1
|
Tang J, Guo H. Jack of all trades: crosstalk between FERONIA signaling and hormone pathways. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1907-1920. [PMID: 39972666 PMCID: PMC12066122 DOI: 10.1093/jxb/eraf071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
The receptor kinase FERONIA (FER) is a multifaceted regulator of plant growth, development, reproduction, and stress responses. FER is functionally connected to many plant hormones in diverse biological processes. This review summarizes the current understanding of the interplay between FER and phytohormones, with a focus on abscisic acid, ethylene, jasmonic acid, auxin, and brassinosteroid. The mutual regulation between FER and plant hormones happens at multiple levels including ligands, receptors, and downstream signaling components. Plant hormones can regulate the expression of genes encoding FER and its ligands RAPID ALKALINIZATION FACTORs (RALFs) as well as the abundance and kinase activity of FER proteins. On the other hand, FER can regulate hormone biosynthesis, transport, perception, and downstream signaling components such as transcription factors. Evidence of the crosstalk between FER and phytohormones is also emerging in crop species. Despite the rapid progress made in this field, more mechanistic studies are still needed to gain a comprehensive understanding of the FER-phytohormone crosstalk. Future research prospects and potential approaches are also discussed in this review.
Collapse
Affiliation(s)
- Jie Tang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Hongqing Guo
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
2
|
Xiao K, Fan J, Bi X, Tu X, Li X, Cao M, Liu Z, Lin A, Wang C, Xu P, Lian H. A NAC transcription factor and a MADS-box protein antagonistically regulate sucrose accumulation in strawberry receptacles. PLANT PHYSIOLOGY 2025; 197:kiaf043. [PMID: 40066641 DOI: 10.1093/plphys/kiaf043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 12/27/2024] [Indexed: 05/13/2025]
Abstract
Sugar accumulation during fruit ripening is an essential physiological change that influences fruit quality. While NAC transcription factors are recognized for their role in modulating strawberry (Fragaria × ananassa) fruit ripening, their specific contributions to sugar accumulation have remained largely unexplored. This study identified FvNAC073, a NAC transcription factor, as a key regulator that not only exhibits a gradual increase in gene expression during fruit ripening but also enhances the accumulation of sucrose. Further investigation showed that FvNAC073 positively regulates the expression of sucrose-6-phosphate synthase 1 (FvSPS1), a gene associated with sucrose synthesis, and negatively regulates sucrose synthase 2 (FvSUS2), which is involved in sucrose breakdown, through direct promoter binding. Additionally, we uncovered that FvCMB1L, a MADS-box protein, exhibits high gene expression levels at the premature fruit stage and acts to repress FvSPS1 while activating FvSUS2, thus negatively affecting sucrose accumulation. Notably, we demonstrated a competitive interaction between FvNAC073 and FvCMB1L in binding to the promoters of FvSPS1 and FvSUS2, resulting in antagonistic regulation of these genes. This intricate dynamic between FvCMB1L and FvNAC073 elucidates a mechanism for balancing sugar content during strawberry fruit development. Our findings offer insights into the complex regulatory network governing sucrose accumulation in strawberries, highlighting the potential for targeted genetic interventions to enhance fruit quality.
Collapse
Affiliation(s)
- Kun Xiao
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Junmiao Fan
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyi Bi
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyu Tu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyu Li
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Minghao Cao
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zheng Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 201418, China
| | - Anqi Lin
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chong Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pengbo Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongli Lian
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Chen D, Liu Y, Chen Y, Li B, Chen T, Tian S. Functions of membrane proteins in regulating fruit ripening and stress responses of horticultural crops. MOLECULAR HORTICULTURE 2024; 4:35. [PMID: 39313804 PMCID: PMC11421178 DOI: 10.1186/s43897-024-00111-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/16/2024] [Indexed: 09/25/2024]
Abstract
Fruit ripening is accompanied by the development of fruit quality traits; however, this process also increases the fruit's susceptibility to various environmental stresses, including pathogen attacks and other stress factors. Therefore, modulating the fruit ripening process and defense responses is crucial for maintaining fruit quality and extending shelf life. Membrane proteins play intricate roles in mediating signal transduction, ion transport, and many other important biological processes, thus attracting extensive research interest. This review mainly focuses on the functions of membrane proteins in regulating fruit ripening and defense responses against biotic and abiotic factors, addresses their potential as targets for improving fruit quality and resistance to environmental challenges, and further highlights some open questions to be addressed.
Collapse
Affiliation(s)
- Daoguo Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhan Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Boqiang Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Tong Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| | - Shiping Tian
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Huang X, Liu Y, Jia Y, Ji L, Luo X, Tian S, Chen T. FERONIA homologs in stress responses of horticultural plants: current knowledge and missing links. STRESS BIOLOGY 2024; 4:28. [PMID: 38847988 PMCID: PMC11161445 DOI: 10.1007/s44154-024-00161-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/12/2024] [Indexed: 06/10/2024]
Abstract
Owing to its versatile roles in almost all aspects of plants, FERONIA (FER), a receptor-like kinase of the Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) subfamily, has received extensive research interests during the past decades. Accumulating evidence has been emerged that FER homologs in horticultural crops also play crucial roles in reproductive biology and responses to environmental stimuli (abiotic and biotic stress factors). Here, we provide a review for the latest advances in the studies on FER homologs in modulating stress responses in horticultural crops, and further analyze the underlying mechanisms maintained by FER. Moreover, we also envisage the missing links in current work and provide a perspective for future studies on this star protein.
Collapse
Affiliation(s)
- Xinhua Huang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhan Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanhong Jia
- Vegetable Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, 300384, China
| | - Lizhu Ji
- Vegetable Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, 300384, China
| | - Xiaomin Luo
- China National Botanical Garden, Beijing, 100093, China.
| | - Shiping Tian
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| |
Collapse
|
5
|
Liu L, Liu X, Bai Z, Tanveer M, Zhang Y, Chen W, Shabala S, Huang L. Small but powerful: RALF peptides in plant adaptive and developmental responses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112085. [PMID: 38588983 DOI: 10.1016/j.plantsci.2024.112085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
Plants live in a highly dynamic environment and require to rapidly respond to a plethora of environmental stimuli, so that to maintain their optimal growth and development. A small plant peptide, rapid alkalization factor (RALF), can rapidly increase the pH value of the extracellular matrix in plant cells. RALFs always function with its corresponding receptors. Mechanistically, effective amount of RALF is induced and released at the critical period of plant growth and development or under different external environmental factors. Recent studies also highlighted the role of RALF peptides as important regulators in plant intercellular communications, as well as their operation in signal perception and as ligands for different receptor kinases on the surface of the plasma membrane, to integrate various environmental cues. In this context, understanding the fine-print of above processes may be essential to solve the problems of crop adaptation to various harsh environments under current climate trends scenarios, by genetic means. This paper summarizes the current knowledge about the structure and diversity of RALF peptides and their roles in plant development and response to stresses, highlighting unanswered questions and problems to be solved.
Collapse
Affiliation(s)
- Lining Liu
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Xing Liu
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Zhenkun Bai
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Mohsin Tanveer
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Yujing Zhang
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Wenjie Chen
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Sergey Shabala
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China; School of Biological Science, University of Western Australia, Crawley, Perth, Australia.
| | - Liping Huang
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China.
| |
Collapse
|
6
|
Lu W, Hao W, Liu K, Liu J, Yin C, Su Y, Hang Z, Peng B, Liu H, Xiong B, Liao L, He J, Zhang M, Wang X, Wang Z. Analysis of sugar components and identification of SPS genes in citrus fruit development. FRONTIERS IN PLANT SCIENCE 2024; 15:1372809. [PMID: 38606072 PMCID: PMC11007184 DOI: 10.3389/fpls.2024.1372809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024]
Abstract
Sugar is a primary determinant of citrus fruit flavour, but undergoes varied accumulation processes across different citrus varieties owing to high genetic variability. Sucrose phosphate synthase (SPS), a key enzyme in glucose metabolism, plays a crucial role in this context. Despite its significance, there is limited research on sugar component quality and the expression and regulatory prediction of SPS genes during citrus fruit development. Therefore, we analysed the sugar quality formation process in 'Kiyomi' and 'Succosa', two citrus varieties, and performed a comprehensive genome-wide analysis of citrus CsSPSs. We observed that the accumulation of sugar components significantly differs between the two varieties, with the identification of four CsSPSs in citrus. CsSPS sequences were highly conserved, featuring typical SPS protein domains. Expression analysis revealed a positive correlation between CsSPS expression and sugar accumulation in citrus fruits. However, CsSPS expression displays specificity to different citrus tissues and varieties. Transcriptome co-expression network analysis suggests the involvement of multiple transcription factors in shaping citrus fruit sugar quality through the regulation of CsSPSs. Notably, the expression levels of four CsWRKYs (CsWRKY2, CsWRKY20, CsWRKY28, CsWRKY32), were significantly positively correlated with CsSPSs and CsWRKY20 might can activate sugar accumulation in citrus fruit through CsSPS2. Collectively, we further emphasize the potential importance of CsWRKYs in citrus sugar metabolism, our findings serve as a reference for understanding sugar component formation and predicting CsSPS expression and regulation during citrus fruit development.
Collapse
Affiliation(s)
- Wen Lu
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wenhui Hao
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Kexin Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiahuan Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Chunmei Yin
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yujiao Su
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhiyu Hang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bin Peng
- College of Agricultural, Sichuan Nationalities University, Liangshan Yi autonomous prefecture, Sichuan, China
| | - Huan Liu
- College of Agricultural, Sichuan Nationalities University, Liangshan Yi autonomous prefecture, Sichuan, China
| | - Bo Xiong
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ling Liao
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiaxian He
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingfei Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xun Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhihui Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Jin J, Wang W, Fan D, Hao Q, Jia W. Emerging Roles of Mitogen-Activated Protein Kinase Signaling Pathways in the Regulation of Fruit Ripening and Postharvest Quality. Int J Mol Sci 2024; 25:2831. [PMID: 38474080 DOI: 10.3390/ijms25052831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Fleshy fruit ripening is a unique biological process that involves dramatic changes in a diverse array of cellular metabolisms. The regulation of these metabolisms is essentially mediated by cellular signal transduction of internal (e.g., hormones) and external cues (i.e., environmental stimuli). Mitogen-activated protein kinase (MAPK) signaling pathways play crucial roles in a diverse array of biological processes, such as plant growth, development and biotic/abiotic responses. Accumulating evidence suggests that MAPK signaling pathways are also implicated in fruit ripening and quality formation. However, while MAPK signaling has been extensively reviewed in Arabidopsis and some crop plants, the comprehensive picture of how MAPK signaling regulates fruit ripening and quality formation remains unclear. In this review, we summarize and discuss research in this area. We first summarize recent studies on the expression patterns of related kinase members in relation to fruit development and ripening and then summarize and discuss the crucial evidence of the involvement of MAPK signaling in fruit ripening and quality formation. Finally, we propose several perspectives, highlighting the research matters and questions that should be afforded particular attention in future studies.
Collapse
Affiliation(s)
- Juan Jin
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China
| | - Wei Wang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Dingyu Fan
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China
| | - Qing Hao
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China
| | - Wensuo Jia
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China
- College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
8
|
Perotti MF, Posé D, Martín-Pizarro C. Non-climacteric fruit development and ripening regulation: 'the phytohormones show'. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6237-6253. [PMID: 37449770 PMCID: PMC10627154 DOI: 10.1093/jxb/erad271] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Fruit ripening involves numerous physiological, structural, and metabolic changes that result in the formation of edible fruits. This process is controlled at different molecular levels, with essential roles for phytohormones, transcription factors, and epigenetic modifications. Fleshy fruits are classified as either climacteric or non-climacteric species. Climacteric fruits are characterized by a burst in respiration and ethylene production at the onset of ripening, while regulation of non-climacteric fruit ripening has been commonly attributed to abscisic acid (ABA). However, there is controversy as to whether mechanisms regulating fruit ripening are shared between non-climacteric species, and to what extent other hormones contribute alongside ABA. In this review, we summarize classic and recent studies on the accumulation profile and role of ABA and other important hormones in the regulation of non-climacteric fruit development and ripening, as well as their crosstalk, paying special attention to the two main non-climacteric plant models, strawberry and grape. We highlight both the common and different roles of these regulators in these two crops, and discuss the importance of the transcriptional and environmental regulation of fruit ripening, as well as the need to optimize genetic transformation methodologies to facilitate gene functional analyses.
Collapse
Affiliation(s)
- María Florencia Perotti
- Departamento de Mejora Genética y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ (IHSM), Universidad de Málaga - Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
| | - David Posé
- Departamento de Mejora Genética y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ (IHSM), Universidad de Málaga - Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
| | - Carmen Martín-Pizarro
- Departamento de Mejora Genética y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ (IHSM), Universidad de Málaga - Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
| |
Collapse
|
9
|
Lu W, Wei X, Han X, Chen R, Xiao C, Zheng X, Mao L. Participation of FaTRAB1 Transcription Factor in the Regulation of FaMADS1 Involved in ABA-Dependent Ripening of Strawberry Fruit. Foods 2023; 12:1802. [PMID: 37174341 PMCID: PMC10177999 DOI: 10.3390/foods12091802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Abscisic acid (ABA) plays a crucial role in regulating the ripening of non-climacteric strawberry fruit. In the present study, ABA was confirmed to promote strawberry ripening and induce the down-regulation of FaMADS1. The transient silence of FaMADS1 in strawberries promoted fruit ripening and induced the content of anthocyanin and soluble pectin but reduced firmness and protopectin through a tobacco rattle virus-induced gene silencing technique. In parallel with the accelerated ripening, the genes were significantly induced in the transiently modified fruit, including anthocyanin-related PAL6, C4H, 4CL, DFR, and UFGT, softening-related PL and XTH, and aroma-related QR and AAT2. In addition, the interaction between FaMADS1 and ABA-related transcription factors was researched. Yeast one-hybrid analysis indicated that the FaMADS1 promoter could interact with FaABI5-5, FaTRAB1, and FaABI5. Furthermore, dual-luciferase assay suggested that FaTRAB1 could actively bind with the FaMADS1 promoter, resulting in the decreased expression of FaMADS1. In brief, these results suggest that the ABA-dependent ripening of strawberry fruit was probably inhibited through inhibiting FaMADS1 expression by the active binding of transcript FaTRAB1 with the FaMADS1 promoter.
Collapse
Affiliation(s)
- Wenjing Lu
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, 298 Desheng Road, Hangzhou 310021, China; (W.L.); (C.X.)
- Zhejiang Key Laboratory of AgroFood Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (X.W.); (X.H.); (R.C.)
| | - Xiaopeng Wei
- Zhejiang Key Laboratory of AgroFood Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (X.W.); (X.H.); (R.C.)
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Xueyuan Han
- Zhejiang Key Laboratory of AgroFood Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (X.W.); (X.H.); (R.C.)
- School of Life Sciences, Shaoxing University, Shaoxing 312000, China
| | - Renchi Chen
- Zhejiang Key Laboratory of AgroFood Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (X.W.); (X.H.); (R.C.)
| | - Chaogeng Xiao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, 298 Desheng Road, Hangzhou 310021, China; (W.L.); (C.X.)
| | - Xiaojie Zheng
- Department of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology, Wenzhou 325006, China
| | - Linchun Mao
- Zhejiang Key Laboratory of AgroFood Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (X.W.); (X.H.); (R.C.)
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
10
|
Cell Wall Integrity Signaling in Fruit Ripening. Int J Mol Sci 2023; 24:ijms24044054. [PMID: 36835462 PMCID: PMC9961072 DOI: 10.3390/ijms24044054] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/04/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Plant cell walls are essential structures for plant growth and development as well as plant adaptation to environmental stresses. Thus, plants have evolved signaling mechanisms to monitor the changes in the cell wall structure, triggering compensatory changes to sustain cell wall integrity (CWI). CWI signaling can be initiated in response to environmental and developmental signals. However, while environmental stress-associated CWI signaling has been extensively studied and reviewed, less attention has been paid to CWI signaling in relation to plant growth and development under normal conditions. Fleshy fruit development and ripening is a unique process in which dramatic alternations occur in cell wall architecture. Emerging evidence suggests that CWI signaling plays a pivotal role in fruit ripening. In this review, we summarize and discuss the CWI signaling in relation to fruit ripening, which will include cell wall fragment signaling, calcium signaling, and NO signaling, as well as Receptor-Like Protein Kinase (RLKs) signaling with an emphasis on the signaling of FERONIA and THESEUS, two members of RLKs that may act as potential CWI sensors in the modulation of hormonal signal origination and transduction in fruit development and ripening.
Collapse
|
11
|
What Is the Relationship between Antioxidant Efficacy, Functional Composition, and Genetic Characteristics in Comparing Soybean Resources by Year? Antioxidants (Basel) 2022; 11:antiox11112249. [DOI: 10.3390/antiox11112249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to analyze the physiological activity of 48 soybean resources harvested in 2020 to identify the soybean resources’ relationships with individual isoflavone compounds and their genetic properties. These data will subsequently be compared with the research results on soybeans harvested in 2019. Initially, with respect to the physiological activity (6 types) and substances (19 types), this study evaluated the differences between the cultivation year (two years), seed coat color (three colors), and the interaction of the year and seed coat color of soybeans through ANOVA. Among the physiological activities, there were differences in the estrogen, estrogen receptor alpha, and UCP-1 (uncoupling protein-1) activities depending on the cultivation year. Moreover, there were differences in NO (nitric oxide), revealing differences in the ABTS (2, 2′-azino-bis-3ethylbenzo-thiazoline-6-sulfonic acid) and DPPH (2, 2-diphenyl-2-picrylhydrazyl) radical scavenging activities due to the seed coat color and the interaction of the year and seed coat color. Soybeans harvested in 2020 exhibited increased ABTS, DPPH, and NO inhibitory activities and reduced estrogen, estrogen receptor alpha, and UCP-1 activities compared to those harvested in 2019. According to the ANOVA results, eight of the nineteen individual derivatives illustrated yearly differences, while three derivatives displayed differences due to the seed coat color. Secondly, according to the relationship between the efficacy, derivative substances, and genetic properties, it was determined that genistein 7-O-(2″-O-apiosyl)glucoside (F5) is the individual isoflavone derivative that affected the six types of physiological activity, on which the genome-wide association study (GWAS) showed no significant differences for genetic properties. These results were inconsistent with the 2019 data, where three types of individual compounds, including F5, were proposed as substances that correlated with efficacy and there was a high correlation with genetic properties. Therefore, this study selected B17, B23, B15, B24, and Y7 as excellent varieties that are stable and highly functional in the cultivation environment, producing only small annual differences. The results of this study will be utilized as basic data for predicting soybean varieties and their cultivation, which have high environmental stability under climate variation and properly retain the functional substances and efficacy.
Collapse
|
12
|
FaAKR23 Modulates Ascorbic Acid and Anthocyanin Accumulation in Strawberry ( Fragaria × ananassa) Fruits. Antioxidants (Basel) 2022; 11:antiox11091828. [PMID: 36139903 PMCID: PMC9495909 DOI: 10.3390/antiox11091828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/19/2022] Open
Abstract
Strawberry (Fragaria × ananassa) fruits are rich in ascorbic acid (AsA) and anthocyanin, which are essential antioxidants for human health. However, the underlying regulatory mechanism of these antioxidant accumulation, especially AsA accumulation in strawberry fruits, remains largely unknown. In this study, we identified FaAKR23 was a regulator of AsA and anthocyanin accumulation. We transiently expressed FaAKR23 in strawberry fruits and conducted metabolic and molecular analyses to explore the role of FaAKR23 in AsA and anthocyanin accumulation. Transient silencing of FaAKR23 (FaAKR23-RNAi) in strawberry fruits significantly decreased the AsA and anthocyanin contents compared with control (empty vector-RNAi, EV-RNAi). Correspondingly, expression of some structural genes and regulatory factors involved in these two antioxidants’ accumulation was dramatically repressed. In addition, transcriptome analysis of EV-RNAi and FaAKR23-RNAi fruits suggested that FaAKR23 was also involved in starch and sucrose metabolism as well as plant–pathogen interaction. Overall, these results not only provide the coordinated regulatory function of FaAKR23 on AsA and anthocyanin accumulation but also offer a promising candidate gene for strawberry breeding with high antioxidants.
Collapse
|
13
|
Wang W, Fan D, Hao Q, Jia W. Signal transduction in non-climacteric fruit ripening. HORTICULTURE RESEARCH 2022; 9:uhac190. [PMID: 36329721 PMCID: PMC9622361 DOI: 10.1093/hr/uhac190] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Fleshy fruit ripening involves changes in numerous cellular processes and metabolic pathways, resulting from the coordinated actions of diverse classes of structural and regulatory proteins. These include enzymes, transporters and complex signal transduction systems. Many aspects of the signaling machinery that orchestrates the ripening of climacteric fruits, such as tomato (Solanum lycopersicum), have been elucidated, but less is known about analogous processes in non-climacteric fruits. The latter include strawberry (Fragaria x ananassa) and grape (Vitis vinifera), both of which are used as non-climacteric fruit experimental model systems, although they originate from different organs: the grape berry is a true fruit derived from the ovary, while strawberry is an accessory fruit that is derived from the floral receptacle. In this article, we summarize insights into the signal transduction events involved in strawberry and grape berry ripening. We highlight the mechanisms underlying non-climacteric fruit ripening, the multiple primary signals and their integrated action, individual signaling components, pathways and their crosstalk, as well as the associated transcription factors and their signaling output.
Collapse
Affiliation(s)
| | | | - Qing Hao
- Corresponding authors: E-mail: ;
| | | |
Collapse
|
14
|
Xie Y, Sun P, Li Z, Zhang F, You C, Zhang Z. FERONIA Receptor Kinase Integrates with Hormone Signaling to Regulate Plant Growth, Development, and Responses to Environmental Stimuli. Int J Mol Sci 2022; 23:ijms23073730. [PMID: 35409090 PMCID: PMC8998941 DOI: 10.3390/ijms23073730] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Plant hormones are critical chemicals that participate in almost all aspects of plant life by triggering cellular response cascades. FERONIA is one of the most well studied members in the subfamily of Catharanthus roseus receptor-like kinase1-like (CrRLK1Ls) hormones. It has been proved to be involved in many different processes with the discovery of its ligands, interacting partners, and downstream signaling components. A growing body of evidence shows that FERONIA serves as a hub to integrate inter- and intracellular signals in response to internal and external cues. Here, we summarize the recent advances of FERONIA in regulating plant growth, development, and immunity through interactions with multiple plant hormone signaling pathways.
Collapse
Affiliation(s)
- Yinhuan Xie
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (Y.X.); (P.S.); (Z.L.); (F.Z.)
| | - Ping Sun
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (Y.X.); (P.S.); (Z.L.); (F.Z.)
| | - Zhaoyang Li
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (Y.X.); (P.S.); (Z.L.); (F.Z.)
| | - Fujun Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (Y.X.); (P.S.); (Z.L.); (F.Z.)
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Chunxiang You
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (Y.X.); (P.S.); (Z.L.); (F.Z.)
- Correspondence: (C.Y.); (Z.Z.)
| | - Zhenlu Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (Y.X.); (P.S.); (Z.L.); (F.Z.)
- Correspondence: (C.Y.); (Z.Z.)
| |
Collapse
|
15
|
Li X, Wang X, Zhang Y, Zhang A, You CX. Regulation of fleshy fruit ripening: From transcription factors to epigenetic modifications. HORTICULTURE RESEARCH 2022; 9:uhac013. [PMID: 35147185 PMCID: PMC9035223 DOI: 10.1093/hr/uhac013] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/01/2021] [Indexed: 05/24/2023]
Abstract
Fleshy fruits undergo a complex ripening process, developing organoleptic fruit traits that attract herbivores and maximize seed dispersal. Ripening is the terminal stage of fruit development and involves a series of physiological and biochemical changes. In fleshy fruits, ripening always involves a drastic color change triggered by the accumulation of pigments and degradation of chlorophyll, softening caused by cell wall remodeling, and flavor formation as acids and sugars accumulate alongside volatile compounds. The mechanisms underlying fruit ripening rely on the orchestration of ripening-related transcription factors, plant hormones, and epigenetic modifications. In this review, we discuss current knowledge of the transcription factors that regulate ripening in conjunction with ethylene and environmental signals (light and temperature) in the model plant tomato (Solanum lycopersicum) and other fleshy fruits. We emphasize the critical roles of epigenetic regulation, including DNA methylation and histone modification as well as RNA m6A modification, which has been studied intensively. This detailed review was compiled to provide a comprehensive description of the regulatory mechanisms of fruit ripening and guide new strategies for its effective manipulation.
Collapse
Affiliation(s)
- Xiuming Li
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Xuemei Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yi Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai-An, 271018, China
| | - Aihong Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai-An, 271018, China
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| |
Collapse
|
16
|
Li BJ, Grierson D, Shi Y, Chen KS. Roles of abscisic acid in regulating ripening and quality of strawberry, a model non-climacteric fruit. HORTICULTURE RESEARCH 2022. [PMID: 35795383 DOI: 10.1093/hr/uhac089/6572269#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Abscisic acid (ABA) is a dominant regulator of ripening and quality in non-climacteric fruits. Strawberry is regarded as a model non-climacteric fruit due to its extensive genetic studies and proven suitability for transgenic approaches to understanding gene function. Strawberry research has contributed to studies on color, flavor development, and fruit softening, and in recent years ABA has been established as a core regulator of strawberry fruit ripening, whereas ethylene plays this role in climacteric fruits. Despite this major difference, several components of the interacting genetic regulatory network in strawberry, such as MADS-box and NAC transcription factors, are similar to those that operate in climacteric fruit. In this review, we summarize recent advances in understanding the role of ABA biosynthesis and signaling and the regulatory network of transcription factors and other phytohormones in strawberry fruit ripening. In addition to providing an update on its ripening, we discuss how strawberry research has helped generate a broader and more comprehensive understanding of the mechanism of non-climacteric fruit ripening and focus attention on the use of strawberry as a model platform for ripening studies.
Collapse
Affiliation(s)
- Bai-Jun Li
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Donald Grierson
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Yanna Shi
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Kun-Song Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| |
Collapse
|
17
|
Li BJ, Grierson D, Shi Y, Chen KS. Roles of abscisic acid in regulating ripening and quality of strawberry, a model non-climacteric fruit. HORTICULTURE RESEARCH 2022; 9:uhac089. [PMID: 35795383 PMCID: PMC9252103 DOI: 10.1093/hr/uhac089] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/30/2022] [Indexed: 05/08/2023]
Abstract
Abscisic acid (ABA) is a dominant regulator of ripening and quality in non-climacteric fruits. Strawberry is regarded as a model non-climacteric fruit due to its extensive genetic studies and proven suitability for transgenic approaches to understanding gene function. Strawberry research has contributed to studies on color, flavor development, and fruit softening, and in recent years ABA has been established as a core regulator of strawberry fruit ripening, whereas ethylene plays this role in climacteric fruits. Despite this major difference, several components of the interacting genetic regulatory network in strawberry, such as MADS-box and NAC transcription factors, are similar to those that operate in climacteric fruit. In this review, we summarize recent advances in understanding the role of ABA biosynthesis and signaling and the regulatory network of transcription factors and other phytohormones in strawberry fruit ripening. In addition to providing an update on its ripening, we discuss how strawberry research has helped generate a broader and more comprehensive understanding of the mechanism of non-climacteric fruit ripening and focus attention on the use of strawberry as a model platform for ripening studies.
Collapse
Affiliation(s)
- Bai-Jun Li
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Donald Grierson
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
- Corresponding authors. E-mail: ;
| | - Yanna Shi
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Corresponding authors. E-mail: ;
| | - Kun-Song Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| |
Collapse
|
18
|
FvMYB79 Positively Regulates Strawberry Fruit Softening via Transcriptional Activation of FvPME38. Int J Mol Sci 2021; 23:ijms23010101. [PMID: 35008526 PMCID: PMC8744888 DOI: 10.3390/ijms23010101] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/18/2022] Open
Abstract
Strawberry is a soft fruit with short postharvest life, due to a rapid loss of firmness. Pectin methylesterase (PME)-mediated cell wall remodeling is important to determine fruit firmness and softening. Previously, we have verified the essential role of FvPME38 in regulation of PME-mediated strawberry fruit softening. However, the regulatory network involved in PME-mediated fruit softening is still largely unknown. Here, we identified an R2R3-type MYB transcription factor FvMYB79, which activates the expression level of FvPME38, thereby accelerating fruit softening. During fruit development, FvMYB79 co-expressed with FvPME38, and this co-expression pattern was opposite to the change of fruit firmness in the fruit of 'Ruegen' which significantly decreased during fruit developmental stages and suddenly became very low after the color turning stage. Via transient transformation, FvMYB79 could significantly increase the transcriptional level of FvPME38, leading to a decrease of firmness and acceleration of fruit ripening. In addition, silencing of FvMYB79 showed an insensitivity to ABA-induced fruit ripening, suggesting a possible involvement of FvMYB79 in the ABA-dependent fruit softening process. Our findings suggest FvMYB79 acts as a novel regulator during strawberry ripening via transcriptional activation of FvPME38, which provides a novel mechanism for improvement of strawberry fruit firmness.
Collapse
|
19
|
Ji D, Chen T, Zhang Z, Li B, Tian S. Versatile Roles of the Receptor-Like Kinase Feronia in Plant Growth, Development and Host-Pathogen Interaction. Int J Mol Sci 2020; 21:E7881. [PMID: 33114219 PMCID: PMC7660594 DOI: 10.3390/ijms21217881] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
As a member of the Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) protein kinase subfamily, FERONIA (FER) has emerged as a versatile player regulating multifaceted functions in growth and development, as well as responses to environmental factors and pathogens. With the concerted efforts of researchers, the molecular mechanism underlying FER-dependent signaling has been gradually elucidated. A number of cellular processes regulated by FER-ligand interactions have been extensively reported, implying cell type-specific mechanisms for FER. Here, we provide a review on the roles of FER in male-female gametophyte recognition, cell elongation, hormonal signaling, stress responses, responses to fungi and bacteria, and present a brief outlook for future efforts.
Collapse
Affiliation(s)
- Dongchao Ji
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (D.J.); (T.C.); (Z.Z.); (B.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (D.J.); (T.C.); (Z.Z.); (B.L.)
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (D.J.); (T.C.); (Z.Z.); (B.L.)
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (D.J.); (T.C.); (Z.Z.); (B.L.)
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (D.J.); (T.C.); (Z.Z.); (B.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, Beijing 100093, China
| |
Collapse
|
20
|
Wang L, Wang D, Yang Z, Jiang S, Qu J, He W, Liu Z, Xing J, Ma Y, Lin Q, Yu F. Roles of FERONIA-like receptor genes in regulating grain size and quality in rice. SCIENCE CHINA-LIFE SCIENCES 2020; 64:294-310. [DOI: 10.1007/s11427-020-1780-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/17/2020] [Indexed: 12/20/2022]
|
21
|
Genome-Wide Identification of the CrRLK1L Subfamily and Comparative Analysis of Its Role in the Legume-Rhizobia Symbiosis. Genes (Basel) 2020; 11:genes11070793. [PMID: 32674446 PMCID: PMC7397338 DOI: 10.3390/genes11070793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
The plant receptor-like-kinase subfamily CrRLK1L has been widely studied, and CrRLK1Ls have been described as crucial regulators in many processes in Arabidopsis thaliana (L.), Heynh. Little is known, however, about the functions of these proteins in other plant species, including potential roles in symbiotic nodulation. We performed a phylogenetic analysis of CrRLK1L subfamily receptors of 57 different plant species and identified 1050 CrRLK1L proteins, clustered into 11 clades. This analysis revealed that the CrRLK1L subfamily probably arose in plants during the transition from chlorophytes to embryophytes and has undergone several duplication events during its evolution. Among the CrRLK1Ls of legumes and A. thaliana, protein structure, gene structure, and expression patterns were highly conserved. Some legume CrRLK1L genes were active in nodules. A detailed analysis of eight nodule-expressed genes in Phaseolus vulgaris L. showed that these genes were differentially expressed in roots at different stages of the symbiotic process. These data suggest that CrRLK1Ls are both conserved and underwent diversification in a wide group of plants, and shed light on the roles of these genes in legume–rhizobia symbiosis.
Collapse
|
22
|
Zhang X, Yang Z, Wu D, Yu F. RALF-FERONIA Signaling: Linking Plant Immune Response with Cell Growth. PLANT COMMUNICATIONS 2020; 1:100084. [PMID: 33367248 DOI: 10.1016/j.xplc.2020b.100084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 05/22/2023]
Abstract
Plants perceive various external and internal signals to self-modulate biological processes through members of the receptor-like kinase (RLK) family, among which Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) proteins with their ligands, rapid alkalinization factor (RALF) peptides, have attracted considerable interest. FERONIA (FER), a CrRLK1L member, was initially reported to act as a major plant cell growth modulator in distinct tissues. Subsequently, the RALF-FER pathway was confirmed to function as an essential regulator of plant stress responses, including but not limited to immune responses. Furthermore, the RALF-FER pathway modulates immune responses and cell growth in a context-specific manner, and the vital roles of this pathway are beginning to be appreciated in crop species. The recent remarkable advances in understanding the functions and molecular mechanisms of the RALF-FER pathway have also raised many interesting questions that need to be answered in the future. This review mainly focuses on the roles of FER and other CrRLK1L members in modulating immune responses in the context of cell growth in response to their RALF peptide ligands and presents a brief outlook for future research.
Collapse
Affiliation(s)
- Xin Zhang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P.R. China
| | - Zhuhong Yang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P.R. China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, P.R. China
| | - Dousheng Wu
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P.R. China
| | - Feng Yu
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P.R. China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, P.R. China
| |
Collapse
|
23
|
Zhang X, Yang Z, Wu D, Yu F. RALF-FERONIA Signaling: Linking Plant Immune Response with Cell Growth. PLANT COMMUNICATIONS 2020; 1:100084. [PMID: 33367248 PMCID: PMC7747976 DOI: 10.1016/j.xplc.2020.100084] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 05/26/2023]
Abstract
Plants perceive various external and internal signals to self-modulate biological processes through members of the receptor-like kinase (RLK) family, among which Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) proteins with their ligands, rapid alkalinization factor (RALF) peptides, have attracted considerable interest. FERONIA (FER), a CrRLK1L member, was initially reported to act as a major plant cell growth modulator in distinct tissues. Subsequently, the RALF-FER pathway was confirmed to function as an essential regulator of plant stress responses, including but not limited to immune responses. Furthermore, the RALF-FER pathway modulates immune responses and cell growth in a context-specific manner, and the vital roles of this pathway are beginning to be appreciated in crop species. The recent remarkable advances in understanding the functions and molecular mechanisms of the RALF-FER pathway have also raised many interesting questions that need to be answered in the future. This review mainly focuses on the roles of FER and other CrRLK1L members in modulating immune responses in the context of cell growth in response to their RALF peptide ligands and presents a brief outlook for future research.
Collapse
Affiliation(s)
- Xin Zhang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P.R. China
| | - Zhuhong Yang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P.R. China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, P.R. China
| | - Dousheng Wu
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P.R. China
| | - Feng Yu
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P.R. China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, P.R. China
| |
Collapse
|
24
|
Gigli-Bisceglia N, Engelsdorf T, Hamann T. Plant cell wall integrity maintenance in model plants and crop species-relevant cell wall components and underlying guiding principles. Cell Mol Life Sci 2020; 77:2049-2077. [PMID: 31781810 PMCID: PMC7256069 DOI: 10.1007/s00018-019-03388-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/28/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023]
Abstract
The walls surrounding the cells of all land-based plants provide mechanical support essential for growth and development as well as protection from adverse environmental conditions like biotic and abiotic stress. Composition and structure of plant cell walls can differ markedly between cell types, developmental stages and species. This implies that wall composition and structure are actively modified during biological processes and in response to specific functional requirements. Despite extensive research in the area, our understanding of the regulatory processes controlling active and adaptive modifications of cell wall composition and structure is still limited. One of these regulatory processes is the cell wall integrity maintenance mechanism, which monitors and maintains the functional integrity of the plant cell wall during development and interaction with environment. It is an important element in plant pathogen interaction and cell wall plasticity, which seems at least partially responsible for the limited success that targeted manipulation of cell wall metabolism has achieved so far. Here, we provide an overview of the cell wall polysaccharides forming the bulk of plant cell walls in both monocotyledonous and dicotyledonous plants and the effects their impairment can have. We summarize our current knowledge regarding the cell wall integrity maintenance mechanism and discuss that it could be responsible for several of the mutant phenotypes observed.
Collapse
Affiliation(s)
- Nora Gigli-Bisceglia
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, 6708 PB, The Netherlands
| | - Timo Engelsdorf
- Division of Plant Physiology, Department of Biology, Philipps University of Marburg, 35043, Marburg, Germany
| | - Thorsten Hamann
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491, Trondheim, Norway.
| |
Collapse
|
25
|
Mo A, Xu T, Bai Q, Shen Y, Gao F, Guo J. FaPAO5 regulates Spm/Spd levels as a signaling during strawberry fruit ripening. PLANT DIRECT 2020; 4:e00217. [PMID: 32355906 PMCID: PMC7189608 DOI: 10.1002/pld3.217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/17/2020] [Accepted: 03/26/2020] [Indexed: 05/24/2023]
Abstract
Polyamines are important for non-climacteric fruit ripening according to an analysis of the model plant strawberry. However, the molecular mechanism underlying the polyamine accumulation during ripening has not been fully elucidated. In this study, an examination of our proteome data related to strawberry fruit ripening revealed a putative polyamine oxidase 5, FaPAO5, which was localized in the cytoplasm and nucleus. Additionally, FaPAO5 expression levels as well as the abundance of the encoded protein continually decreased during ripening. Inhibiting FaPAO5 expression by RNAi promoted Spd, Spm, and ABA accumulation while inhibited H2O2 production, which ultimately enhanced ripening as evidenced by the ripening-related events and corresponding gene expression changes. The opposite effects were observed in FaPAO5-overexpressing transgenic fruits. Analyses of the binding affinity and enzymatic activity of FaPAO5 with Spm, Spd, and Put uncovered a special role for FaPAO5 in the terminal catabolism of Spm and Spd, with a K d of 0.21 and 0.29 µM, respectively. Moreover, FaPAO5 expression was inhibited by ABA and promoted by Spd and Spm. Furthermore, the RNA-seq analysis of RNAi and control fruits via differentially expressed genes (DEGs) indicated the six most enriched pathways among the differentially expressed genes were related to sugar, abscisic acid, ethylene, auxin, gibberellin, and Ca2+. Among four putative PAO genes in the strawberry genome, only FaPAO5 was confirmed to influence fruit ripening. In conclusion, FaPAO5 is a negative regulator of strawberry fruit ripening and modulates Spm/Spd levels as a signaling event, in which ABA plays a central role.
Collapse
Affiliation(s)
- Aowai Mo
- Beijing Collaborative Innovation Center for Eco‐Environmental Improvement with Forestry and Fruit TreesBeijing University of AgricultureBeijingChina
| | - Tian Xu
- Beijing Collaborative Innovation Center for Eco‐Environmental Improvement with Forestry and Fruit TreesBeijing University of AgricultureBeijingChina
| | - Qian Bai
- Beijing Collaborative Innovation Center for Eco‐Environmental Improvement with Forestry and Fruit TreesBeijing University of AgricultureBeijingChina
- Bei Jing Bei Nong Enterprise Management Co., LtdBeijingChina
| | - Yaunyue Shen
- Beijing Collaborative Innovation Center for Eco‐Environmental Improvement with Forestry and Fruit TreesBeijing University of AgricultureBeijingChina
| | - Fan Gao
- Beijing Collaborative Innovation Center for Eco‐Environmental Improvement with Forestry and Fruit TreesBeijing University of AgricultureBeijingChina
| | - Jiaxuan Guo
- Beijing Collaborative Innovation Center for Eco‐Environmental Improvement with Forestry and Fruit TreesBeijing University of AgricultureBeijingChina
| |
Collapse
|
26
|
Negrini F, O’Grady K, Hyvönen M, Folta KM, Baraldi E. Genomic structure and transcript analysis of the Rapid Alkalinization Factor (RALF) gene family during host-pathogen crosstalk in Fragaria vesca and Fragaria x ananassa strawberry. PLoS One 2020; 15:e0226448. [PMID: 32214345 PMCID: PMC7098601 DOI: 10.1371/journal.pone.0226448] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/01/2020] [Indexed: 11/19/2022] Open
Abstract
Rapid Alkalinization Factors (RALFs) are cysteine-rich peptides ubiquitous within plant kingdom. They play multiple roles as hormonal signals in diverse processes, including root elongation, cell growth, pollen tube development, and fertilization. Their involvement in host-pathogen crosstalk as negative regulators of immunity in Arabidopsis has also been recognized. In addition, peptides homologous to RALF are secreted by different fungal pathogens as effectors during early stages of infection. Previous studies have identified nine RALF genes in the diploid strawberry (Fragaria vesca) genome. This work describes the genomic organization of the RALF gene families in commercial octoploid strawberry (Fragaria × ananassa) and the re-annotated genome of F. vesca, and then compares findings with orthologs in Arabidopsis thaliana. We reveal the presence of 15 RALF genes in F. vesca genotype Hawaii 4 and 50 in Fragaria x ananassa cv. Camarosa, showing a non-homogenous localization of genes among the different Fragaria x ananassa subgenomes. Expression analysis of Fragaria x ananassa RALF genes upon infection with Colletotrichum acutatum or Botrytis cinerea showed that FanRALF3-1 was the only fruit RALF gene upregulated after fungal infection. In silico analysis was used to identify distinct pathogen inducible elements upstream of the FanRALF3-1 gene. Agroinfiltration of strawberry fruit with deletion constructs of the FanRALF3-1 promoter identified a 5' region required for FanRALF3-1 expression in fruit, but failed to identify a region responsible for fungal induced expression.
Collapse
Affiliation(s)
- Francesca Negrini
- Laboratory of Plant Pathology and Biotechnology, DISTAL, University of Bologna, Bologna Italy
- Horticultural Sciences Department, University of Florida, Gainesville, Florida, United States of America
| | - Kevin O’Grady
- Horticultural Sciences Department, University of Florida, Gainesville, Florida, United States of America
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Kevin M. Folta
- Horticultural Sciences Department, University of Florida, Gainesville, Florida, United States of America
| | - Elena Baraldi
- Laboratory of Plant Pathology and Biotechnology, DISTAL, University of Bologna, Bologna Italy
| |
Collapse
|
27
|
Bai Q, Huang Y, Shen Y. The Physiological and Molecular Mechanism of Abscisic Acid in Regulation of Fleshy Fruit Ripening. FRONTIERS IN PLANT SCIENCE 2020; 11:619953. [PMID: 33505417 PMCID: PMC7829184 DOI: 10.3389/fpls.2020.619953] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/09/2020] [Indexed: 05/18/2023]
Abstract
The ripening of fleshy fruits is coupled with the degradation of both chlorophyll and cell walls, as well as changes in the metabolism of phenylpropanoids, flavonoids, starch/sucrose, and carotenoids. These processes are controlled by phytohormones and other factors, including abscisic acid (ABA), ethylene, auxin, polyamines, sugar, and reactive oxygen species. The ripening of climacteric fruits is controlled by ethylene and non-climacteric fruit ripening is regulated mainly by ABA. Also, ABA and ethylene may interact in both types of fruit ripening. ABA concentrations in fleshy fruits are regulated in response to developmental and environmental cues and are controlled by the relative rates of ABA biosynthesis and catabolism, the former mainly via 9-cis-epoxycarotenoid dioxygenases (NCEDs) and β-glucosidases and the latter via ABA 8'-hydroxylases (CYP707As) and β-glycosyltransferases. In strawberry fruit ripening, ABA is perceived via at least two receptors, Pyrabactin resistance (PYR)/PYR-like (PYL) and putative abscisic acid receptor (ABAR), which are linked separately to the conserved signaling pathway ABA-FaPYR1-FaABIl-FaSnRK2 and the novel signaling pathway ABA-FaABAR-FaRIPK1-FaABI4. Downstream signaling components include important transcription factors, such as AREB (ABA responsive element binding protein)/ABF (ABRE binding factors ABA responsive factor), ethylene response factor (ERF), and V-myb Myeloblastosis viral oncogene homolog (MYB), as well as ripening-related genes. Finally, a comprehensive model of ABA linked to ethylene, sugar, polyamines, auxin and reactive oxygen species in the regulation of strawberry fruit ripening is proposed. Next, new integrated mechanisms, including two ABA signaling pathways, ABA and ethylene signaling pathways, and ABA/ethylene to other phytohormones are interesting and important research topics in ripening, especially in non-climacteric fruits.
Collapse
Affiliation(s)
- Qian Bai
- College of Horticulture, China Agricultural University, Beijing, China
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yun Huang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Yun Huang,
| | - Yuanyue Shen
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- *Correspondence: Yuanyue Shen,
| |
Collapse
|
28
|
Jia K, Zhang Q, Xing Y, Yan J, Liu L, Nie K. A Development-Associated Decrease in Osmotic Potential Contributes to Fruit Ripening Initiation in Strawberry ( Fragaria ananassa). FRONTIERS IN PLANT SCIENCE 2020; 11:1035. [PMID: 32754182 PMCID: PMC7365926 DOI: 10.3389/fpls.2020.01035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/24/2020] [Indexed: 05/17/2023]
Abstract
Fruit development and ripening are accompanied by a large increase in cellular soluble solid contents, which results in a significant decrease in osmotic potential (DOP). Here, we report that this development-associated DOP contributes to the initiation of ripening in strawberry (Fragaria ananassa Duch., Benihoppe) fruit. We show that fruit water potential significantly decreases at the onset of ripening as a result of the DOP. Further analysis using nuclear magnetic resonance spectroscopy (NMR) indicated that the change in fruit water potential was likely caused by catabolism of large molecules in receptacle cells, and bioinformatic analysis identified a family of osmotin-like proteins (OLP) that have a potential role in osmolyte accommodation. The gene expression of more than half of the OLP members increased substantially at the onset of fruit ripening, and specifically responded to DOP treatment, consistent with a close relationship between DOP and fruit ripening. We report that the DOP induced either by mannitol or water loss, triggered fruit ripening, as indicated by the elevated expression of multiple ripening genes and diverse ripening-associated physiological parameters. Collectively, these results suggest that the DOP contributes to strawberry fruit ripening initiation.
Collapse
Affiliation(s)
- Kenan Jia
- College of International Education, Beijing University of Chemical Technology, Beijing, China
| | - Qing Zhang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yu Xing
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Jiaqi Yan
- College of Horticulture, China Agricultural University, Beijing, China
- *Correspondence: Jiaqi Yan, ; Luo Liu, ; Kaili Nie,
| | - Luo Liu
- College of International Education, Beijing University of Chemical Technology, Beijing, China
- *Correspondence: Jiaqi Yan, ; Luo Liu, ; Kaili Nie,
| | - Kaili Nie
- College of International Education, Beijing University of Chemical Technology, Beijing, China
- *Correspondence: Jiaqi Yan, ; Luo Liu, ; Kaili Nie,
| |
Collapse
|
29
|
Zhao Y, Mao W, Chen Y, Wang W, Dai Z, Dou Z, Zhang K, Wei L, Li T, Zeng B, Liu T, Fan Y, Yan J, Li B, Jia W. Optimization and standardization of transient expression assays for gene functional analyses in strawberry fruits. HORTICULTURE RESEARCH 2019; 6:53. [PMID: 31069083 PMCID: PMC6491593 DOI: 10.1038/s41438-019-0135-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/31/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
Strawberry is increasingly used as a model plant for research on fruit growth and development. The transient gene manipulation (TGM) technique is widely used to determine the function of plant genes, including those in strawberry fruits. However, its reliable application for the precise identification of gene function has been difficult owing to the lack of conditional optimization. In this study, we found that successful transient gene manipulation requires optimization, with the vector type, temperature, and fruit developmental stage being three major factors determining success. Notably, we found that transient gene manipulation was feasible only from the large green fruit stage onwards, making it especially suitable for identifying genes involved in strawberry fruit ripening. Furthermore, we established a method called percentage difference of phenotype (PDP), in which the functional effect of a gene could be precisely and efficiently identified in strawberry fruits. This method can be used to estimate the functional effect of a gene as a value from 0 to 100%, such that different genes can be quantitatively compared for their relative abilities to regulate fruit ripening. This study provides a useful tool for accelerating research on the molecular basis of strawberry fruit ripening.
Collapse
Affiliation(s)
- Yaoyao Zhao
- College of Horticulture, China Agriculture University, Beijing, CN 100193 P.R. China
| | - Wenwen Mao
- College of Horticulture, China Agriculture University, Beijing, CN 100193 P.R. China
| | - Yating Chen
- College of Horticulture, China Agriculture University, Beijing, CN 100193 P.R. China
| | - Wei Wang
- College of Horticulture, China Agriculture University, Beijing, CN 100193 P.R. China
| | - Zhengrong Dai
- College of Horticulture, China Agriculture University, Beijing, CN 100193 P.R. China
| | - Zhechao Dou
- College of Horticulture, China Agriculture University, Beijing, CN 100193 P.R. China
| | - Kai Zhang
- College of Horticulture, China Agriculture University, Beijing, CN 100193 P.R. China
| | - Lingzhi Wei
- College of Horticulture, China Agriculture University, Beijing, CN 100193 P.R. China
| | - Tianyu Li
- College of Horticulture, China Agriculture University, Beijing, CN 100193 P.R. China
| | - Baozhen Zeng
- College of Horticulture, China Agriculture University, Beijing, CN 100193 P.R. China
| | - Ting Liu
- College of Horticulture, China Agriculture University, Beijing, CN 100193 P.R. China
| | - Yijuan Fan
- College of Horticulture, China Agriculture University, Beijing, CN 100193 P.R. China
| | - Jiaqi Yan
- College of Horticulture, China Agriculture University, Beijing, CN 100193 P.R. China
| | - Bingbing Li
- College of Horticulture, China Agriculture University, Beijing, CN 100193 P.R. China
| | - Wensuo Jia
- College of Horticulture, China Agriculture University, Beijing, CN 100193 P.R. China
| |
Collapse
|
30
|
Li C, Liu X, Qiang X, Li X, Li X, Zhu S, Wang L, Wang Y, Liao H, Luan S, Yu F. EBP1 nuclear accumulation negatively feeds back on FERONIA-mediated RALF1 signaling. PLoS Biol 2018; 16:e2006340. [PMID: 30339663 PMCID: PMC6195255 DOI: 10.1371/journal.pbio.2006340] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/28/2018] [Indexed: 12/22/2022] Open
Abstract
FERONIA (FER), a plasma membrane receptor-like kinase, is a central regulator of cell growth that integrates environmental and endogenous signals. A peptide ligand rapid alkalinization factor 1 (RALF1) binds to FER and triggers a series of downstream events, including inhibition of Arabidopsis H+-ATPase 2 activity at the cell surface and regulation of gene expression in the nucleus. We report here that, upon RALF1 binding, FER first promotes ErbB3-binding protein 1 (EBP1) mRNA translation and then interacts with and phosphorylates the EBP1 protein, leading to EBP1 accumulation in the nucleus. There, EBP1 associates with the promoters of previously identified RALF1-regulated genes, such as CML38, and regulates gene transcription in response to RALF1 signaling. EBP1 appears to inhibit the RALF1 peptide response, thus forming a transcription-translation feedback loop (TTFL) similar to that found in circadian rhythm control. The plant RALF1-FER-EBP1 axis is reminiscent of animal epidermal growth factor receptor (EGFR) signaling, in which EGF peptide induces EGFR to interact with and phosphorylate EBP1, promoting EBP1 nuclear accumulation to control cell growth. Thus, we suggest that in response to peptide signals, plant FER and animal EGFR use the conserved key regulator EBP1 to control cell growth in the nucleus.
Collapse
Affiliation(s)
- Chiyu Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, People’s Republic of China
| | - Xuanming Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, People’s Republic of China
| | - Xiaonan Qiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, People’s Republic of China
| | - Xiaoyan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, People’s Republic of China
| | - Xiushan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, People’s Republic of China
| | - Sirui Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, People’s Republic of China
| | - Long Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, People’s Republic of China
| | - Yuan Wang
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Hongdong Liao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, People’s Republic of China
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, People’s Republic of China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
- * E-mail:
| |
Collapse
|
31
|
Wei L, Mao W, Jia M, Xing S, Ali U, Zhao Y, Chen Y, Cao M, Dai Z, Zhang K, Dou Z, Jia W, Li B. FaMYB44.2, a transcriptional repressor, negatively regulates sucrose accumulation in strawberry receptacles through interplay with FaMYB10. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4805-4820. [PMID: 30085079 PMCID: PMC6137983 DOI: 10.1093/jxb/ery249] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/18/2018] [Indexed: 05/09/2023]
Abstract
Sugar and acid metabolism are critical for fruit ripening and quality formation, but the underlying regulatory mechanisms are largely unknown. Here, we identified a transcriptional repressor, FaMYB44.2, that regulates sugar and acid accumulation in strawberry (Fragaria × ananassa 'Benihoppe') receptacles. We transiently expressed FaMYB44.2 in strawberry fruit and conducted metabolic and molecular analyses to explore the role of FaMYB44.2 in sugar and acid accumulation in strawberry. We found that FaMYB44.2 negatively regulates soluble sugar accumulation and malic acid content and represses the expression of numerous structural genes, including FaSPS3, a key gene in sucrose accumulation. From the white fruit stage onwards, the repressive effect of FaMYB44.2 on FaSPS3 is reversed by FaMYB10, which positively regulates anthocyanin accumulation. Our results indicate that FaMYB10 suppresses FaMYB44.2 expression; weakens the interaction between FaMYB44.2 and its co-repressor, FabHLH3; and cooperates with FabHLH3 to activate the expression of FaSPS3. The interplay between FaMYB10 and FaMYB44.2 results in sucrose accumulation in ripe strawberry fruits. In addition, the repressive effect of FaMYB44.2 on sucrose accumulation is enhanced by jasmonic acid. This study provides new insights into the regulatory mechanisms of sucrose accumulation and sheds light on the interplay between regulatory proteins during strawberry fruit ripening and quality formation.
Collapse
Affiliation(s)
- Lingzhi Wei
- College of Horticulture, China Agricultural University, Beijing, China
| | - Wenwen Mao
- College of Horticulture, China Agricultural University, Beijing, China
| | - Meiru Jia
- College of Horticulture, China Agricultural University, Beijing, China
| | - Sinian Xing
- College of Horticulture, China Agricultural University, Beijing, China
| | - Usman Ali
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yaoyao Zhao
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yating Chen
- College of Horticulture, China Agricultural University, Beijing, China
| | - Minglin Cao
- College of Horticulture, China Agricultural University, Beijing, China
| | - Zhengrong Dai
- College of Horticulture, China Agricultural University, Beijing, China
| | - Kai Zhang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Zhechao Dou
- College of Horticulture, China Agricultural University, Beijing, China
| | - Wensuo Jia
- College of Horticulture, China Agricultural University, Beijing, China
| | - Bingbing Li
- College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
32
|
Xing S, Jia M, Wei L, Mao W, Abbasi UA, Zhao Y, Chen Y, Cao M, Zhang K, Dai Z, Dou Z, Jia W, Li B. CRISPR/Cas9-introduced single and multiple mutagenesis in strawberry. J Genet Genomics 2018; 45:685-687. [PMID: 30573379 DOI: 10.1016/j.jgg.2018.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Sinian Xing
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Meiru Jia
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Lingzhi Wei
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Wenwen Mao
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Usman Ali Abbasi
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yaoyao Zhao
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yating Chen
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Minglin Cao
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Kai Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhengrong Dai
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhechao Dou
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Wensuo Jia
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Bingbing Li
- College of Horticulture, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
33
|
Li B, Yan J, Jia W. FERONIA/FER-like receptor kinases integrate and modulate multiple signaling pathways in fruit development and ripening. PLANT SIGNALING & BEHAVIOR 2017; 12:e1366397. [PMID: 29215944 PMCID: PMC5792130 DOI: 10.1080/15592324.2017.1366397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/08/2017] [Indexed: 05/28/2023]
Abstract
Ripening of fleshy fruits is a complex process that involves dramatic changes in color, texture, flavor, and aroma, which is essentially regulated by multiple hormone signals. Although the metabolic mechanisms for the regulation of fruit development and ripening have been studied extensively, little is known about the signaling mechanisms underlying this process. FERONIA has been increasingly suggested to be implicated in multiple signaling pathways. In a recent publication, we showed that a FERONIA/FER -like receptor kinase, FaMRLK47, playes an important role in the regulation of fruit ripening in strawberry (Fragaria × ananassa, a typical non-climacteric fruit) fruit. Over-expression orRNAi-mediated down regulation of FaMRLK47 caused a delay or acceleration, respectively, of fruit ripening progress. Meanwhile, overexpression orRNAi-mediated down regulation of FaMRLK47 caused a decrease or increase, respectively, in the ABA-induced expression of a series of ripening-related genes. More recently, we also found that MdFERL1, a FERONIA/FER-like receptor kinase in tomato plant, was implicated in the regulation of tomato fruit ripening via modulating ethylene production. We propose that FERONIA/FER-like receptor kinases may function to regulate fruit development and ripening via integrate multiple signaling pathways in both climacteric and non-climacteric fruits.
Collapse
Affiliation(s)
- Bingbing Li
- College of Horticulture, China Agricultural University, Beijing, China
| | - Jiaqi Yan
- College of Horticulture, China Agricultural University, Beijing, China
| | - Wensuo Jia
- College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|