1
|
Zhang B, Liu J. Genome-wide analysis of CBL and CIPK gene families in bermudagrass reveals the CdCIPK29-A1 as a stem growth angle regulator. PLANT CELL REPORTS 2025; 44:68. [PMID: 40032687 DOI: 10.1007/s00299-025-03457-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 02/18/2025] [Indexed: 03/05/2025]
Abstract
KEY MESSAGE Genome-wide analysis of CBL and CIPK gene family was conducted in bermudagrass while a functional role in stem growth angle regulation was established for CdCIPK29-A1 via the generation of molecularly modified Arabidopsis plants. Calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs) are plant-specific Ca2+ sensors and effectors which mediate diverse Ca2+ signaling transduction pathways in plant growth, development, and stress responses. However, the functions of CBLs and CIPKs in bermudagrass (Cynodon dactylon L.), a widely planted warm-season turfgrass species with great economic value, remain poorly understood. In this study, a total of 33 CdCBL and 81 CdCIPK genes were identified in the bermudagrass genome, and were clustered in three and five groups according to their phylogenetic relationships, respectively. In line with their sequence divergence, different groups of CdCBL and CdCIPK genes exhibited different gene structures and expression patterns. Systematic yeast two-hybrid screening indicated that 27 CdCBL-CdCIPK complexes could be formed from 290 putative CdCBL and CdCIPK protein pairs. Among the CdCIPK proteins, CdCIPK29-A1 was found to interact with up to four CdCBL proteins. The CdCIPK29-A1 gene was preferentially expressed in the stolon internode of bermudagrass plants and the CdCIPK29-A1 protein was located to the cytoplasm. The expression of CdCIPK29-A1 in molecularly modified Arabidopsis thaliana (Arabidopsis) plants further indicated that CdCIPK29-A1 could regulate the stem growth angle and gravitropism possibly through modulating the starch metabolism in stem endodermal cells. These results not only established a solid foundation to explore the Ca2+ signaling transduction pathways in bermudagrass but also provided new insight into the function of CBL-CIPK complex in plant gravitropic response and stem growth angle regulation.
Collapse
Affiliation(s)
- Bing Zhang
- Department of Grassland Science, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Jianxiu Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| |
Collapse
|
2
|
Song Y, Li F, Ali M, Li X, Zhang X, Ahmed ZFR. Advances in Protein Kinase Regulation of Stress Responses in Fruits and Vegetables. Int J Mol Sci 2025; 26:768. [PMID: 39859482 PMCID: PMC11765796 DOI: 10.3390/ijms26020768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Fruits and vegetables (F&Vs) are essential in daily life and industrial production. These perishable produces are vulnerable to various biotic and abiotic stresses during their growth, postharvest storage, and handling. As the fruit detaches from the plant, these stresses become more intense. This unique biological process involves substantial changes in a variety of cellular metabolisms. To counter these stresses, plants have evolved complex physiological defense mechanisms, including regulating cellular activities through reversible phosphorylation of proteins. Protein kinases, key components of reversible protein phosphorylation, facilitate the transfer of the γ-phosphate group from adenosine triphosphate (ATP) to specific amino acid residues on substrates. This phosphorylation alters proteins' structure, function, and interactions, thereby playing a crucial role in regulating cellular activity. Recent studies have identified various protein kinases in F&Vs, underscoring their significant roles in plant growth, development, and stress responses. This article reviews the various types of protein kinases found in F&Vs, emphasizing their roles and regulatory mechanisms in managing stress responses. This research sheds light on the involvement of protein kinases in metabolic regulation, offering key insights to advance the quality characteristics of F&Vs.
Collapse
Affiliation(s)
- Yanan Song
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (Y.S.); (F.L.); (M.A.); (X.L.)
| | - Fujun Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (Y.S.); (F.L.); (M.A.); (X.L.)
| | - Maratab Ali
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (Y.S.); (F.L.); (M.A.); (X.L.)
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore 54000, Pakistan
| | - Xiaoan Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (Y.S.); (F.L.); (M.A.); (X.L.)
| | - Xinhua Zhang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; (Y.S.); (F.L.); (M.A.); (X.L.)
| | - Zienab F. R. Ahmed
- Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
3
|
Li Y, Hu Y, Liu W, Xia H, Liu Y, Sun Z, Zhou Y. Heterologous expression of Sesuvium portulacastrum SpCIPK2 confers salt tolerance in transgenic Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2024; 176:e14654. [PMID: 39639843 DOI: 10.1111/ppl.14654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/19/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
Calcineurin B-like interacting protein kinases (CIPKs) play critical roles in plant adaptation to salt stress. However, the biological functions of CIPKs in Sesuvium portulacastrum, a halophyte flourishing in coastal mudflats, remain poorly understood. Here, a highly expressed CIPK gene, SpCIPK2, was identified from transcriptomic analyses of S. portulacastrum root systems under salt stress. Subcellular localization assays confirmed the cytoplasmic presence of SpCIPK2. Arabidopsis thaliana plants overexpressing SpCIPK2 exhibited markedly improved salt tolerance, characterized by increased fresh weight under salt stress. Transgenic plants demonstrated significantly lower levels of O2·- and H2O2 compared to wild-type plants. Furthermore, transgenic plants revealed a reduced relative conductivity and enhanced peroxidase (POD) activity in the leaves. Salt treatment accelerated Na+ efflux while slowing K+ efflux in transgenic plants, resulting in diminished Na+ accumulation and an elevated K+/Na+ ratio during salt stress. This evidence suggests that SpCIPK2 enhances salt tolerance by regulating ion homeostasis, activating antioxidant enzymes activity, and scavenging reactive oxygen species (ROS) in salt-stressed plants.
Collapse
Affiliation(s)
- Yuxin Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, Hainan, China
| | - Yanping Hu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, Hainan, China
- Key Laboratory of Vegetable Biology of Hainan Province, Hainan Vegetable Breeding Engineering Technology Research Center, The Institute of Vegetables, Hainan Academy of Agricultural Sciences, Haikou, Hainan, China
| | - Wen Liu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, Hainan, China
| | - Haiyan Xia
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, Hainan, China
| | - Yunqi Liu
- Zhongguancun Xuyue Non-invasive Micro-test Technology Industrial Alliance, Beijing, China
| | - Zhiguang Sun
- Lianyungang Academy of Agricultural Sciences, Lianyungang, Jiangsu, China
| | - Yang Zhou
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, Hainan, China
| |
Collapse
|
4
|
Zhang Y, Yang H, Liu Y, Hou Q, Jian S, Deng S. Molecular cloning and characterization of a salt overly sensitive3 (SOS3) gene from the halophyte Pongamia. PLANT MOLECULAR BIOLOGY 2024; 114:57. [PMID: 38743266 DOI: 10.1007/s11103-024-01459-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
A high concentration of sodium (Na+) is the primary stressor for plants in high salinity environments. The Salt Overly Sensitive (SOS) pathway is one of the best-studied signal transduction pathways, which confers plants the ability to export too much Na+ out of the cells or translocate the cytoplasmic Na+ into the vacuole. In this study, the Salt Overly Sensitive3 (MpSOS3) gene from Pongamia (Millettia pinnata Syn. Pongamia pinnata), a semi-mangrove, was isolated and characterized. The MpSOS3 protein has canonical EF-hand motifs conserved in other calcium-binding proteins and an N-myristoylation signature sequence. The MpSOS3 gene was significantly induced by salt stress, especially in Pongamia roots. Expression of the wild-type MpSOS3 but not the mutated nonmyristoylated MpSOS3-G2A could rescue the salt-hypersensitive phenotype of the Arabidopsis sos3-1 mutant, which suggested the N-myristoylation signature sequence of MpSOS3 was required for MpSOS3 function in plant salt tolerance. Heterologous expression of MpSOS3 in Arabidopsis accumulated less H2O2, superoxide anion radical (O2-), and malondialdehyde (MDA) than wild-type plants, which enhanced the salt tolerance of transgenic Arabidopsis plants. Under salt stress, MpSOS3 transgenic plants accumulated a lower content of Na+ and a higher content of K+ than wild-type plants, which maintained a better K+/Na+ ratio in transgenic plants. Moreover, no development and growth discrepancies were observed in the MpSOS3 heterologous overexpression plants compared to wild-type plants. Our results demonstrated that the MpSOS3 pathway confers a conservative salt-tolerant role and provided a foundation for further study of the SOS pathway in Pongamia.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangdong Provincial Key Laboratory of Applied Botany and Xiaoliang Research Station for Tropical Coastal Ecosystems, Chinese Academy of Sciences, Guangzhou, 510650, China
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, 341000, China
| | - Heng Yang
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangdong Provincial Key Laboratory of Applied Botany and Xiaoliang Research Station for Tropical Coastal Ecosystems, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujuan Liu
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangdong Provincial Key Laboratory of Applied Botany and Xiaoliang Research Station for Tropical Coastal Ecosystems, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiongzhao Hou
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangdong Provincial Key Laboratory of Applied Botany and Xiaoliang Research Station for Tropical Coastal Ecosystems, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuguang Jian
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Shulin Deng
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangdong Provincial Key Laboratory of Applied Botany and Xiaoliang Research Station for Tropical Coastal Ecosystems, Chinese Academy of Sciences, Guangzhou, 510650, China.
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou, 341000, China.
| |
Collapse
|
5
|
Jiao F, Zhang D, Chen Y, Wu J. Genome-Wide Identification of Members of the Soybean CBL Gene Family and Characterization of the Functional Role of GmCBL1 in Responses to Saline and Alkaline Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1304. [PMID: 38794375 PMCID: PMC11124892 DOI: 10.3390/plants13101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/25/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024]
Abstract
Calcium ions function as key messengers in the context of intracellular signal transduction. The ability of plants to respond to biotic and abiotic stressors is highly dependent on the calcineurin B-like protein (CBL) and CBL-interacting protein kinase (CIPK) signaling network. Here, a comprehensive effort was made to identify all members of the soybean CBL gene family, leading to the identification of 15 total genes distributed randomly across nine chromosomes, including 13 segmental duplicates. All the GmCBL gene subfamilies presented with similar gene structures and conserved motifs. Analyses of the expression of these genes in different tissues revealed that the majority of these GmCBLs were predominantly expressed in the roots. Significant GmCBL expression and activity increases were also observed in response to a range of stress-related treatments, including salt stress, alkaline stress, osmotic stress, or exposure to salicylic acid, brassinosteroids, or abscisic acid. Striking increases in GmCBL1 expression were observed in response to alkaline and salt stress. Subsequent analyses revealed that GmCBL1 was capable of enhancing soybean salt and alkali tolerance through the regulation of redox reactions. These results offer new insight into the complex mechanisms through which the soybean CBL gene family regulates the responses of these plants to environmental stressors, highlighting promising targets for efforts aimed at enhancing soybean stress tolerance.
Collapse
Affiliation(s)
| | | | | | - Jinhua Wu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (F.J.); (D.Z.); (Y.C.)
| |
Collapse
|
6
|
Chen JS, Wang ST, Mei Q, Sun T, Hu JT, Xiao GS, Chen H, Xuan YH. The role of CBL-CIPK signaling in plant responses to biotic and abiotic stresses. PLANT MOLECULAR BIOLOGY 2024; 114:53. [PMID: 38714550 DOI: 10.1007/s11103-024-01417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/06/2024] [Indexed: 05/10/2024]
Abstract
Plants have a variety of regulatory mechanisms to perceive, transduce, and respond to biotic and abiotic stress. One such mechanism is the calcium-sensing CBL-CIPK system responsible for the sensing of specific stressors, such as drought or pathogens. CBLs perceive and bind Calcium (Ca2+) in response to stress and then interact with CIPKs to form an activated complex. This leads to the phosphorylation of downstream targets, including transporters and ion channels, and modulates transcription factor levels and the consequent levels of stress-associated genes. This review describes the mechanisms underlying the response of the CBL-CIPK pathway to biotic and abiotic stresses, including regulating ion transport channels, coordinating plant hormone signal transduction, and pathways related to ROS signaling. Investigation of the function of the CBL-CIPK pathway is important for understanding plant stress tolerance and provides a promising avenue for molecular breeding.
Collapse
Affiliation(s)
- J S Chen
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China
| | - S T Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Q Mei
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - T Sun
- Chongqing Customs Technology Center, Chongqing, 400020, China
| | - J T Hu
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China
| | - G S Xiao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China.
| | - H Chen
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Y H Xuan
- State Key Laboratory of Elemento-Organic Chemistry and Department of Plant Protection, National Pesticide Engineering Research Center (Tianjin), Nankai University, Tianjin, 300071, China.
| |
Collapse
|
7
|
Kang H, Yang Y, Meng Y. Functional Differentiation of the Duplicated Gene BrrCIPK9 in Turnip ( Brassica rapa var. rapa). Genes (Basel) 2024; 15:405. [PMID: 38674340 PMCID: PMC11049275 DOI: 10.3390/genes15040405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Gene duplication is a key biological process in the evolutionary history of plants and an important driving force for the diversification of genomic and genetic systems. Interactions between the calcium sensor calcineurin B-like protein (CBL) and its target, CBL-interacting protein kinase (CIPK), play important roles in the plant's response to various environmental stresses. As a food crop with important economic and research value, turnip (Brassica rapa var. rapa) has been well adapted to the environment of the Tibetan Plateau and become a traditional crop in the region. The BrrCIPK9 gene in turnip has not been characterized. In this study, two duplicated genes, BrrCIPK9.1 and BrrCIPK9.2, were screened from the turnip genome. Based on the phylogenetic analysis, BrrCIPK9.1 and BrrCIPK9.2 were found located in different sub-branches on the phylogenetic tree. Real-time fluorescence quantitative PCR analyses revealed their differential expression levels between the leaves and roots and in response to various stress treatments. The differences in their interactions with BrrCBLs were also revealed by yeast two-hybrid analyses. The results indicate that BrrCIPK9.1 and BrrCIPK9.2 have undergone Asparagine-alanine-phenylalanine (NAF) site divergence during turnip evolution, which has resulted in functional differences between them. Furthermore, BrrCIPK9.1 responded to high-pH (pH 8.5) stress, while BrrCIPK9.2 retained its ancestral function (low K+), thus providing further evidence of their functional divergence. These functional divergence genes facilitate turnip's good adaptation to the extreme environment of the Tibetan Plateau. In summary, the results of this study reveal the characteristics of the duplicated BrrCIPK9 genes and provide a basis for further functional studies of BrrCBLs-BrrCIPKs in turnip.
Collapse
Affiliation(s)
- Haotong Kang
- Key Laboratory of Plant Resources Conservation and Utilization, College of Biological Resources and Environmental Sciences, Jishou University, Jishou 416000, China;
| | - Yunqiang Yang
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ying Meng
- Key Laboratory of Plant Resources Conservation and Utilization, College of Biological Resources and Environmental Sciences, Jishou University, Jishou 416000, China;
| |
Collapse
|
8
|
Acharya BR, Zhao C, Reyes LAR, Ferreira JFS, Sandhu D. Understanding the salt overly sensitive pathway in Prunus: Identification and characterization of NHX, CIPK, and CBL genes. THE PLANT GENOME 2024; 17:e20371. [PMID: 37493242 DOI: 10.1002/tpg2.20371] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/17/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023]
Abstract
Salinity is a major abiotic stress factor that can significantly impact crop growth, and productivity. In response to salt stress, the plant Salt Overly Sensitive (SOS) signaling pathway regulates the homeostasis of intracellular sodium ion concentration. The SOS1, SOS2, and SOS3 genes play critical roles in the SOS pathway, which belongs to the members of Na+/H+ exchanger (NHX), CBL-interacting protein kinase (CIPK), and calcineurin B-like (CBL) gene families, respectively. In this study, we performed genome-wide identifications and phylogenetic analyses of NHX, CIPK, and CBL genes in six Rosaceae species: Prunus persica, Prunus dulcis, Prunus mume, Prunus armeniaca, Pyrus ussuriensis × Pyrus communis, and Rosa chinensis. NHX, CIPK, and CBL genes of Arabidopsis thaliana were used as controls for phylogenetic analyses. Our analysis revealed the lineage-specific and adaptive evolutions of Rosaceae genes. Our observations indicated the existence of two primary classes of CIPK genes: those that are intron-rich and those that are intron-less. Intron-rich CIPKs in Rosaceae and Arabidopsis can be traced back to algae CIPKs and CIPKs found in early plants, suggesting that intron-less CIPKs evolved from their intron-rich counterparts. This study identified one gene for each member of the SOS signaling pathway in P. persica: PpSOS1, PpSOS2, and PpSOS3. Gene expression analyses indicated that all three genes of P. persica were expressed in roots and leaves. Yeast two-hybrid-based protein-protein interaction analyses revealed a direct interaction between PpSOS3 and PpSOS2; and between PpSOS2 and PpSOS1C-terminus region. Our findings indicate that the SOS signaling pathway is highly conserved in P. persica.
Collapse
Affiliation(s)
- Biswa R Acharya
- USDA-ARS, US Salinity Lab, Riverside, California, USA
- College of Natural and Agricultural Sciences, University of California Riverside, Riverside, California, USA
| | - Chaoyang Zhao
- USDA-ARS, US Salinity Lab, Riverside, California, USA
- College of Natural and Agricultural Sciences, University of California Riverside, Riverside, California, USA
| | - Lorenso Antonio Rodriguez Reyes
- USDA-ARS, US Salinity Lab, Riverside, California, USA
- College of Natural and Agricultural Sciences, University of California Riverside, Riverside, California, USA
| | | | | |
Collapse
|
9
|
Lv B, Wang T, Wang M, Gan H, Feng Q, Ma P. Genome-wide identification of CBL gene family in Salvia miltiorrhiza and the characterization of SmCBL3 under salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108384. [PMID: 38277834 DOI: 10.1016/j.plaphy.2024.108384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
In plants, CBL mediated calcium signaling is widely involved in the response to plant stresses of adversity. However, to date, no comprehensive studies have been conducted on CBL family members in Salvia miltiorrhiza. Herein, we identified 8 SmCBLs in S. miltiorrhiza, and phylogenetic analysis classified SmCBLs into four groups. Analysis of cis-acting elements revealed that SmCBLs mostly have light-responsive and hormone-responsive elements. Tissue expression analysis indicated that almost all of SmCBLs were expressed in roots than in leaves and flowers. SmCBL3 responded to Abscisic Acid (ABA), polyethylene glycol (PEG), and NaCl treatments. Transgenic Arabidopsis thaliana that overexpressed SmCBL3 had higher germination rates and longer roots than the wild type (WT) when exposed to salt stress. Additionally, the transgenic lines exhibited higher levels of chlorophyll, proline, superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activity and SOS1, NHX1 and P5CS1 expression than WT, and lower levels of malondialdehyde (MDA). Furthermore, SmCBL3 interacts with SmCIPK9. In conclusion, we analyzed the protein physicochemical properties, evolutionary relationships, gene structures, and expression profiles of the SmCBL gene families in S. miltiorrhiza. Overexpression of SmCBL3 improves the salt tolerance of transgenic Arabidopsis. This study demonstrated that SmCBL3 is a positive regulator of plant salt tolerance, so the use of overexpressed SmCBL3 may serve as a potential strategy to enhance plant salt tolerance.
Collapse
Affiliation(s)
- Bingbing Lv
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Tong Wang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Mei Wang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Hui Gan
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Qiaoqiao Feng
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, Yangling, China.
| |
Collapse
|
10
|
Zhu L, Wu J, Li M, Fang H, Zhang J, Chen Y, Chen J, Cheng T. Genome-wide discovery of CBL genes in Nitraria tangutorum Bobr. and functional analysis of NtCBL1-1 under drought and salt stress. FORESTRY RESEARCH 2023; 3:28. [PMID: 39526271 PMCID: PMC11524306 DOI: 10.48130/fr-2023-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/29/2023] [Indexed: 11/16/2024]
Abstract
Calcineurin B-like (CBL) proteins are a class of important Ca2+ receptors that play key roles in plant stress response. CBLs have been shown to participate in responses to abiotic stresses such as drought, salt, and cold in many plant species, including Arabidopsis and rice. However, little is known about their potential functions in the desert halophyte Nitraria tangutorum. Here, we have identified 11 CBL genes distributed across six chromosomes of N. tangutorum and categorized them into four groups through phylogenetic analysis. Synteny analysis showed that they have strong collinear relationships and have undergone purifying selection during their evolution. NtCBL promoter regions contain a variety of cis-acting elements related to hormone and environmental stress responses. Real-time quantitative PCR showed that the expression of NtCBLs differed significantly among various tissues and was upregulated by salt and drought stress. We chose NtCBL1-1 for an in-depth functional characterization and observed that transgenic Arabidopsis plants expressing NtCBL1-1 exhibited increased tolerance to both drought and salt stress. Compared to wild-type Arabidopsis, transgenic lines showed higher germination rates, slower chlorophyll degradation, more soluble proteins, and reduced accumulation of the oxidative stress marker malondialdehyde. These findings indicate that NtCBL1-1 plays a significant role in responding to drought and salt stress, laying the foundation for further investigations into the functional mechanisms of NtCBL genes in N. tangutorum.
Collapse
Affiliation(s)
- Liming Zhu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Jingxiang Wu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Mengjuan Li
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Hao Fang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jingbo Zhang
- Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou 015200, China
| | - Yuchang Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jinhui Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Tielong Cheng
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
11
|
Kiselev KV, Aleynova OA, Ogneva ZV, Suprun AR, Ananev AA, Nityagovsky NN, Dneprovskaya AA, Beresh AA, Dubrovina AS. The Effect of Stress Hormones, Ultraviolet C, and Stilbene Precursors on Expression of Calcineurin B-like Protein ( CBL) and CBL-Interacting Protein Kinase ( CIPK) Genes in Cell Cultures and Leaves of Vitis amurensis Rupr. PLANTS (BASEL, SWITZERLAND) 2023; 12:1562. [PMID: 37050188 PMCID: PMC10147091 DOI: 10.3390/plants12071562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Calcium serves as a crucial messenger in plant stress adaptation and developmental processes. Plants encode several multigene families of calcium sensor proteins with diverse functions in plant growth and stress responses. Several studies indicated that some calcium sensors may be involved in the regulation of secondary metabolite production in plant cells. The present study aimed to investigate expression of calcineurin B-like proteins (CBL) and CBL-interacting protein kinase (CIPK) in response to conditions inducting biosynthesis of stilbenes in grapevine. We investigated CBL and CIPK gene expression in wild-growing grapevine Vitis amurensis Rupr., known as a rich stilbene source, in response to the application of stilbene biosynthesis-inducing conditions, including application of stress hormones (salicylic acid or SA, methyl jasmonate or MeJA), phenolic precursors (p-coumaric acids or CA), and ultraviolet irradiation (UV-C). The influence of these effectors on the levels of 13 VaCBL and 27 VaCIPK mRNA transcripts as well as on stilbene production was analyzed by quantitative real-time RT-PCR in the leaves and cell cultures of V. amurensis. The data revealed that VaCBL4-1 expression considerably increased after UV-C treatment in both grapevine cell cultures and leaves. The expression of VaCIPK31, 41-1, and 41-2 also increased, but this increase was mostly detected in cell cultures of V. amurensis. At the same time, expression of most VaCBL and VaCIPK genes was markedly down-regulated both in leaves and cell cultures of V. amurensis, which may indicate that the CBLs and CIPKs are involved in negative regulation of stilbene accumulation (VaCBL8, 10a-2, 10a-4, 11, 12, VaCIPK3, 9-1, 9-2, 12, 21-1, 21-2, 33, 34, 35, 36, 37, 39, 40, 41-3, 41-4). The results obtained provide new information of CBL and CIPK implication in the regulation of plant secondary metabolism in response to stress hormones, metabolite precursors, and UV-C irradiation.
Collapse
Affiliation(s)
- Konstantin V. Kiselev
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Olga A. Aleynova
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Zlata V. Ogneva
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Andrey R. Suprun
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Alexey A. Ananev
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Nikolay N. Nityagovsky
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Alina A. Dneprovskaya
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia
- Department of Biotechnology, The School of Natural Sciences, Far Eastern Federal University, Vladivostok 690090, Russia
| | - Alina A. Beresh
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia
- Department of Biotechnology, The School of Natural Sciences, Far Eastern Federal University, Vladivostok 690090, Russia
| | - Alexandra S. Dubrovina
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia
- Department of Biotechnology, The School of Natural Sciences, Far Eastern Federal University, Vladivostok 690090, Russia
| |
Collapse
|
12
|
Imtiaz K, Ahmed M, Annum N, Tester M, Saeed NA. AtCIPK16, a CBL-interacting protein kinase gene, confers salinity tolerance in transgenic wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1127311. [PMID: 37008481 PMCID: PMC10060804 DOI: 10.3389/fpls.2023.1127311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Globally, wheat is the major source of staple food, protein, and basic calories for most of the human population. Strategies must be adopted for sustainable wheat crop production to fill the ever-increasing food demand. Salinity is one of the major abiotic stresses involved in plant growth retardation and grain yield reduction. In plants, calcineurin-B-like proteins form a complicated network with the target kinase CBL-interacting protein kinases (CIPKs) in response to intracellular calcium signaling as a consequence of abiotic stresses. The AtCIPK16 gene has been identified in Arabidopsis thaliana and found to be significantly upregulated under salinity stress. In this study, the AtCIPK16 gene was cloned in two different plant expression vectors, i.e., pTOOL37 having a UBI1 promoter and pMDC32 having a 2XCaMV35S constitutive promoter transformed through the Agrobacterium-mediated transformation protocol, in the local wheat cultivar Faisalabad-2008. Based on their ability to tolerate different levels of salt stress (0, 50, 100, and 200 mM), the transgenic wheat lines OE1, OE2, and OE3 expressing AtCIPK16 under the UBI1 promoter and OE5, OE6, and OE7 expressing the same gene under the 2XCaMV35S promoter performed better at 100 mM of salinity stress as compared with the wild type. The AtCIPK16 overexpressing transgenic wheat lines were further investigated for their K+ retention ability in root tissues by utilizing the microelectrode ion flux estimation technique. It has been demonstrated that after 10 min of 100 mM NaCl application, more K+ ions were retained in the AtCIPK16 overexpressing transgenic wheat lines than in the wild type. Moreover, it could be concluded that AtCIPK16 functions as a positive elicitor in sequestering Na+ ions into the cell vacuole and retaining more cellular K+ under salt stress to maintain ionic homeostasis.
Collapse
Affiliation(s)
- Khadija Imtiaz
- Wheat Biotechnology Lab, Agriculture Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Moddassir Ahmed
- Wheat Biotechnology Lab, Agriculture Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Nazish Annum
- Wheat Biotechnology Lab, Agriculture Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Mark Tester
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Nasir A. Saeed
- Wheat Biotechnology Lab, Agriculture Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| |
Collapse
|
13
|
Niu S, Gu X, Zhang Q, Tian X, Chen Z, Liu J, Wei X, Yan C, Liu Z, Wang X, Zhu Z. Grapevine bZIP transcription factor bZIP45 regulates VvANN1 and confers drought tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1128002. [PMID: 36844077 PMCID: PMC9947540 DOI: 10.3389/fpls.2023.1128002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Drought is a severe environmental condition that restricts the vegetative growth and reduces the yield of grapevine (Vitis vinifera L.). However, the mechanisms underlying grapevine response and adaptation to drought stress remain unclear. In the present study, we characterized an ANNEXIN gene, VvANN1, which plays a positive role in the drought stress response. The results indicated that VvANN1 was significantly induced by osmotic stress. Expression of VvANN1 in Arabidopsis thaliana enhanced osmotic and drought tolerance through modulating the level of MDA, H2O2, and O2 ·- at the seedling stage, implying that VvANN1 might be involved in the process of ROS homeostasis under drought or osmotic stress conditions. Moreover, we used yeast one-hybridization and chromatin immunoprecipitation assays to show that VvbZIP45 could regulate VvANN1 expression by directly binding to the promoter region of VvANN1 in response to drought stress. We also generated transgenic Arabidopsis that constitutively expressed the VvbZIP45 gene (35S::VvbZIP45) and further produced VvANN1Pro::GUS/35S::VvbZIP45 Arabidopsis plants via crossing. The genetic analysis results subsequently indicated that VvbZIP45 could enhance GUS expression in vivo under drought stress. Our findings suggest that VvbZIP45 may modulate VvANN1 expression in response to drought stress and reduce the impact of drought on fruit quality and yield.
Collapse
Affiliation(s)
- Shuaike Niu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- Grape Breeding, Shijiazhuang Institute of Pomology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Xiangyang Gu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Qian Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xuemin Tian
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zhan Chen
- Grape Breeding, Shijiazhuang Institute of Pomology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Jingru Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xiaoju Wei
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Chengxiang Yan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Ziwen Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xiaoji Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zhengge Zhu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
14
|
Yang S, Li J, Lu J, Wang L, Min F, Guo M, Wei Q, Wang W, Dong X, Mao Y, Hu L, Wang X. Potato calcineurin B-like protein CBL4, interacting with calcineurin B-like protein-interacting protein kinase CIPK2, positively regulates plant resistance to stem canker caused by Rhizoctonia solani. Front Microbiol 2023; 13:1032900. [PMID: 36687567 PMCID: PMC9845770 DOI: 10.3389/fmicb.2022.1032900] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/17/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction Calcium sensor calcineurin B-like proteins (CBLs) and their interacting partners, CBL-interacting protein kinases (CIPKs), have emerged as a complex network in response to abiotic and biotic stress perception. However, little is known about how CBL-CIPK complexes function in potatoes. Methods In this study, we identified the components of one potato signaling complex, StCBL4-StCIPK2, and characterized its function in defense against Rhizoctonia solani causing stem canker in potato. Results Expressions of both StCBL4 and StCIPK2 from potato were coordinately induced upon R. solani infection and following exposure to the defense genes. Furthermore, transient overexpression of StCBL4 and StCIPK2 individually and synergistically increased the tolerance of potato plants to R. solani in Nicotiana benthamiana. Additionally, the transgenic potato has also been shown to enhance resistance significantly. In contrast, susceptibility to R. solani was exhibited in N. benthamiana following virus-induced gene silencing of NbCBL and NbCIPK2. Evidence revealed that StCBL4 could interact in yeast and in planta with StCIPK2. StCBL4 and StCIPK2 transcription was induced upon R. solani infection and this expression in response to the pathogen was enhanced in StCBL4- and StCIPK2-transgenic potato. Moreover, accumulated expression of pathogenesis-related (PR) genes and reactive oxygen species (ROS) was significantly upregulated and enhanced in both StCBL4- and StCIPK2- transgenic potato. Discussion Accordingly, StCBL4 and StCIPK2 were involved in regulating the immune response to defend the potato plant against R. solani. Together, our data demonstrate that StCBL4 functions in concert with StCIPK2, as positive regulators of immunity, contributing to combating stem canker disease in potato.
Collapse
Affiliation(s)
- Shuai Yang
- Institute of Industrial Crop, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Jie Li
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Lu
- Biotechnology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Ling Wang
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Fanxiang Min
- Institute of Industrial Crop, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Mei Guo
- Institute of Industrial Crop, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Qi Wei
- Institute of Industrial Crop, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Wenzhong Wang
- Institute of Industrial Crop, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xuezhi Dong
- Institute of Industrial Crop, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Yanzhi Mao
- Institute of Industrial Crop, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Linshuang Hu
- Institute of Industrial Crop, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xiaodan Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China,*Correspondence: Xiaodan Wang,
| |
Collapse
|
15
|
Gu S, Abid M, Bai D, Chen C, Sun L, Qi X, Zhong Y, Fang J. Transcriptome-Wide Identification and Functional Characterization of CIPK Gene Family Members in Actinidia valvata under Salt Stress. Int J Mol Sci 2023; 24:805. [PMID: 36614245 PMCID: PMC9821023 DOI: 10.3390/ijms24010805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/09/2023] Open
Abstract
Fruit plants are severely constrained by salt stress in the soil due to their sessile nature. Ca2+ sensors, which are known as CBL-interacting protein kinases (CIPKs), transmit abiotic stress signals to plants. Therefore, it is imperative to investigate the molecular regulatory role of CIPKs underlying salt stress tolerance in kiwifruit. In the current study, we have identified 42 CIPK genes from Actinidia. valvata (A.valvata). All the AvCIPKs were divided into four different phylogenetic groups. Moreover, these genes showed different conserved motifs. The expression pattern analysis showed that AvCIPK11 was specifically highly expressed under salt stress. The overexpression of AvCIPK11 in 'Hongyang' (a salt sensitive commercial cultivar from Actinidia chinensis) enhanced salt tolerance by maintaining K+/Na+ homeostasis in the leaf and positively improving the activity of POD. In addition, the salt-related genes AcCBL1 and AcNHX1 had higher expression in overexpression lines. Collectively, our study suggested that AvCIPK11 is involved in the positive regulation of salt tolerance in kiwifruit.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yunpeng Zhong
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jinbao Fang
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| |
Collapse
|
16
|
Xiang R, Ahmad B, Liang C, Shi X, Yang L, Du G, Wang L. Systematic genome-wide and expression analysis of RNA-directed DNA methylation pathway genes in grapes predicts their involvement in multiple biological processes. FRONTIERS IN PLANT SCIENCE 2022; 13:1089392. [PMID: 36570893 PMCID: PMC9780290 DOI: 10.3389/fpls.2022.1089392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
RNA-directed DNA methylation (RdDM) is an important epigenetic pathway in plants and mediates transcriptional silencing by siRNAs. Different gene families have role in the regulation of the RdDM pathway and there is a lack of information about these gene families in the grapes (Vitis vinifera L.). Here, we mentioned the genome-wide identification, bioinformatics analysis, evolutionary history, and expression profiling of VvRdDM pathway genes against various stresses, hormonal treatments as well as in different organs. Sixty VvRdDM genes belonging to fourteen different families were identified. All the genes were unevenly distributed and chromosome 4 contained the highest number of genes (7). Most of the genes showed similar exon-intron and motif distribution patterns within the same subfamilies. Out of 14 families, only members of 4 families underwent duplication events during the evolutionary process and 50% of members of the AGO family are the result of duplication events. Based on Ka/Ks ratio all duplicated gene pairs have a negative mode of selection. VvRdDM pathway genes showed differential spatiotemporal expression patterns against different hormone and stress treatments. Further, with multiple transcriptome analysis, some VvRdDM genes showed a broad spectrum of high expression in different organs at various stages, and VvRdDM genes also displayed different expression in seeded and seedless cultivars during different phases of seed development. This proposed that VvRdDM genes may play multiple roles in grape growth and development, especially in seed development. qRT-PCR analysis of selected genes further verified the critical roles of RdDM genes in multiple biological processes, especially in seed development/ovule abortion i.e., VvIDN2a, VvDRD1a, VvRDR1a, and VvRDR6. Our study provides detailed information about VvRdDM genes in perspective of gene structure and evolution, as well as expression pattern against different stress, hormones and in different plants parts. It provides new candidate gene resources for further functional characterization and molecular breeding of grapes.
Collapse
Affiliation(s)
- Rui Xiang
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Bilal Ahmad
- College of Horticulture, Hebei Agricultural University, Baoding, China
- Department of Horticulture, Muhammad Nawaz Sharif (MNS)-University of Agriculture Multan, Multan, Pakistan
| | - Chen Liang
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Xiaoxin Shi
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Lili Yang
- Shijiazhuang Fruit Research Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Guoqiang Du
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Li Wang
- College of Horticulture, Hebei Agricultural University, Baoding, China
| |
Collapse
|
17
|
Yang C, Yi-feng J, Yushu W, Yansong G, Qi W, Xue Y. Diverse roles of the CIPK gene family in transcription regulation and various biotic and abiotic stresses: A literature review and bibliometric study. Front Genet 2022; 13:1041078. [PMID: 36457742 PMCID: PMC9705351 DOI: 10.3389/fgene.2022.1041078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/24/2022] [Indexed: 12/10/2023] Open
Abstract
CIPKs are a subclass of serine/threonine (Ser/Thr) protein kinases. CBLs are ubiquitous Ca2+ sensors that interact with CIPK with the aid of secondary Ca2+ messengers for regulation of growth and development and response to stresses faced by plants. The divergent roles of the CIPK-CBL interaction in plants include responding to environmental stresses (salt, cold, drought, pH, ABA signaling, and ion toxicity), ion homeostasis (K+, NH4 +, NO3 -, and microelement homeostasis), biotic stress, and plant development. Each member of this gene family produces distinct proteins that help plants adapt to diverse stresses or stimuli by interacting with calcium ion signals. CIPK consists of two structural domains-an N-terminal domain and a C-terminal domain-connected by a junction domain. The N-terminal domain, the site of phosphorylation, is also called the activation domain and kinase domain. The C-terminal, also known as the regulatory domain of CIPK, further comprises NAF/FISL and PPI. CBL comprises four EF domains and conserved PFPF motifs and is the site of binding with the NAF/FISL domain of CIPK to form a CBL-CIPK complex. In addition, we also performed a bibliometric analysis of the CIPK gene family of data extracted from the WoSCC. A total of 95 documents were retrieved, which had been published by 47 sources. The production over time was zigzagged. The top key terms were gene, CIPK, abiotic stress, and gene expression. Beijing Forestry University was the top affiliation, while The Plant Cell was the top source. The genomics and metabolomics of this gene family require more study.
Collapse
Affiliation(s)
- Chen Yang
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
- Heilongjiang Provincial Key Laboratory Resistance Gene Engineering, Qiqihar, China
| | - Jin Yi-feng
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
- Heilongjiang Provincial Key Laboratory Resistance Gene Engineering, Qiqihar, China
| | - Wang Yushu
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
- Heilongjiang Provincial Key Laboratory Resistance Gene Engineering, Qiqihar, China
| | - Gao Yansong
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - Wang Qi
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| | - You Xue
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, China
| |
Collapse
|
18
|
Molecular and expression analysis indicate the role of CBL interacting protein kinases (CIPKs) in abiotic stress signaling and development in chickpea. Sci Rep 2022; 12:16862. [PMID: 36207429 PMCID: PMC9546895 DOI: 10.1038/s41598-022-20750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/19/2022] [Indexed: 11/26/2022] Open
Abstract
Calcineurin B-like proteins (CBL)-interacting protein kinases (CIPKs) regulate the developmental processes, hormone signal transduction and stress responses in plants. Although the genome sequence of chickpea is available, information related to the CIPK gene family is missing in this important crop plant. Here, a total of 22 CIPK genes were identified and characterized in chickpea. We found a high degree of structural and evolutionary conservation in the chickpea CIPK family. Our analysis showed that chickpea CIPKs have evolved with dicots such as Arabidopsis and soybean, and extensive gene duplication events have played an important role in the evolution and expansion of the CIPK gene family in chickpea. The three-dimensional structure of chickpea CIPKs was described by protein homology modelling. Most CIPK proteins are localized in the cytoplasm and nucleus, as predicted by subcellular localization analysis. Promoter analysis revealed various cis-regulatory elements related to plant development, hormone signaling, and abiotic stresses. RNA-seq expression analysis indicated that CIPKs are significantly expressed through a spectrum of developmental stages, tissue/organs that hinted at their important role in plant development. The qRT-PCR analysis revealed that several CaCIPK genes had specific and overlapping expressions in different abiotic stresses like drought, salt, and ABA, suggesting the important role of this gene family in abiotic stress signaling in chickpea. Thus, this study provides an avenue for detailed functional characterization of the CIPK gene family in chickpea and other legume crops.
Collapse
|
19
|
Yu C, Ke Y, Qin J, Huang Y, Zhao Y, Liu Y, Wei H, Liu G, Lian B, Chen Y, Zhong F, Zhang J. Genome-wide identification of calcineurin B-like protein-interacting protein kinase gene family reveals members participating in abiotic stress in the ornamental woody plant Lagerstroemia indica. FRONTIERS IN PLANT SCIENCE 2022; 13:942217. [PMID: 36204074 PMCID: PMC9530917 DOI: 10.3389/fpls.2022.942217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Calcineurin B-like protein-interacting protein kinases (CIPKs) play important roles in plant responses to stress. However, their function in the ornamental woody plant Lagerstroemia indica is remains unclear. In this study, the LiCIPK gene family was analyzed at the whole genome level. A total of 37 LiCIPKs, distributed across 17 chromosomes, were identified. Conserved motif analysis indicated that all LiCIPKs possess a protein kinase motif (S_TKc) and C-terminal regulatory motif (NAF), while seven LiCIPKs lack a protein phosphatase interaction (PPI) motif. 3D structure analysis further revealed that the N-terminal and C-terminal 3D-structure of 27 members are situated near to each other, while 4 members have a looser structure, and 6 members lack intact structures. The intra- and interspecies collinearity analysis, synonymous substitution rate (K s ) peaks of duplicated LiCIPKs, revealed that ∼80% of LiCIPKs were retained by the two whole genome duplication (WGD) events that occurred approximately 56.12-61.16 million year ago (MYA) and 16.24-26.34 MYA ago. The promoter of each LiCIPK contains a number of auxin, abscisic acid, gibberellic acid, salicylic acid, and drought, anaerobic, defense, stress, and wound responsive cis-elements. Of the 21 members that were successfully amplified by qPCR, 18 LiCIPKs exhibited different expression patterns under NaCl, mannitol, PEG8000, and ABA treatments. Given that LiCIPK30, the AtSOS2 ortholog, responded to all four types of stress it was selected for functional verification. LiCIPK30 complements the atsos2 phenotype in vivo. 35S:LiCIPK-overexpressing lines exhibit increased leaf area increment, chlorophyll a and b content, reactive oxygen species scavenging enzyme activity, and expression of ABF3 and RD22, while the degree of membrane lipid oxidation decreases under NaCl treatment compared to WT. The evolutionary history, and potential mechanism by which LiCIPK30 may regulate plant tolerance to salt stress were also discussed. In summary, we identified LiCIPK members involved in abiotic stress and found that LiCIPK30 transgenic Arabidopsis exhibits more salt and osmotic stress tolerance than WT. This research provides a theoretical foundation for further investigation into the function of LiCIPKs, and for mining gene resources to facilitate the cultivation and breeding of new L. indica varieties in coastal saline-alkali soil.
Collapse
Affiliation(s)
- Chunmei Yu
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| | - Yongchao Ke
- School of Life Sciences, Nantong University, Nantong, China
| | - Jin Qin
- School of Life Sciences, Nantong University, Nantong, China
| | - Yunpeng Huang
- School of Life Sciences, Nantong University, Nantong, China
| | - Yanchun Zhao
- School of Life Sciences, Nantong University, Nantong, China
| | - Yu Liu
- School of Life Sciences, Nantong University, Nantong, China
| | - Hui Wei
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| | - Guoyuan Liu
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| | - Bolin Lian
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| | - Yanhong Chen
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| | - Fei Zhong
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| | - Jian Zhang
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Landscape Plant Genetics and Breeding, Nantong University, Nantong, China
| |
Collapse
|
20
|
Xiao C, Zhang H, Xie F, Pan ZY, Qiu WM, Tong Z, Wang ZQ, He XJ, Xu YH, Sun ZH. Evolution, gene expression, and protein‒protein interaction analyses identify candidate CBL-CIPK signalling networks implicated in stress responses to cold and bacterial infection in citrus. BMC PLANT BIOLOGY 2022; 22:420. [PMID: 36045357 PMCID: PMC9434895 DOI: 10.1186/s12870-022-03809-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cold is a major abiotic stress and Huanglongbing and citrus canker disease are two devastating bacterial diseases for citrus. The Ca2+-CBL-CIPK network is known to regulate different types of stress signalling in plants. How do CBL-CIPK signalling networks function in response to cold and infection by CLas or Xcc in citrus? RESULTS Eight calcineurin B-like proteins (CBLs) and seventeen CBL-interacting protein kinases (CIPKs) were identified from the cold-tolerant satsuma mandarin 'Guijing2501' (Citrus. unshiu) and CLas/Xcc-sensitive sweet orange (C. sinensis). Phylogenetic analysis revealed that both CBL and CIPK family members in citrus were classified into an ancient and a recent clade according to their conserved domain characteristics and/or intron/exon structures. Genome duplication analysis suggested that both tandem and segmental duplications contributed to the amplification of the CBL and CIPK gene families in citrus under intense purifying selection, and the duplication events only existed in the recent clades. Expression comparison of the duplicated gene pairs indicated that the duplicated CBL and CIPK genes underwent functional differentiation. Further expression analysis identified that CBL1, 5, 6, and 8 and CIPK2, 8, 12, 15, 16, and 17 were significantly regulated by multiple stresses, including cold, Xcc infection and/or CLas infection, in citrus, whereas CBL2/7 and CIPK1/4/5/11/13/14 were independently highly regulated by cold and CIPK3 was uniquely responsive to Xcc infection. The combination analyses of targeted Y2H assay and expression analysis revealed that CBL6-CIPK8 was the common signalling network in response to cold and Xcc infection, while CBL6/CBL8-CIPK14 was uniquely responsive to cold in citrus. Further stable transformation and cold tolerance assay indicated that overexpression of CuCIPK16 enhanced the cold tolerance of transgenic Arabidopsis with higher POD activity and lower MDA content. CONCLUSIONS In this study, evolution, gene expression and protein‒protein interaction analyses of citrus CBLs and CIPKs were comprehensively conducted over a genome-wide range. The results will facilitate future functional characterization of individual citrus CBLs and CIPKs under specific stresses and provide clues for the clarification of cold tolerance and disease susceptibility mechanisms in corresponding citrus cultivars.
Collapse
Affiliation(s)
- Cui Xiao
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Hu Zhang
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Fan Xie
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070 China
| | - Zhi-Yong Pan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070 China
| | - Wen-Ming Qiu
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Zhu Tong
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Ze-Qiong Wang
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Xiu-Juan He
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Yu-Hai Xu
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Zhong-Hai Sun
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| |
Collapse
|
21
|
Kaur A, Sharma A, Madhu, Verma PC, Upadhyay SK. EF-hand domain-containing proteins in Triticum aestivum: Insight into their roles in stress response and signalling. SOUTH AFRICAN JOURNAL OF BOTANY 2022; 149:663-681. [DOI: 10.1016/j.sajb.2022.06.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
|
22
|
Genome-Wide Identification of the Salvia miltiorrhiza SmCIPK Gene Family and Revealing the Salt Resistance Characteristic of SmCIPK13. Int J Mol Sci 2022; 23:ijms23126861. [PMID: 35743301 PMCID: PMC9224336 DOI: 10.3390/ijms23126861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/05/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
Members of the CIPK (CBL-interacting protein kinases) gene family play important roles in calcium (Ca2+) signaling pathway-regulated plant resistance to abiotic stresses. Salvia miltiorrhiza, which is widely planted and grown in complex and diverse environments, is mainly focused on the transcriptional regulation of enzyme genes related to the biosynthesis of its bioactive components. However, the excavation of the genes related to the resistance of S.miltiorrhiza and the involved signaling pathways have not been deeply studied. In this study, 20 SmCIPK genes were identified and classified into two families and five subfamilies by biochemical means. Sequence characteristics and conserved motif analysis revealed the conservation and difference of SmCIPK protein in plants. Expression pattern analysis showed that SmCIPKs were mainly expressed in flowers and roots, and more than 90% of gene expression was induced by SA (salicylic acid), and MeJA (methyl jasmonate). Furthermore, the expression level of SmCIPK13 could be significantly increased after stress treatment with NaCl. SmCIPK13 expression in yeast reduces sensitivity to salt, while overexpression of it in Arabidopsis has the same effect and was localized in the cytoplasm, cell membrane and nucleus. In conclusion, the identification of the SmCIPK gene family and the functional characterization of the SmCIPK13 gene provides the basis for clarification of key genes in the Ca2+ signaling pathway and abiotic stress in S.miltiorrhiza.
Collapse
|
23
|
Xiaolin Z, Baoqiang W, Xian W, Xiaohong W. Identification of the CIPK-CBL family gene and functional characterization of CqCIPK14 gene under drought stress in quinoa. BMC Genomics 2022; 23:447. [PMID: 35710332 PMCID: PMC9204864 DOI: 10.1186/s12864-022-08683-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022] Open
Abstract
Background Calcineurin-like Protein (CBL) and CBL interacting protein kinase (CIPK) play a key role in plant signal transduction and response to various environmental stimuli. Quinoa, as an important plant with high nutritional value, can meet the basic nutritional needs of human Cash crop, is also susceptible to abiotic stress. However, CBL-CIPK in quinoa have not been reported. Results In this study, 16 CBL and 41 CIPK genes were identified in quinoa. CBL-CIPK gene shows different intron-exon gene structure and motif, they participate in different biological processes, and form a complex regulatory network between CBL-CIPK proteins. Many cis-regulatory element associated with ABA and drought have been found. The expression patterns of CBL-CIPK showed different expression patterns in various abiotic stresses and tissues. RT-qPCR showed that most members of these two gene families were involved in drought regulation of quinoa, in particular, the expression levels of CqCIPK11, CqCIPK15, CqCIPK37 and CqCBL13 increased significantly under drought stress. Conclusions The structures and functions of the CBL-CIPK family in quinoa were systematically explored. Many CBL-CIPK may play vital roles in the regulation of organ development, growth, and responses to abiotic stresses. This research has great significance for the functional characterisation of the quinoa CBL-CIPK family and our understanding of the CBL-CIPK family in higher plants. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08683-6.
Collapse
Affiliation(s)
- Zhu Xiaolin
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China.,College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.,Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wang Baoqiang
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China.,College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.,Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wang Xian
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China.,College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wei Xiaohong
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China. .,College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China. .,Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
24
|
Wang Q, Zhao K, Gong Y, Yang Y, Yue Y. Genome-Wide Identification and Functional Analysis of the Calcineurin B-like Protein and Calcineurin B-like Protein-Interacting Protein Kinase Gene Families in Chinese Cabbage (Brassica rapa ssp. pekinensis). Genes (Basel) 2022; 13:genes13050795. [PMID: 35627180 PMCID: PMC9140732 DOI: 10.3390/genes13050795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
In plants, calcineurin B-like proteins (CBL) are a unique set of calcium sensors that decode calcium signals by activating a plant-specific protein kinase family called CBL-interacting protein kinases (CIPKs). The CBL–CIPK family and its interacting complexes regulate plant responses to various environmental stimuli. Chinese cabbage (Brassica rapa ssp. pekinensis) is an important vegetable crop in Asia; however, there are no reports on the role of the CBLs–CIPKs’ signaling system in response to abiotic stress during cabbage growth. In this study, 18 CBL genes and 47 CIPK genes were identified from the Chinese cabbage genome. Expansion of the gene families was mainly due to tandem repeats and segmental duplication. An analysis of gene expression patterns showed that different duplicate genes exhibited different expression patterns in response to treatment with Mg2+, K+, and low temperature. In addition, differences in the structural domain sequences of NAF/FISL and interaction profiles in yeast two-hybrid assays suggested a functional divergence of the duplicate genes during the long-term evolution of Chinese cabbage, a result further validated by potassium deficiency treatment using trans-BraCIPK23.1/23.2/23.3 Arabidopsis thaliana. Our results provide a basis for studies related to the functional divergence of duplicate genes and in-depth studies of BraCBL–BraCIPK functions in Chinese cabbage.
Collapse
Affiliation(s)
- Qianwen Wang
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (Q.W.); (K.Z.); (Y.G.)
| | - Kai Zhao
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (Q.W.); (K.Z.); (Y.G.)
| | - Yuqiang Gong
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (Q.W.); (K.Z.); (Y.G.)
| | - Yunqiang Yang
- The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| | - Yanling Yue
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (Q.W.); (K.Z.); (Y.G.)
- Correspondence:
| |
Collapse
|
25
|
Zhu K, Fan P, Liu H, Tan P, Ma W, Mo Z, Zhao J, Chu G, Peng F. Insight into the CBL and CIPK gene families in pecan (Carya illinoinensis): identification, evolution and expression patterns in drought response. BMC PLANT BIOLOGY 2022; 22:221. [PMID: 35484502 PMCID: PMC9047272 DOI: 10.1186/s12870-022-03601-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/18/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND Calcium (Ca2+) serves as a ubiquitous second messenger and plays a pivotal role in signal transduction. Calcineurin B-like proteins (CBLs) are plant-specific Ca2+ sensors that interact with CBL-interacting protein kinases (CIPKs) to transmit Ca2+ signals. CBL-CIPK complexes have been reported to play pivotal roles in plant development and response to drought stress; however, limited information is available about the CBL and CIPK genes in pecan, an important nut crop. RESULTS In the present study, a total of 9 CBL and 30 CIPK genes were identified from the pecan genome and divided into four and five clades based on phylogeny, respectively. Gene structure and distribution of conserved sequence motif analysis suggested that family members in the same clade commonly exhibited similar exon-intron structures and motif compositions. The segmental duplication events contributed largely to the expansion of pecan CBL and CIPK gene families, and Ka/Ks values revealed that all of them experienced strong negative selection. Phylogenetic analysis of CIPK proteins from 14 plant species revealed that CIPKs in the intron-poor clade originated in seed plants. Tissue-specific expression profiles of CiCBLs and CiCIPKs were analysed, presenting functional diversity. Expression profiles derived from RNA-Seq revealed distinct expression patterns of CiCBLs and CiCIPKs under drought treatment in pecan. Moreover, coexpression network analysis helped to elucidate the relationships between these genes and identify potential candidates for the regulation of drought response, which were verified by qRT-PCR analysis. CONCLUSIONS The characterization and analysis of CBL and CIPK genes in pecan genome could provide a basis for further functional analysis of CiCBLs and CiCIPKs in the drought stress response of pecan.
Collapse
Affiliation(s)
- Kaikai Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 Jiangsu China
| | - Pinghua Fan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 Jiangsu China
| | - Hui Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 Jiangsu China
| | - Pengpeng Tan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 Jiangsu China
| | - Wenjuan Ma
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 Jiangsu China
| | - Zhenghai Mo
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014 Jiangsu China
| | - Juan Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 Jiangsu China
| | - Guolin Chu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 Jiangsu China
| | - Fangren Peng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 Jiangsu China
| |
Collapse
|
26
|
Ma R, Liu W, Li S, Zhu X, Yang J, Zhang N, Si H. Genome-Wide Identification, Characterization and Expression Analysis of the CIPK Gene Family in Potato ( Solanum tuberosum L.) and the Role of StCIPK10 in Response to Drought and Osmotic Stress. Int J Mol Sci 2021; 22:ijms222413535. [PMID: 34948331 PMCID: PMC8708990 DOI: 10.3390/ijms222413535] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022] Open
Abstract
The potato (Solanum tuberosum L.), one of the most important food crops worldwide, is sensitive to environmental stresses. Sensor–responder complexes comprising calcineurin B-like (CBL) proteins and CBL-interacting protein kinases (CIPKs) not only modulate plant growth and development but also mediate numerous stress responses. Here, using a Hidden Markov Model and BLAST searches, 27 CIPK genes were identified in potato and divided into five groups by phylogenetic analysis and into two clades (intron-poor and intron-rich) by gene structure analysis. Quantitative reverse-transcription PCR (qRT-PCR) assays revealed that StCIPK genes play important roles in plant growth, development and abiotic stress tolerance. Up-regulated expression of StCIPK10 was significantly induced by drought, PEG6000 and ABA. StCIPK10 enhances both the ability of potato to scavenge reactive oxygen species and the content of corresponding osmoregulation substances, thereby strengthening tolerance to drought and osmotic stress. StCIPK10 is located at the intersection between the abscisic acid and abiotic stress signaling pathways, which control both root growth and stomatal closure in potato. In addition, StCIPK10 interacts with StCBL1, StCBL4, StCBL6, StCBL7, StCBL8, StCBL11 and StCBL12, and is specifically recruited to the plasma membrane by StCBL11.
Collapse
Affiliation(s)
- Rui Ma
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (R.M.); (W.L.); (S.L.); (X.Z.); (J.Y.); (N.Z.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Dingxi Academy of Agricultural Sciences, Dingxi 743000, China
| | - Weigang Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (R.M.); (W.L.); (S.L.); (X.Z.); (J.Y.); (N.Z.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Shigui Li
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (R.M.); (W.L.); (S.L.); (X.Z.); (J.Y.); (N.Z.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xi Zhu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (R.M.); (W.L.); (S.L.); (X.Z.); (J.Y.); (N.Z.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiangwei Yang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (R.M.); (W.L.); (S.L.); (X.Z.); (J.Y.); (N.Z.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (R.M.); (W.L.); (S.L.); (X.Z.); (J.Y.); (N.Z.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (R.M.); (W.L.); (S.L.); (X.Z.); (J.Y.); (N.Z.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence: ; Tel.: +86-931-763-1875
| |
Collapse
|
27
|
Huang L, Li Z, Fu Q, Liang C, Liu Z, Liu Q, Pu G, Li J. Genome-Wide Identification of CBL-CIPK Gene Family in Honeysuckle ( Lonicera japonica Thunb.) and Their Regulated Expression Under Salt Stress. Front Genet 2021; 12:751040. [PMID: 34795693 PMCID: PMC8593244 DOI: 10.3389/fgene.2021.751040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/19/2021] [Indexed: 11/18/2022] Open
Abstract
In plants, calcineurin B-like proteins (CBLs) are a unique group of Ca2+ sensors that decode Ca2+ signals by activating a family of plant-specific protein kinases known as CBL-interacting protein kinases (CIPKs). CBL-CIPK gene families and their interacting complexes are involved in regulating plant responses to various environmental stimuli. To gain insight into the functional divergence of CBL-CIPK genes in honeysuckle, a total of six LjCBL and 17 LjCIPK genes were identified. The phylogenetic analysis along with the gene structure analysis divided both CBL and CBL-interacting protein kinase genes into four subgroups and validated by the distribution of conserved protein motifs. The 3-D structure prediction of proteins shown that most LjCBLs shared the same Protein Data Bank hit 1uhnA and most LjCIPKs shared the 6c9Da. Analysis of cis-acting elements and gene ontology implied that both LjCBL and LjCIPK genes could be involved in hormone signal responsiveness and stress adaptation. Protein-protein interaction prediction suggested that LjCBL4 is hypothesized to interact with LjCIPK7/9/15/16 and SOS1/NHX1. Gene expression analysis in response to salinity stress revealed that LjCBL2/4, LjCIPK1/15/17 under all treatments gradually increased over time until peak expression at 72 h. These results demonstrated the conservation of salt overly sensitive pathway genes in honeysuckle and a model of Ca2+-LjCBL4/LjSOS3-LjCIPK16/LjSOS2 module-mediated salt stress signaling in honeysuckle is proposed. This study provides insight into the characteristics of the CBL-CIPK gene families involved in honeysuckle salt stress responses, which could serve as a foundation for gene transformation technology, to obtain highly salt-tolerant medicinal plants in the context of the global reduction of cultivated land.
Collapse
Affiliation(s)
- Luyao Huang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhuangzhuang Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Qingxia Fu
- Department of Pharmacy, Linyi People's Hospital, Linyi, China
| | - Conglian Liang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhenhua Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Gaobin Pu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jia Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
28
|
Chen P, Yang J, Mei Q, Liu H, Cheng Y, Ma F, Mao K. Genome-Wide Analysis of the Apple CBL Family Reveals That Mdcbl10.1 Functions Positively in Modulating Apple Salt Tolerance. Int J Mol Sci 2021; 22:ijms222212430. [PMID: 34830311 PMCID: PMC8624107 DOI: 10.3390/ijms222212430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
Abiotic stresses are increasingly harmful to crop yield and quality. Calcium and its signaling pathway play an important role in modulating plant stress tolerance. As specific Ca2+ sensors, calcineurin B-like (CBL) proteins play vital roles in plant stress response and calcium signaling. The CBL family has been identified in many plant species; however, the characterization of the CBL family and the functional study of apple MdCBL proteins in salt response have yet to be conducted in apple. In this study, 11 MdCBL genes were identified from the apple genome. The coding sequences of these MdCBL genes were cloned, and the gene structure and conserved motifs were analyzed in detail. The phylogenetic analysis indicated that these MdCBL proteins could be divided into four groups. The functional identification in Na+-sensitive yeast mutant showed that the overexpression of seven MdCBL genes could confer enhanced salt stress resistance in transgenic yeast. The function of MdCBL10.1 in regulating salt tolerance was also verified in cisgenic apple calli and apple plants. These results provided valuable insights for future research examining the function and mechanism of CBL proteins in regulating apple salt tolerance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ke Mao
- Correspondence: (F.M.); (K.M.)
| |
Collapse
|
29
|
Dong C, Xi Y, Chen X, Cheng ZM. Genome-wide identification of AP2/EREBP in Fragaria vesca and expression pattern analysis of the FvDREB subfamily under drought stress. BMC PLANT BIOLOGY 2021; 21:295. [PMID: 34174836 PMCID: PMC8236174 DOI: 10.1186/s12870-021-03095-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 06/11/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND Drought is a common phenomenon worldwide. It is also one of the main abiotic factors that affect the growth and quality of strawberry. The dehydration-responsive element binding protein (DREB) members that belong to the APETALA2/ethylene-responsive element binding protein (AP2/EREBP) superfamily are unique transcription factors in plants that play important roles in the abiotic stress response. RESULTS Here, a total of 119 AP2/EREBP genes were identified in Fragaria vesca, and the AP2/EREBP superfamily was divided into AP2, RAV, ERF, DREB, and soloist subfamilies, containing 18, 7, 61, 32, and one member(s), respectively. The DREB subfamily was further divided into six subgroups (A-1 to A-6) based on phylogenetic analysis. Gene structure, conserved motifs, chromosomal location, and synteny analysis were conducted to comprehensively investigate the characteristics of FvDREBs. Furthermore, transcriptome analysis revealed distinctive expression patterns among the FvDREB genes in strawberry plants exposed to drought stress. The expression of FvDREB6 of the A-2 subgroup was down-regulated in old leaves and up-regulated in young leaves in response to drought. Furthermore, qRT-PCR analysis found that FvDREB8 from the A-2 subgroup had the highest expression level under drought stress. Together, analyses with the expression pattern, phylogenetic relationship, motif, and promoter suggest that FvDREB18 may play a critical role in the regulation of FvDREB1 and FvDREB2 expression. CONCLUSIONS Our findings provide new insights into the characteristics and potential functions of FvDREBs. These FvDREB genes should be further studied as they appear to be excellent candidates for drought tolerance improvement of strawberry.
Collapse
Affiliation(s)
- Chao Dong
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Shanghai, 201403, China
| | - Yue Xi
- Shanghai Center for Plant Stress Biology (PSC), Chinese Academy of Sciences, Shanghai, 201602, China
| | - Xinlu Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Zong-Ming Cheng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
30
|
Hosseini Tafreshi SA, Aghaie P, Ebrahimi MA, Haerinasab M. Regulation of drought-related responses in tomato plants by two classes of calcineurin B-like (SlCBL1/2) proteins. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:431-446. [PMID: 33740682 DOI: 10.1016/j.plaphy.2021.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Calcineurin-B-like proteins (CBLs) are essential components of the calcium signaling network and act during plant's response to stress and normal conditions. A combined research strategy of in-silico analysis and gene silencing experiment was employed to investigate the role of different classes of CBLs in tomato (Solanum lycopersicum L.) during the response to drought stress. Two different classes of CBL genes, including SlCBL3-1, and SlCBL3-2, with the minimum and a maximum number of drought-responsive cis-elements, were selected and were targeted for transient gene silencing in tomato followed by the drought treatment. The effect of silencing events was evaluated by determining of further growth and physiological traits in plants under both control and drought stress conditions. The results showed that silencing of SlCBL3-1 significantly reduced shoot and root growth, relative water content (RWC), and the concentration of pigments while increased free radical accumulation, lipid peroxidation, and leakage from the cells. On the other hand, no antioxidant enzyme activity or proline induction was triggered in plants after SlCBL3-1 silencing. Some of these adverse events were more significantly enhanced when the silenced plants were exposed to drought stress. Overall, a significant role for SlCBL3-1 in the life cycle of plant suggested under both normal and stress conditions. The SlCBL3-2 silencing showed more efficient plants recovery from silencing or drought stress conditions. Therefore, SlCBL3-2 gene may act as a negative regulator under stress conditions. The results might provide new theoretical insight and genetic resources for developing resistant crops against environmental stresses.
Collapse
Affiliation(s)
- Seyed Ali Hosseini Tafreshi
- Biotechnology Division, Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran.
| | - Peyman Aghaie
- Department of Biology, Faculty of Science, Payame Noor University, PO BOX 19395-3697, Tehran, Iran.
| | - Mohammad Ali Ebrahimi
- Department of Agricultural Biotechnology, Payame Noor University, PO BOX 19395-3697, Tehran, Iran
| | - Maryam Haerinasab
- Department of Biology, Faculty of Science, Payame Noor University, PO BOX 19395-3697, Tehran, Iran
| |
Collapse
|
31
|
Zhao C, William D, Sandhu D. Isolation and characterization of Salt Overly Sensitive family genes in spinach. PHYSIOLOGIA PLANTARUM 2021; 171:520-532. [PMID: 32418228 DOI: 10.1111/ppl.13125] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/23/2020] [Accepted: 05/06/2020] [Indexed: 05/24/2023]
Abstract
The Salt Overly Sensitive (SOS) pathway regulates intracellular sodium ion homeostasis as a salt-stress response in plants. This pathway involves three main genes designated as SOS1, SOS2 and SOS3, which are members of the Na+ /H+ exchanger (NHX), CBL-interacting protein kinase (CIPK) and Calcineurin B-like (CBL) gene families, respectively. To identify and characterize SOS genes in spinach (Spinacia oleracea), a species of the Amaranthaceae family, we conducted genome-wide identification and phylogenetic analyses of NHX, CIPK and CBL genes from four Amaranthaceae species, Arabidopsis and rice. Most Amaranthaceae genes exhibited orthologous relationships with Arabidopsis and/or rice, except a clade of Vac-type Amaranthaceae NHX genes. Phylogenetic analyses also revealed gene gain/loss events in Amaranthaceae species and the intron-less to intron-rich evolution of CIPK genes. A bacterial protein-rooted CIPK tree allowed naming most of the phylogenetic clades based on their evolutionary history. Single S. oleracea (So) SOS1, SOS2 and SOS3 proteins were identified. Direct protein-protein interaction was observed between SoSOS2 and SoSOS3 but not between SoSOS2 and SoSOS1 based on yeast two-hybrid assay. This may suggest distinct modes of action of spinach SOS proteins compared to Arabidopsis SOS proteins. Unlike SoSOS1 and SoSOS2, which were expressed at similar or higher levels in leaves than roots, SoSOS3 expression was significantly higher in roots than leaves, suggesting its greater importance in roots. The expression of SoSOS3 was upregulated in both roots and leaves under salinity compared to the control; however, SoSOS1 was only upregulated in roots. Thus, this study demonstrated the conservation of SOS pathway genes in spinach and also highlighted the complexity of SOS signaling in Amaranthaceae species.
Collapse
Affiliation(s)
- Chaoyang Zhao
- USDA-ARS, US Salinity Lab, 450 W Big Springs Road, Riverside, California, 92507, USA
- College of Natural and Agricultural Sciences, University of California Riverside, 900 University Avenue, Riverside, California, 92521, USA
| | - David William
- College of Natural and Agricultural Sciences, University of California Riverside, 900 University Avenue, Riverside, California, 92521, USA
| | - Devinder Sandhu
- USDA-ARS, US Salinity Lab, 450 W Big Springs Road, Riverside, California, 92507, USA
| |
Collapse
|
32
|
Sun W, Zhang B, Deng J, Chen L, Ullah A, Yang X. Genome-wide analysis of CBL and CIPK family genes in cotton: conserved structures with divergent interactions and expression. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:359-368. [PMID: 33707874 PMCID: PMC7907412 DOI: 10.1007/s12298-021-00943-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/15/2020] [Accepted: 01/28/2021] [Indexed: 05/05/2023]
Abstract
UNLABELLED Calcineurin B-like proteins (CBLs) interact with CBL-interacting protein kinases (CIPKs) to form complex molecular modules in response to diverse abiotic stresses. Although previous studies demonstrated that the CBL-CIPK networks play a crucial role in plants response to abiotic stresses, however, little is known about their functions in cotton. In the present study, a total of 22 GhCBL and 79 GhCIPK gene family members were identified in upland cotton (Gossypium hirsutum Linn). Synteny analysis revealed that most genes of GhCBL and GhCIPK exist in pairs between At sub-genome and Dt sub-genome. Interaction analysis between GhCBL and GhCIPK proteins by yeast two-hybrid (Y2H) suggested that the GhCBL-GhCIPK networks were complex, and exhibited functional redundancy in cotton. Quantitative expression analysis by public transcriptome datasets revealed that some GhCBL and GhCIPK genes are differentially expressed under abiotic stress treatments, and especially under drought stress. Our results not only contribute to understanding the structural features of GhCBL and GhCIPK genes but also provide the basis for in-depth functional studies of GhCBL-GhCIPK networks in stress response for plants. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at (doi:10.1007/s12298-021-00943-1).
Collapse
Affiliation(s)
- Weinan Sun
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Bing Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Jinwu Deng
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Lin Chen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Abid Ullah
- Department of Botany, University of Malakand, Chakdara Dir Lower, 18800 Khyber Pakhtunkhwa Pakistan
| | - Xiyan Yang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| |
Collapse
|
33
|
Rossdeutsch L, Schreiner RP, Skinkis PA, Deluc L. Nitrate Uptake and Transport Properties of Two Grapevine Rootstocks With Varying Vigor. FRONTIERS IN PLANT SCIENCE 2021; 11:608813. [PMID: 33537044 PMCID: PMC7847936 DOI: 10.3389/fpls.2020.608813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
In viticulture, rootstocks are essential to cope with edaphic constraints. They can also be used to modulate scion growth and development to help improve berry yield and quality. The rootstock contribution to scion growth is not fully understood. Since nitrogen (N) is a significant driver of grapevine growth, rootstock properties associated with N uptake and transport may play a key role in the growth potential of grafted grapevines. We evaluated N uptake and transport in a potted system using two grapevines rootstocks [Riparia Gloire (RG) and 1103 Paulsen (1103P)] grafted to Pinot noir (Pommard clone) scion. Combining results of nitrate induction and steady-state experiments at two N availability levels, we observed different responses in the uptake and utilization of N between the two rootstocks. The low vigor rootstock (RG) exhibited greater nitrate uptake capacity and nitrate assimilation in roots after nitrate resupply than the more vigorous 1103P rootstock. This behavior may be attributed to a greater root carbohydrate status observed in RG for both experiments. However, 1103P demonstrated a higher N translocation rate to shoots regardless of N availability. These distinct rootstock behaviors resulted in significant differences in biomass allocation between roots and shoots under N-limited conditions, although the overall vine biomass was not different. Under sufficient N supply, differences between rootstocks decreased but 1103P stored more N in roots, which may benefit growth in subsequent growing seasons. Overall, greater transpiration of vines grafted to 1103P rootstock causing higher N translocation to shoots could partially explain its known growth-promoting effect to scions under low and high N availability, whereas the low vigor typically conferred to scions by RG may result from the combination of lower N translocation to shoots and a greater allocation of biomass toward roots when N is low.
Collapse
Affiliation(s)
- Landry Rossdeutsch
- Department of Horticulture, Oregon Wine Research Institute, Oregon State University, Corvallis, OR, United States
| | - R. Paul Schreiner
- USDA-ARS Horticulture Crops Research Unit, Corvallis, OR, United States
- Oregon Wine Research Institute, Corvallis, OR, United States
| | - Patricia A. Skinkis
- Department of Horticulture, Oregon Wine Research Institute, Oregon State University, Corvallis, OR, United States
- Oregon Wine Research Institute, Corvallis, OR, United States
| | - Laurent Deluc
- Department of Horticulture, Oregon Wine Research Institute, Oregon State University, Corvallis, OR, United States
- Oregon Wine Research Institute, Corvallis, OR, United States
| |
Collapse
|
34
|
Su W, Ren Y, Wang D, Huang L, Fu X, Ling H, Su Y, Huang N, Tang H, Xu L, Que Y. New insights into the evolution and functional divergence of the CIPK gene family in Saccharum. BMC Genomics 2020; 21:868. [PMID: 33287700 PMCID: PMC7720545 DOI: 10.1186/s12864-020-07264-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/22/2020] [Indexed: 11/20/2022] Open
Abstract
Background Calcineurin B-like protein (CBL)-interacting protein kinases (CIPKs) are the primary components of calcium sensors, and play crucial roles in plant developmental processes, hormone signaling transduction, and in the response to exogenous stresses. Results In this study, 48 CIPK genes (SsCIPKs) were identified from the genome of Saccharum spontaneum. Phylogenetic reconstruction suggested that the SsCIPK gene family may have undergone six gene duplication events from the last common ancestor (LCA) of SsCIPKs. Whole-genome duplications (WGDs) served as the driving force for the amplification of SsCIPKs. The Nonsynonymous to synonymous substitution ratio (Ka/Ks) analysis showed that the duplicated genes were possibly under strong purifying selection pressure. The divergence time of these duplicated genes had an average duplication time of approximately 35.66 Mya, suggesting that these duplication events occurred after the divergence of the monocots and eudicots (165 Mya). The evolution of gene structure analysis showed that the SsCIPK family genes may involve intron losses. Ten ScCIPK genes were amplified from sugarcane (Saccharum spp. hybrids). The results of real-time quantitative polymerase chain reaction (qRT-PCR) demonstrated that these ten ScCIPK genes had different expression patterns under abscisic acid (ABA), polyethylene glycol (PEG), and sodium chloride (NaCl) stresses. Prokaryotic expression implied that the recombinant proteins of ScCIPK3, − 15 and − 17 could only slightly enhance growth under salinity stress conditions, but the ScCIPK21 did not. Transient N. benthamiana plants overexpressing ScCIPKs demonstrated that the ScCIPK genes were involved in responding to external stressors through the ethylene synthesis pathway as well as to bacterial infections. Conclusions In generally, a comprehensive genome-wide analysis of evolutionary relationship, gene structure, motif composition, and gene duplications of SsCIPK family genes were performed in S. spontaneum. The functional study of expression patterns in sugarcane and allogenic expressions in E. coli and N. benthamiana showed that ScCIPKs played various roles in response to different stresses. Thus, these results improve our understanding of the evolution of the CIPK gene family in sugarcane as well as provide a basis for in-depth functional studies of CIPK genes in sugarcane. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07264-9.
Collapse
Affiliation(s)
- Weihua Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongjuan Ren
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dongjiao Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Long Huang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xueqin Fu
- Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hui Ling
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ning Huang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hanchen Tang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
35
|
Wang L, Feng X, Yao L, Ding C, Lei L, Hao X, Li N, Zeng J, Yang Y, Wang X. Characterization of CBL-CIPK signaling complexes and their involvement in cold response in tea plant. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:195-203. [PMID: 32563043 DOI: 10.1016/j.plaphy.2020.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 05/20/2023]
Abstract
Calcineurin B-like (CBL) proteins, a class of Ca2+-binding proteins, play vital roles in calcium signal transduction by interacting specifically with CBL-interacting protein kinases (CIPKs), and these two gene families and their interacting complexes are involved in regulating plant responses to various environmental stimuli. In the present study, eight CBL and 25 CIPK genes were identified in tea plant and divided into four and five subfamilies, respectively. Analysis of the expression of these genes in response to abiotic stresses (mature leaves treated with cold, salinity, and PEG and young shoots treated with cold) revealed that CsCBL1/3/5 and CsCIPK1/4/5/6a/7/8/10b/10c/12/14a/19/23a/24 could be induced by at least two stresses. Under cold stress, CsCBL9 and CsCIPK4/6a/6b/7/11/14b/19/20 were upregulated in both mature leaves and young shoots, CsCBL1/3/5 and CsCIPK1/8/10a/10b/10c/12/14a/23a/24 were induced only in mature leaves, and CsCIPK5/25 were induced only in young shoots. Yeast two-hybrid analysis showed that CsCBL1 could interact with CsCIPK1/10b/12 but not with CsCIPK6a/7/11/14b/20. CsCBL9 was found to interact with CsCIPK1/10b/12/14b but not with CsCIPK6a/7/11/20. These results suggest divergent responses to cold stress regulated by CBL-CIPK complexes between tea plant and Arabidopsis, as well as between mature leaves and young shoots in tea plant. A model of Ca2+-CsCBL-CsCIPK module-mediated abiotic stress signaling in tea plant is proposed.
Collapse
Affiliation(s)
- Lu Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Xia Feng
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Lina Yao
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Changqing Ding
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Lei Lei
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Xinyuan Hao
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Nana Li
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Jianming Zeng
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Yajun Yang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China.
| | - Xinchao Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China; Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China.
| |
Collapse
|
36
|
Ma X, Li QH, Yu YN, Qiao YM, Haq SU, Gong ZH. The CBL-CIPK Pathway in Plant Response to Stress Signals. Int J Mol Sci 2020; 21:E5668. [PMID: 32784662 PMCID: PMC7461506 DOI: 10.3390/ijms21165668] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/02/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022] Open
Abstract
Plants need to cope with multitudes of stimuli throughout their lifecycles in their complex environments. Calcium acts as a ubiquitous secondary messenger in response to numerous stresses and developmental processes in plants. The major Ca2+ sensors, calcineurin B-like proteins (CBLs), interact with CBL-interacting protein kinases (CIPKs) to form a CBL-CIPK signaling network, which functions as a key component in the regulation of multiple stimuli or signals in plants. In this review, we describe the conserved structure of CBLs and CIPKs, characterize the features of classification and localization, draw conclusions about the currently known mechanisms, with a focus on novel findings in response to multiple stresses, and summarize the physiological functions of the CBL-CIPK network. Moreover, based on the gradually clarified mechanisms of the CBL-CIPK complex, we discuss the present limitations and potential prospects for future research. These aspects may provide a deeper understanding and functional characterization of the CBL-CIPK pathway and other signaling pathways under different stresses, which could promote crop yield improvement via biotechnological intervention.
Collapse
Affiliation(s)
- Xiao Ma
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (X.M.); (Q.-H.L.); (Y.-N.Y.); (Y.-M.Q.); (S.u.H.)
| | - Quan-Hui Li
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (X.M.); (Q.-H.L.); (Y.-N.Y.); (Y.-M.Q.); (S.u.H.)
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China
| | - Ya-Nan Yu
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (X.M.); (Q.-H.L.); (Y.-N.Y.); (Y.-M.Q.); (S.u.H.)
| | - Yi-Ming Qiao
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (X.M.); (Q.-H.L.); (Y.-N.Y.); (Y.-M.Q.); (S.u.H.)
| | - Saeed ul Haq
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (X.M.); (Q.-H.L.); (Y.-N.Y.); (Y.-M.Q.); (S.u.H.)
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (X.M.); (Q.-H.L.); (Y.-N.Y.); (Y.-M.Q.); (S.u.H.)
| |
Collapse
|
37
|
Shen L, Yang S, Yang F, Guan D, He S. CaCBL1 Acts as a Positive Regulator in Pepper Response to Ralstonia solanacearum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:945-957. [PMID: 32209000 DOI: 10.1094/mpmi-08-19-0241-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Bacterial wilt caused by Ralstonia solanacearum is an important disease of pepper (Capsicum annuum), an economically important solanaceous vegetable worldwide, in particular, under high temperature (HT) conditions. However, the molecular mechanism underlying pepper immunity against bacterial wilt remains poorly understood. Herein, CaCBL1, a putative calcineurin B-like protein, was functionally characterized in the pepper response to R. solanacearum inoculation (RSI) under HT (RSI/HT). CaCBL1 was significantly upregulated by RSI at room temperature (RSI/RT), HT, or RSI/HT. CaCBL1-GFP fused protein targeted to whole epidermal cells of Nicotiana benthamiana when transiently overexpressed. CaCBL1 silencing by virus-induced gene silencing significantly enhanced pepper susceptibility to RSI under RT or HT, while its transient overexpression triggered hypersensitive response mimic cell death and upregulation of immunity-associated marker genes, including CabZIP63, CaWRKY40, and CaCDPK15, the positive regulators in the pepper response to RSI or HT found in our previous studies. In addition, by chromatin immunoprecipitation PCR and electrophoretic mobility shift assay, CaCBL1 was found to be directly targeted by CaWRKY40, although not by CaWRKY27 or CaWRKY58, via the W-box-2 within its promoter, and its transcription was found to be downregulated by silencing of CaWRKY40 while it was enhanced by its transient overexpression. These results suggest that CaCBL1 acts as a positive regulator in pepper immunity against R. solanacearum infection, constituting a positive feedback loop with CaWRKY40.
Collapse
Affiliation(s)
- Lei Shen
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Sheng Yang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Feng Yang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Deyi Guan
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Shuilin He
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- National Education Ministry Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
- Agricultural College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| |
Collapse
|
38
|
Zhu X, He S, Fang D, Guo L, Zhou X, Guo Y, Gao L, Qiao Y. High-Throughput Sequencing-Based Identification of Arabidopsis miRNAs Induced by Phytophthora capsici Infection. Front Microbiol 2020; 11:1094. [PMID: 32655510 PMCID: PMC7324540 DOI: 10.3389/fmicb.2020.01094] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/01/2020] [Indexed: 01/19/2023] Open
Abstract
MicroRNAs (miRNAs) are a group of small non-coding endogenous RNAs. In plants, miRNAs play vital functions in regulating growth, development, and stress response. However, the role of miRNAs in Arabidopsis-Phytophthora capsici (P. capsici) model pathosystem is poorly understood. Here, we used a high-throughput sequencing approach to identify pathogen-responsive miRNAs using 15 small RNA (sRNA) libraries prepared from Arabidopsis thaliana leaves collected at 0, 3, 6, 12, and 24 h post-inoculation with P. capsici. A total of 293 known miRNAs and 6 potential novel sRNAs (miRNAs or siRNAs) were identified, of which 33 miRNAs were differentially expressed at four different infection stages. To verify the reliability of the sRNA-seq results, we investigated the expression of five sRNAs upregulated throughout the four infection stages and their potential target genes using northern blot analysis and/or stem-loop quantitative real-time polymerase chain reaction (qRT-PCR). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses revealed that the potential target genes of the differentially expressed miRNAs, both conserved and novel, were enriched in pathways such as starch and sugar metabolism, spliceosome, and plant-pathogen interaction, indicating that the splicing machinery and pathogenesis-related (PR) proteins play important roles in the response to P. capsici infection. Taken together, these results provide novel insights into the molecular mechanisms of pathogenesis by P. capsici. Additionally, these results will serve as a strong foundation for further in-depth analysis of miRNAs involved in the resistance to Phytophthora species in other crops.
Collapse
Affiliation(s)
- Xiaoguo Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Shidan He
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Di Fang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Liang Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xiaoyi Zhou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Yushuang Guo
- Laboratory of Molecular Genetics, China National Tobacco Corporation, Guizhou Institute of Tobacco Science, Guiyang, China
| | - Lei Gao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yongli Qiao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
39
|
Cui Y, Su Y, Wang J, Jia B, Wu M, Pei W, Zhang J, Yu J. Genome-Wide Characterization and Analysis of CIPK Gene Family in Two Cultivated Allopolyploid Cotton Species: Sequence Variation, Association with Seed Oil Content, and the Role of GhCIPK6. Int J Mol Sci 2020; 21:E863. [PMID: 32013234 PMCID: PMC7037685 DOI: 10.3390/ijms21030863] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 01/16/2023] Open
Abstract
Calcineurin B-like protein-interacting protein kinases (CIPKs), as key regulators, play an important role in plant growth and development and the response to various stresses. In the present study, we identified 80 and 78 CIPK genes in the Gossypium hirsutum and G. barbadense, respectively. The phylogenetic and gene structure analysis divided the cotton CIPK genes into five groups which were classified into an exon-rich clade and an exon-poor clade. A synteny analysis showed that segmental duplication contributed to the expansion of Gossypium CIPK gene family, and purifying selection played a major role in the evolution of the gene family in cotton. Analyses of expression profiles showed that GhCIPK genes had temporal and spatial specificity and could be induced by various abiotic stresses. Fourteen GhCIPK genes were found to contain 17 non-synonymous single nucleotide polymorphisms (SNPs) and co-localized with oil or protein content quantitative trait loci (QTLs). Additionally, five SNPs from four GhCIPKs were found to be significantly associated with oil content in one of the three field tests. Although most GhCIPK genes were not associated with natural variations in cotton oil content, the overexpression of the GhCIPK6 gene reduced the oil content and increased C18:1 and C18:1+C18:1d6 in transgenic cotton as compared to wild-type plants. In addition, we predicted the potential molecular regulatory mechanisms of the GhCIPK genes. In brief, these results enhance our understanding of the roles of CIPK genes in oil synthesis and stress responses.
Collapse
Affiliation(s)
- Yupeng Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (Y.C.); (J.W.); (B.J.); (M.W.); (W.P.)
| | - Ying Su
- Laboratory of Cotton Genetics, Genomics and Breeding, College of Agronomy and Biotechnology/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China;
| | - Junjuan Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (Y.C.); (J.W.); (B.J.); (M.W.); (W.P.)
| | - Bing Jia
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (Y.C.); (J.W.); (B.J.); (M.W.); (W.P.)
| | - Man Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (Y.C.); (J.W.); (B.J.); (M.W.); (W.P.)
| | - Wenfeng Pei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (Y.C.); (J.W.); (B.J.); (M.W.); (W.P.)
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA;
| | - Jiwen Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang 455000, China; (Y.C.); (J.W.); (B.J.); (M.W.); (W.P.)
| |
Collapse
|
40
|
Su W, Huang L, Ling H, Mao H, Huang N, Su Y, Ren Y, Wang D, Xu L, Muhammad K, Que Y. Sugarcane calcineurin B-like (CBL) genes play important but versatile roles in regulation of responses to biotic and abiotic stresses. Sci Rep 2020; 10:167. [PMID: 31932662 PMCID: PMC6957512 DOI: 10.1038/s41598-019-57058-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/21/2019] [Indexed: 11/09/2022] Open
Abstract
Free calcium ions are common second messengers in plant cells. The calcineurin B-like protein (CBL) is a special calcium sensor that plays an important role in plant growth and stress response. In this study, we obtained three CBL genes (GenBank accession nos. KX013374, KX013375, and KX013376) from sugarcane variety ROC22. The open reading frames of ScCBL genes ranged from 642 to 678 base pairs in length and encoded polypeptides from 213 to 225 amino acids in length. ScCBL2-1, ScCBL3-1, and ScCBL4 were all located in the plasma membrane and cytoplasm. ScCBL2-1 and ScCBL3-1 expression was up-regulated by treatment with salicylic acid (SA), methyl jasmonate (MeJA), hydrogen peroxide (H2O2), polyethylene glycol (PEG), sodium chloride (NaCl), or copper chloride (CuCl2). ScCBL4 expression was down-regulated in response to all of these stresses (abscisic acid (ABA), SA, MeJA, and NaCl) except for H2O2, calcium chloride (CaCl2), PEG, and CuCl2. Expression in Escherichia coli BL21 cells showed that ScCBLs can enhance tolerance to NaCl or copper stress. Overexpression of ScCBLs in Nicotiana benthamiana leaves promoted their resistance to infection with the tobacco pathogen Ralstonia solanacearum. The results from the present study facilitate further research regarding ScCBL genes, and in particular, their roles in the response to various stresses in sugarcane.
Collapse
Affiliation(s)
- Weihua Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture/National Engineering Research Center for Sugarcane, Ministry of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Long Huang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture/National Engineering Research Center for Sugarcane, Ministry of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hui Ling
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture/National Engineering Research Center for Sugarcane, Ministry of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huaying Mao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture/National Engineering Research Center for Sugarcane, Ministry of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ning Huang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture/National Engineering Research Center for Sugarcane, Ministry of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture/National Engineering Research Center for Sugarcane, Ministry of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongjuan Ren
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture/National Engineering Research Center for Sugarcane, Ministry of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dongjiao Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture/National Engineering Research Center for Sugarcane, Ministry of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture/National Engineering Research Center for Sugarcane, Ministry of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Khushi Muhammad
- Department of Genetics, Hazara University, Mansehra, Pakistan
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture/National Engineering Research Center for Sugarcane, Ministry of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Guangxi Collaborative Innovation Center of Sugarcane Industry, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
41
|
Zhu X, He S, Fang D, Guo L, Zhou X, Guo Y, Gao L, Qiao Y. High-Throughput Sequencing-Based Identification of Arabidopsis miRNAs Induced by Phytophthora capsici Infection. Front Microbiol 2020. [PMID: 32655510 DOI: 10.3389/fmicb.2020.01094/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023] Open
Abstract
MicroRNAs (miRNAs) are a group of small non-coding endogenous RNAs. In plants, miRNAs play vital functions in regulating growth, development, and stress response. However, the role of miRNAs in Arabidopsis-Phytophthora capsici (P. capsici) model pathosystem is poorly understood. Here, we used a high-throughput sequencing approach to identify pathogen-responsive miRNAs using 15 small RNA (sRNA) libraries prepared from Arabidopsis thaliana leaves collected at 0, 3, 6, 12, and 24 h post-inoculation with P. capsici. A total of 293 known miRNAs and 6 potential novel sRNAs (miRNAs or siRNAs) were identified, of which 33 miRNAs were differentially expressed at four different infection stages. To verify the reliability of the sRNA-seq results, we investigated the expression of five sRNAs upregulated throughout the four infection stages and their potential target genes using northern blot analysis and/or stem-loop quantitative real-time polymerase chain reaction (qRT-PCR). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses revealed that the potential target genes of the differentially expressed miRNAs, both conserved and novel, were enriched in pathways such as starch and sugar metabolism, spliceosome, and plant-pathogen interaction, indicating that the splicing machinery and pathogenesis-related (PR) proteins play important roles in the response to P. capsici infection. Taken together, these results provide novel insights into the molecular mechanisms of pathogenesis by P. capsici. Additionally, these results will serve as a strong foundation for further in-depth analysis of miRNAs involved in the resistance to Phytophthora species in other crops.
Collapse
Affiliation(s)
- Xiaoguo Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Shidan He
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Di Fang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Liang Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xiaoyi Zhou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Yushuang Guo
- Laboratory of Molecular Genetics, China National Tobacco Corporation, Guizhou Institute of Tobacco Science, Guiyang, China
| | - Lei Gao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yongli Qiao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
42
|
Zhao J, Yu A, Du Y, Wang G, Li Y, Zhao G, Wang X, Zhang W, Cheng K, Liu X, Wang Z, Wang Y. Foxtail millet (Setaria italica (L.) P. Beauv) CIPKs are responsive to ABA and abiotic stresses. PLoS One 2019; 14:e0225091. [PMID: 31714948 PMCID: PMC6850536 DOI: 10.1371/journal.pone.0225091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 10/29/2019] [Indexed: 11/18/2022] Open
Abstract
CBL-interacting protein kinases (CIPKs) have been shown to regulate a variety of environmental stress-related signalling pathways in plants. Foxtail millet (Setaria italica (L.) P. Beauv) is known worldwide as a relatively stress-tolerant C4 crop species. Although the foxtail millet genome sequence has been released, little is known about the functions of CIPKs in foxtail millet. Therefore, a systematic genome-wide analysis of CIPK genes in foxtail millet was performed. In total, 35 CIPK members were identified in foxtail millet and divided into four subgroups (I to IV) on the basis of their phylogenetic relationships. Phylogenetic and gene structure analyses clearly divided all SiCIPKs into intron-poor and intron-rich clades. Cis-element analysis subsequently indicated that these SiCIPKs may be involved in responses to abiotic stimuli, hormones, and light signalling during plant growth and development, and stress-induced expression profile analysis revealed that all the SiCIPKs are involved in various stress signalling pathways. These results suggest that the CIPK genes in foxtail millet exhibit the basic characteristics of CIPK family members and play important roles in response to abiotic stresses. The results of this study will contribute to future functional characterization of abiotic stress responses mediated by CIPKs in foxtail millet.
Collapse
Affiliation(s)
- Jinfeng Zhao
- Millet Research Institute, Shanxi Academy of Agricultural Sciences, Shanxi Key Laboratory of Genetic Resources and Breeding in Minor Crops, Changzhi, Shanxi, People's Republic of China
- * E-mail: (AY); (JZ)
| | - Aili Yu
- Millet Research Institute, Shanxi Academy of Agricultural Sciences, Shanxi Key Laboratory of Genetic Resources and Breeding in Minor Crops, Changzhi, Shanxi, People's Republic of China
- * E-mail: (AY); (JZ)
| | - Yanwei Du
- Millet Research Institute, Shanxi Academy of Agricultural Sciences, Shanxi Key Laboratory of Genetic Resources and Breeding in Minor Crops, Changzhi, Shanxi, People's Republic of China
| | - Gaohong Wang
- Millet Research Institute, Shanxi Academy of Agricultural Sciences, Shanxi Key Laboratory of Genetic Resources and Breeding in Minor Crops, Changzhi, Shanxi, People's Republic of China
| | - Yanfang Li
- Millet Research Institute, Shanxi Academy of Agricultural Sciences, Shanxi Key Laboratory of Genetic Resources and Breeding in Minor Crops, Changzhi, Shanxi, People's Republic of China
| | - Genyou Zhao
- Millet Research Institute, Shanxi Academy of Agricultural Sciences, Shanxi Key Laboratory of Genetic Resources and Breeding in Minor Crops, Changzhi, Shanxi, People's Republic of China
| | - Xiangdong Wang
- Tangshan Academy of Agricultural Sciences, Tangshan, Hebei, People's Republic of China
| | - Wenzhong Zhang
- Millet Research Institute, Shanxi Academy of Agricultural Sciences, Shanxi Key Laboratory of Genetic Resources and Breeding in Minor Crops, Changzhi, Shanxi, People's Republic of China
| | - Kai Cheng
- Millet Research Institute, Shanxi Academy of Agricultural Sciences, Shanxi Key Laboratory of Genetic Resources and Breeding in Minor Crops, Changzhi, Shanxi, People's Republic of China
| | - Xin Liu
- Millet Research Institute, Shanxi Academy of Agricultural Sciences, Shanxi Key Laboratory of Genetic Resources and Breeding in Minor Crops, Changzhi, Shanxi, People's Republic of China
| | - Zhenhua Wang
- Millet Research Institute, Shanxi Academy of Agricultural Sciences, Shanxi Key Laboratory of Genetic Resources and Breeding in Minor Crops, Changzhi, Shanxi, People's Republic of China
| | - Yuwen Wang
- Millet Research Institute, Shanxi Academy of Agricultural Sciences, Shanxi Key Laboratory of Genetic Resources and Breeding in Minor Crops, Changzhi, Shanxi, People's Republic of China
| |
Collapse
|
43
|
Ma X, Gai WX, Qiao YM, Ali M, Wei AM, Luo DX, Li QH, Gong ZH. Identification of CBL and CIPK gene families and functional characterization of CaCIPK1 under Phytophthora capsici in pepper (Capsicum annuum L.). BMC Genomics 2019; 20:775. [PMID: 31653202 PMCID: PMC6814991 DOI: 10.1186/s12864-019-6125-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/20/2019] [Indexed: 12/31/2022] Open
Abstract
Background Calcineurin B-like proteins (CBLs) are major Ca2+ sensors that interact with CBL-interacting protein kinases (CIPKs) to regulate growth and development in plants. The CBL-CIPK network is involved in stress response, yet little is understood on how CBL-CIPK function in pepper (Capsicum annuum L.), a staple vegetable crop that is threatened by biotic and abiotic stressors. Results In the present study, nine CaCBL and 26 CaCIPK genes were identified in pepper and the genes were named based on their chromosomal order. Phylogenetic and structural analysis revealed that CaCBL and CaCIPK genes clustered in four and five groups, respectively. Quantitative real-time PCR (qRT-PCR) assays showed that CaCBL and CaCIPK genes were constitutively expressed in different tissues, and their expression patterns were altered when the plant was exposed to Phytophthora capsici, salt and osmotic stress. CaCIPK1 expression changed in response to stress, including exposure to P. capsici, NaCl, mannitol, salicylic acid (SA), methyl jasmonate (MeJA), abscisic acid (ABA), ethylene (ETH), cold and heat stress. Knocking down CaCIPK1 expression increased the susceptibility of pepper to P. capsici, reduced root activity, and altered the expression of defense related genes. Transient overexpression of CaCIPK1 enhanced H2O2 accumulation, cell death, and expression of genes involved in defense. Conclusions Nine CaCBL and 26 CaCIPK genes were identified in the pepper genome, and the expression of most CaCBL and CaCIPK genes were altered when the plant was exposed to stress. In particular, we found that CaCIPK1 is mediates the pepper plant’s defense against P. capsici. These results provide the groundwork for further functional characterization of CaCBL and CaCIPK genes in pepper.
Collapse
Affiliation(s)
- Xiao Ma
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Wen-Xian Gai
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yi-Ming Qiao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Muhammad Ali
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Ai-Min Wei
- Tianjin Vegetable Research Center, Tianjin, 300192, People's Republic of China
| | - De-Xu Luo
- Xuhuai Region Huaiyin Institute of Agricultural Sciences, Huaian, Jiangsu, 223001, People's Republic of China
| | - Quan-Hui Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.,Qinghai Academy of Agricultural and Forestry Sciences, Xining, Qinghai, 810016, People's Republic of China
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China. .,State Key Laboratory of Vegetable Germplasm Innovation, Tianjin, 300384, People's Republic of China.
| |
Collapse
|
44
|
Aslam M, Fakher B, Jakada BH, Zhao L, Cao S, Cheng Y, Qin Y. Genome-Wide Identification and Expression Profiling of CBL-CIPK Gene Family in Pineapple ( Ananas comosus) and the Role of AcCBL1 in Abiotic and Biotic Stress Response. Biomolecules 2019; 9:biom9070293. [PMID: 31330847 PMCID: PMC6681290 DOI: 10.3390/biom9070293] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 01/06/2023] Open
Abstract
Ca2+ serves as a ubiquitous second messenger regulating several aspects of plant growth and development. A group of unique calcium sensor proteins, calcineurin B-like (CBL), interact with CBL-interacting protein kinases (CIPKs) to decode the Ca2+ signature inside the cell. Although CBL-CIPK signaling toolkit has been shown to play significant roles in the responses to numerous stresses in different plants, the information about pineapple CBL-CIPK remains obscure. In the present study, a total of eight AcCBL and 21 AcCIPK genes were identified genome-wide in pineapple. The identified genes were renamed on the basis of gene ID in ascending order and phylogenetic analysis divided into five groups. Transcriptomic data analysis showed that AcCBL and AcCIPK genes were expressed differentially in different tissues. Further, the expression analysis of AcCBL1 in different tissues showed significant changes under various abiotic stimuli. Additionally, the ectopic expression of AcCBL1 in Arabidopsis resulted in enhanced tolerance to salinity, osmotic, and fungal stress. The present study revealed the crucial contribution of the CBL-CIPK gene in various biological and physiological processes in pineapple.
Collapse
Affiliation(s)
- Mohammad Aslam
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Beenish Fakher
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Bello Hassan Jakada
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Life Science College, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lihua Zhao
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Shijiang Cao
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yan Cheng
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yuan Qin
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China.
| |
Collapse
|
45
|
Aslam M, Fakher B, Anandhan S, Pande V, Ahmed Z, Qin Y. Ectopic Expression of Cold Responsive LlaCIPK Gene Enhances Cold Stress Tolerance in Nicotiana tabacum. Genes (Basel) 2019; 10:E446. [PMID: 31212842 PMCID: PMC6627969 DOI: 10.3390/genes10060446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 11/16/2022] Open
Abstract
Low-temperature stress severely affects the growth, development, and geographical distribution of various crop plants, resulting in significant economic loss to producers. In a quest to identify cold-regulated genes, we constructed a cDNA suppression subtractive library from a high altitude adapted ecotype of Lepidium. We cloned a cold-induced gene LlaCIPK from the subtracted cDNA library which gave homology to Arabidopsis CIPK15 gene. The predicted 3D structure of LlaCIPK protein also showed homology with Arabidopsis CIPK protein. Quantitative real-time PCR analysis in Lepidium seedlings exposed to 6 h of cold stress shows a 3-fold increase in the expression of LlaCIPK transcript. The expression of LlaCIPK was also differentially regulated by ethylene, CaCl2, ABA, and SA treatments. Ethylene and CaCl2 treatments up regulated LlaCIPK expression, whereas ABA and SA treatments down regulated the LlaCIPK expression. Transgenic plants overexpressing LlaCIPK gene under constitutive promoter show an increased level of proline and cell membrane stability. Taken together, our results suggest that the LlaCIPK contributes to the cold-response pathway in Lepidium plants.
Collapse
Affiliation(s)
- Mohammad Aslam
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Beenish Fakher
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | | | - Veena Pande
- Department of Biotechnology, Kumaon University Bhimtal Campus, Bhimtal 263136, India.
| | - Zakwan Ahmed
- Defence Institute of Bio-Energy Research, Goraparao, Haldwani 263139, India.
| | - Yuan Qin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China.
| |
Collapse
|
46
|
De Ollas C, Morillón R, Fotopoulos V, Puértolas J, Ollitrault P, Gómez-Cadenas A, Arbona V. Facing Climate Change: Biotechnology of Iconic Mediterranean Woody Crops. FRONTIERS IN PLANT SCIENCE 2019; 10:427. [PMID: 31057569 PMCID: PMC6477659 DOI: 10.3389/fpls.2019.00427] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 03/21/2019] [Indexed: 05/03/2023]
Abstract
The Mediterranean basin is especially sensitive to the adverse outcomes of climate change and especially to variations in rainfall patterns and the incidence of extremely high temperatures. These two concurring adverse environmental conditions will surely have a detrimental effect on crop performance and productivity that will be particularly severe on woody crops such as citrus, olive and grapevine that define the backbone of traditional Mediterranean agriculture. These woody species have been traditionally selected for traits such as improved fruit yield and quality or alteration in harvesting periods, leaving out traits related to plant field performance. This is currently a crucial aspect due to the progressive and imminent effects of global climate change. Although complete genome sequence exists for sweet orange (Citrus sinensis) and clementine (Citrus clementina), olive tree (Olea europaea) and grapevine (Vitis vinifera), the development of biotechnological tools to improve stress tolerance still relies on the study of the available genetic resources including interspecific hybrids, naturally occurring (or induced) polyploids and wild relatives under field conditions. To this respect, post-genomic era studies including transcriptomics, metabolomics and proteomics provide a wide and unbiased view of plant physiology and biochemistry under adverse environmental conditions that, along with high-throughput phenotyping, could contribute to the characterization of plant genotypes exhibiting physiological and/or genetic traits that are correlated to abiotic stress tolerance. The ultimate goal of precision agriculture is to improve crop productivity, in terms of yield and quality, making a sustainable use of land and water resources under adverse environmental conditions using all available biotechnological tools and high-throughput phenotyping. This review focuses on the current state-of-the-art of biotechnological tools such as high throughput -omics and phenotyping on grapevine, citrus and olive and their contribution to plant breeding programs.
Collapse
Affiliation(s)
- Carlos De Ollas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castellón de la Plana, Spain
| | - Raphaël Morillón
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Petit-Bourg, France
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Jaime Puértolas
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Patrick Ollitrault
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), San-Giuliano, France
| | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castellón de la Plana, Spain
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castellón de la Plana, Spain
| |
Collapse
|
47
|
Ma Y, Wang L, Wang J, Zhong Y, Cheng ZM(M. Isolation and expression analysis of Salt Overly Sensitive gene family in grapevine (Vitisvinifera) in response to salt and PEG stress. PLoS One 2019; 14:e0212666. [PMID: 30889180 PMCID: PMC6424420 DOI: 10.1371/journal.pone.0212666] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 02/07/2019] [Indexed: 11/18/2022] Open
Abstract
Salt stress is one of the major environmental constraints for the production and yield of grape (Vitis vinifera) worldwide. The SOS3 gene family is part of the Salt Overly Sensitive (SOS) signaling pathway, a well-defined signaling pathway known to play a role in plant response to salt stress. In this study, the grapevine SOS3 gene family was annotated and the role of the annotated genes in salinity stress response was characterized. Nine grapevine SOS3 genes was identified in the grapevine genome and was subsequently analyzed. The expression patterns of the nine VviSOS3 genes, as determined by reverse transcription quantitative PCR (RT-qPCR), varied greatly in leaves, roots, and stems of in-vitro grown Pinot noir grapevine cultivar(PN40024) in response to salt (250mM NaCl) and polyethylene glycol 6000 (PEG, osmolality equal to the salt treatment) treatments over a 36h time period. All of the VviSOS3 genes, except VviSOS3.7, were up-regulated in leaves in response to the salt and PEG treatments. The majority of VviSOS3 genes, except VviSOS3.8 were up-regulated in roots in response to the PEG stress, with an opposite expression pattern in the root and stem in response to salt stress. The salinity treatment decreased the soluble protein content. Based on the expression pattern and physiological data, VviSOS3.7 and VviSOS3.8 were identified as candidate genes for further functional characterizations regarding their role in the response of grapevine to salt stress.
Collapse
Affiliation(s)
- Yuanchun Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu province, The People’s Republic of China
| | - Li Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu province, The People’s Republic of China
| | - Jiaoyang Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu province, The People’s Republic of China
| | - Yan Zhong
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu province, The People’s Republic of China
- * E-mail: , (ZMC); (YZ)
| | - Zong-Ming (Max) Cheng
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu province, The People’s Republic of China
- Department of Plant Sciences, University of Tennessee, Knoxville, United States of America
- * E-mail: , (ZMC); (YZ)
| |
Collapse
|
48
|
Genome-Wide Identification, Characterization, and Expression Analysis of the Grapevine Superoxide Dismutase (SOD) Family. Int J Genomics 2019; 2019:7350414. [PMID: 30923713 PMCID: PMC6409070 DOI: 10.1155/2019/7350414] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 12/01/2018] [Accepted: 12/20/2018] [Indexed: 01/23/2023] Open
Abstract
Superoxide dismutase (SOD) is an essential enzyme of the plant antioxidant system that responds to oxidative damage caused by adverse conditions. However, little is known about the SOD gene family in Vitis vinifera (Vv). In the present study, ten SOD genes, including 6 copper/zinc SODs, 2 iron SODs, and 2 manganese SODs, were identified in the grapevine genome where they were unevenly distributed on 12 chromosomes. Ten VvSOD genes were divided into three main groups based on phylogenetic analysis, subcellular localization, and the distribution of conserved protein motifs. Additionally, many cis-elements related to different stresses were found in the promoters of the 10 VvSOD genes. Syntenic analysis revealed that VvMSD1 and VvMSD2 were derived from segmental duplication, and VvCSD4 and VvCSD5 belong to a pair of tandemly duplicated genes. Gene expression analysis based on microarray data showed that the 10 VvSOD genes were expressed in all the tested tissues. Interestingly, the segmentally duplicated gene pair (VvMSD1 and VvMSD2) exhibited differential expression patterns in various organs. In contrast, the tandemly duplicated gene pair (VvCSD4 and VvCSD5) displayed similar expression patterns in the tested organs. Our results provide a basis for further functional research on the SOD gene family in grapevine.
Collapse
|
49
|
The Complex Fine-Tuning of K⁺ Fluxes in Plants in Relation to Osmotic and Ionic Abiotic Stresses. Int J Mol Sci 2019; 20:ijms20030715. [PMID: 30736441 PMCID: PMC6387338 DOI: 10.3390/ijms20030715] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/17/2019] [Accepted: 01/29/2019] [Indexed: 12/19/2022] Open
Abstract
As the main cation in plant cells, potassium plays an essential role in adaptive responses, especially through its involvement in osmotic pressure and membrane potential adjustments. K+ homeostasis must, therefore, be finely controlled. As a result of different abiotic stresses, especially those resulting from global warming, K⁺ fluxes and plant distribution of this ion are disturbed. The hormone abscisic acid (ABA) is a key player in responses to these climate stresses. It triggers signaling cascades that ultimately lead to modulation of the activities of K⁺ channels and transporters. After a brief overview of transcriptional changes induced by abiotic stresses, this review deals with the post-translational molecular mechanisms in different plant organs, in Arabidopsis and species of agronomical interest, triggering changes in K⁺ uptake from the soil, K⁺ transport and accumulation throughout the plant, and stomatal regulation. These modifications involve phosphorylation/dephosphorylation mechanisms, modifications of targeting, and interactions with regulatory partner proteins. Interestingly, many signaling pathways are common to K⁺ and Cl-/NO3- counter-ion transport systems. These cross-talks are also addressed.
Collapse
|
50
|
Vandelle E, Vannozzi A, Wong D, Danzi D, Digby AM, Dal Santo S, Astegno A. Identification, characterization, and expression analysis of calmodulin and calmodulin-like genes in grapevine (Vitis vinifera) reveal likely roles in stress responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:221-237. [PMID: 29908490 DOI: 10.1016/j.plaphy.2018.06.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 05/09/2018] [Accepted: 06/02/2018] [Indexed: 05/23/2023]
Abstract
Calcium (Ca2+) is an ubiquitous key second messenger in plants, where it modulates many developmental and adaptive processes in response to various stimuli. Several proteins containing Ca2+ binding domain have been identified in plants, including calmodulin (CaM) and calmodulin-like (CML) proteins, which play critical roles in translating Ca2+ signals into proper cellular responses. In this work, a genome-wide analysis conducted in Vitis vinifera identified three CaM- and 62 CML-encoding genes. We assigned gene family nomenclature, analyzed gene structure, chromosomal location and gene duplication, as well as protein motif organization. The phylogenetic clustering revealed a total of eight subgroups, including one unique clade of VviCaMs distinct from VviCMLs. VviCaMs were found to contain four EF-hand motifs whereas VviCML proteins have one to five. Most of grapevine CML genes were intronless, while VviCaMs were intron rich. All the genes were well spread among the 19 grapevine chromosomes and displayed a high level of duplication. The expression profiling of VviCaM/VviCML genes revealed a broad expression pattern across all grape organs and tissues at various developmental stages, and a significant modulation in biotic stress-related responses. Our results highlight the complexity of CaM/CML protein family also in grapevine, supporting the versatile role of its different members in modulating cellular responses to various stimuli, in particular to biotic stresses. This work lays the foundation for further functional and structural studies on specific grapevine CaMs/CMLs in order to better understand the role of Ca2+-binding proteins in grapevine and to explore their potential for further biotechnological applications.
Collapse
Affiliation(s)
- Elodie Vandelle
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| | - Alessandro Vannozzi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment, University of Padova, 35020 Legnaro, Padova, Italy.
| | - Darren Wong
- Ecology and Evolution, Research School of Biology, The Australian National University, Acton ACT 2601, Australia.
| | - Davide Danzi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| | - Anne-Marie Digby
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| | - Silvia Dal Santo
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| | - Alessandra Astegno
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy.
| |
Collapse
|