress affects significantly plants responses compared to the application of individual stresses alone and that these responses are cultivar dependent.
Collapse
Affiliation(s)
- Eleni Tani
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Dimosthenis Kizis
- Laboratory of Mycology, Department of Phytopathology, Benaki Phytopathological Institute, Athens, Greece
| | - Emilia Markellou
- Laboratory of Mycology, Department of Phytopathology, Benaki Phytopathological Institute, Athens, Greece
| | - Ioannis Papadakis
- Laboratory of Pomology, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Dimitra Tsamadia
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Georgios Leventis
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Despoina Makrogianni
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Ioannis Karapanos
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
16
|
Czolpinska M, Rurek M. Plant Glycine-Rich Proteins in Stress Response: An Emerging, Still Prospective Story. FRONTIERS IN PLANT SCIENCE 2018; 9:302. [PMID: 29568308 PMCID: PMC5852109 DOI: 10.3389/fpls.2018.00302] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/21/2018] [Indexed: 05/21/2023]
Abstract
Seed plants are sessile organisms that have developed a plethora of strategies for sensing, avoiding, and responding to stress. Several proteins, including the glycine-rich protein (GRP) superfamily, are involved in cellular stress responses and signaling. GRPs are characterized by high glycine content and the presence of conserved segments including glycine-containing structural motifs composed of repetitive amino acid residues. The general structure of this superfamily facilitates division of GRPs into five main subclasses. Although the participation of GRPs in plant stress response has been indicated in numerous model and non-model plant species, relatively little is known about the key physiological processes and molecular mechanisms in which those proteins are engaged. Class I, II, and IV members are known to be involved in hormone signaling, stress acclimation, and floral development, and are crucial for regulation of plant cells growth. GRPs of class IV [RNA-binding proteins (RBPs)] are involved in alternative splicing or regulation of transcription and stomatal movement, seed, pollen, and stamen development; their accumulation is regulated by the circadian clock. Owing to the fact that the overexpression of GRPs can confer tolerance to stress (e.g., some are involved in cold acclimation and may improve growth at low temperatures), these proteins could play a promising role in agriculture through plant genetic engineering. Consequently, isolation, cloning, characterization, and functional validation of novel GRPs expressed in response to the diverse stress conditions are expected to be growing areas of research in the coming years. According to our knowledge, this is the first comprehensive review on participation of plant GRPs in the response to diverse stress stimuli.
Collapse
|