1
|
Fang B, Yang T, Chen Y, Duan Z, Hu J, Wang Q, He Y, Zhang Y, Dong W, Zhang Q, Zhao X. Activation of ARP2/3 and HSP70 Expression by Lipoteichoic Acid: Potential Bidirectional Regulation of Apoptosis in a Mastitis Inflammation Model. Biomolecules 2024; 14:901. [PMID: 39199289 PMCID: PMC11352453 DOI: 10.3390/biom14080901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Mastitis typically arises from bacterial invasion, where host cell apoptosis significantly contributes to the inflammatory response. Gram-positive bacteria predominantly utilize the virulence factor lipoteichoic acid (LTA), which frequently leads to chronic breast infections, thereby impacting dairy production and animal husbandry adversely. This study employed LTA to develop models of mastitis in cow mammary gland cells and mice. Transcriptomic analysis identified 120 mRNAs associated with endocytosis and apoptosis pathways that were enriched in the LTA-induced inflammation of the Mammary Alveolar Cells-large T antigen (MAC-T), with numerous differential proteins also concentrated in the endocytosis pathway. Notably, actin-related protein 2/3 complex subunit 3 (ARPC3), actin-related protein 2/3 complex subunit 4 (ARPC4), and the heat shock protein 70 (HSP70) are closely related. STRING analysis revealed interactions among ARPC3, ARPC4, and HSP70 with components of the apoptosis pathway. Histological and molecular biological assessments confirmed that ARPC3, ARPC4, and HSP70 were mainly localized to the cell membrane of mammary epithelial cells. ARPC3 and ARPC4 are implicated in the mechanisms of bacterial invasion and the initiation of inflammation. Compared to the control group, the expression levels of these proteins were markedly increased, alongside the significant upregulation of apoptosis-related factors. While HSP70 appears to inhibit apoptosis and alleviate inflammation, its upregulation presents novel research opportunities. In conclusion, we deduced the development mechanism of ARPC3, ARPC4, and HSP70 in breast inflammation, laying the foundation for further exploring the interaction mechanism between the actin-related protein 2/3 (ARP2/3) complex and HSP70.
Collapse
Affiliation(s)
- Bo Fang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Tingji Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Yan Chen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Zhiwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Qi Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Yuxuan He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Weitao Dong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Quanwei Zhang
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
- College of Life Sciences and Biotechnology, Gansu Agricultural University, Lanzhou 730030, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| |
Collapse
|
2
|
Li WB, Song SW, Zhong MM, Liu LG, Su L, Han LB, Xia GX, Sun YD, Wang HY. VILLIN2 regulates cotton defense against Verticillium dahliae by modulating actin cytoskeleton remodeling. PLANT PHYSIOLOGY 2023; 192:666-679. [PMID: 36881883 PMCID: PMC10152694 DOI: 10.1093/plphys/kiad095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/24/2023] [Indexed: 05/03/2023]
Abstract
The active structural change of actin cytoskeleton is a general host response upon pathogen attack. This study characterized the function of the cotton (Gossypium hirsutum) actin-binding protein VILLIN2 (GhVLN2) in host defense against the soilborne fungus Verticillium dahliae. Biochemical analysis demonstrated that GhVLN2 possessed actin-binding, -bundling, and -severing activities. A low concentration of GhVLN2 could shift its activity from actin bundling to actin severing in the presence of Ca2+. Knockdown of GhVLN2 expression by virus-induced gene silencing reduced the extent of actin filament bundling and interfered with the growth of cotton plants, resulting in the formation of twisted organs and brittle stems with a decreased cellulose content of the cell wall. Upon V. dahliae infection, the expression of GhVLN2 was downregulated in root cells, and silencing of GhVLN2 enhanced the disease tolerance of cotton plants. The actin bundles were less abundant in root cells of GhVLN2-silenced plants than in control plants. However, upon infection by V. dahliae, the number of actin filaments and bundles in the cells of GhVLN2-silenced plants was raised to a comparable level as those in control plants, with the dynamic remodeling of the actin cytoskeleton appearing several hours in advance. GhVLN2-silenced plants exhibited a higher incidence of actin filament cleavage in the presence of Ca2+, suggesting that pathogen-responsive downregulation of GhVLN2 could activate its actin-severing activity. These data indicate that the regulated expression and functional shift of GhVLN2 contribute to modulating the dynamic remodeling of the actin cytoskeleton in host immune responses against V. dahliae.
Collapse
Affiliation(s)
- Wen-Bo Li
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuang-Wei Song
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng-Meng Zhong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lan-Gong Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Su
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li-Bo Han
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gui-Xian Xia
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong-Duo Sun
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hai-Yun Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
3
|
Urbanavičiūtė I, Bonfiglioli L, Pagnotta MA. Phenotypic and Genotypic Diversity of Roots Response to Salt in Durum Wheat Seedlings. PLANTS (BASEL, SWITZERLAND) 2023; 12:412. [PMID: 36679125 PMCID: PMC9865824 DOI: 10.3390/plants12020412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/03/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Soil salinity is a serious threat to food production now and in the near future. In this study, the root system of six durum wheat genotypes, including one highly salt-tolerant (J. Khetifa) used as a check genotype, was evaluated, by a high-throughput phenotyping system, under control and salt conditions at the seedling stage. Genotyping was performed using 11 SSR markers closely linked with genome regions associated with root traits. Based on phenotypic cluster analysis, genotypes were grouped differently under control and salt conditions. Under control conditions, genotypes were clustered mainly due to a root angle, while under salt stress, genotypes were grouped according to their capacity to maintain higher roots length, volume, and surface area, as J. Khetifa, Sebatel, and Azeghar. SSR analysis identified a total of 42 alleles, with an average of about three alleles per marker. Moreover, quite a high number of Private alleles in total, 18 were obtained. The UPGMA phenogram of the Nei (1972) genetic distance clusters for 11 SSR markers and all phenotypic data under control conditions discriminate genotypes almost into the same groups. The study revealed as the combination of high-throughput systems for phenotyping with SSR markers for genotyping it's a useful tool to provide important data for the selection of suitable parental lines for salt-tolerance breeding. Nevertheless, the narrow root angle, which is an important trait in drought tolerance, is not a good indicator of salt tolerance. Instated for salt tolerance is more important the amount of roots.
Collapse
Affiliation(s)
| | | | - Mario A. Pagnotta
- Department of Agricultural and Forest Sciences, Tuscia University, Via S. C. de Lellis, 01100 Viterbo, Italy
| |
Collapse
|
4
|
The Cytoskeleton in Plant Immunity: Dynamics, Regulation, and Function. Int J Mol Sci 2022; 23:ijms232415553. [PMID: 36555194 PMCID: PMC9779068 DOI: 10.3390/ijms232415553] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The plant cytoskeleton, consisting of actin filaments and microtubules, is a highly dynamic filamentous framework involved in plant growth, development, and stress responses. Recently, research has demonstrated that the plant cytoskeleton undergoes rapid remodeling upon sensing pathogen attacks, coordinating the formation of microdomain immune complexes, the dynamic and turnover of pattern-recognizing receptors (PRRs), the movement and aggregation of organelles, and the transportation of defense compounds, thus serving as an important platform for responding to pathogen infections. Meanwhile, pathogens produce effectors targeting the cytoskeleton to achieve pathogenicity. Recent findings have uncovered several cytoskeleton-associated proteins mediating cytoskeletal remodeling and defense signaling. Furthermore, the reorganization of the actin cytoskeleton is revealed to further feedback-regulate reactive oxygen species (ROS) production and trigger salicylic acid (SA) signaling, suggesting an extremely complex role of the cytoskeleton in plant immunity. Here, we describe recent advances in understanding the host cytoskeleton dynamics upon sensing pathogens and summarize the effectors that target the cytoskeleton. We highlight advances in the regulation of cytoskeletal remodeling associated with the defense response and assess the important function of the rearrangement of the cytoskeleton in the immune response. Finally, we propose suggestions for future research in this area.
Collapse
|
5
|
Bellinvia E, García-González J, Cifrová P, Martinek J, Sikorová L, Havelková L, Schwarzerová K. CRISPR-Cas9 Arabidopsis mutants of genes for ARPC1 and ARPC3 subunits of ARP2/3 complex reveal differential roles of complex subunits. Sci Rep 2022; 12:18205. [PMID: 36307477 PMCID: PMC9616901 DOI: 10.1038/s41598-022-22982-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/21/2022] [Indexed: 12/31/2022] Open
Abstract
Protein complex Arp2/3 has a conserved role in the nucleation of branched actin filaments. It is constituted of seven subunits, including actin-like subunits ARP2 and ARP3 plus five other subunits called Arp2/3 Complex Component 1 to 5, which are not related to actin. Knock-out plant mutants lacking individual plant ARP2/3 subunits have a typical phenotype of distorted trichomes, altered pavement cells shape and defects in cell adhesion. While knock-out mutant Arabidopsis plants for most ARP2/3 subunits have been characterized before, Arabidopsis plant mutants missing ARPC1 and ARPC3 subunits have not yet been described. Using CRISPR/Cas9, we generated knock-out mutants lacking ARPC1 and ARPC3 subunits. We confirmed that the loss of ARPC1 subunits results in the typical ARP2/3 mutant phenotype. However, the mutants lacking ARPC3 subunits resulted in plants with surprisingly different phenotypes. Our results suggest that plant ARP2/3 complex function in trichome shaping does not require ARPC3 subunit, while the fully assembled complex is necessary for the establishment of correct cell adhesion in the epidermis.
Collapse
Affiliation(s)
- Erica Bellinvia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Judith García-González
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petra Cifrová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Martinek
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Lenka Sikorová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Lenka Havelková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Kateřina Schwarzerová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
6
|
Thakur RK, Prasad P, Bhardwaj SC, Gangwar OP, Kumar S. Epigenetics of wheat-rust interaction: an update. PLANTA 2022; 255:50. [PMID: 35084577 DOI: 10.1007/s00425-022-03829-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
The outcome of different host-pathogen interactions is influenced by both genetic and epigenetic systems, which determine the response of plants to pathogens and vice versa. This review highlights key molecular mechanisms and conceptual advances involved in epigenetic research and the progress made in epigenetics of wheat-rust interactions. Epigenetics implies the heritable changes in the way of gene expression as a consequence of the modification of DNA bases, histone proteins, and/or non-coding-RNA biogenesis without disturbing the underlying nucleotide sequence. The changes occurring between DNA and its surrounding chromatin without altering its DNA sequence and leading to significant changes in the genome of any organism are called epigenetic changes. Epigenetics has already been used successfully to explain the mechanism of human pathogens and in the identification of pathogen-induced modifications within various host plants. Wheat rusts are one of the most vital fungal diseases throughout the major wheat-growing areas of the world. The epigenome in plant pathogens causing diseases such as wheat rusts is mysterious. The investigations of host and pathogen epigenetics in the wheat rusts system can offer a piece of suitable evidence for elucidation of the molecular basis of host-pathogen interaction. Besides, the information on the epigenetic regulation of the genes involved in resistance or pathogenicity will provide better insights into the complex resistance signaling pathways and could provide answers to certain key questions, such as whether epigenetic regulation of certain genes is imparting resistance to host in response of certain pathogen elicitors or not. In the last few years, there has been an upsurge in research on the host as well as pathogen epigenetics and its outcome in plant-pathogen interactions. This review summarizes the progress made in the areas related to the epigenetic control of host-pathogen interaction with particular emphasis on wheat rusts.
Collapse
Affiliation(s)
- Rajni Kant Thakur
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, 171002, India
| | - Pramod Prasad
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, 171002, India.
| | - S C Bhardwaj
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, 171002, India.
| | - O P Gangwar
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, 171002, India
| | - Subodh Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, 171002, India
| |
Collapse
|
7
|
Sun Y, Zhong M, Li Y, Zhang R, Su L, Xia G, Wang H. GhADF6-mediated actin reorganization is associated with defence against Verticillium dahliae infection in cotton. MOLECULAR PLANT PATHOLOGY 2021; 22:1656-1667. [PMID: 34515397 PMCID: PMC8578822 DOI: 10.1111/mpp.13137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/28/2021] [Accepted: 08/19/2021] [Indexed: 05/07/2023]
Abstract
Several studies have revealed that actin depolymerizing factors (ADFs) participate in plant defence responses; however, the functional mechanisms appear intricate and need further exploration. In this study, we identified an ADF6 gene in upland cotton (designated as GhADF6) that is evidently involved in cotton's response to the fungal pathogen Verticillium dahliae. GhADF6 binds to actin filaments and possesses actin severing and depolymerizing activities in vitro and in vivo. When cotton root (the site of the fungus invasion) was inoculated with the pathogen, the expression of GhADF6 was markedly down-regulated in the epidermal cells. By virus-induced gene silencing analysis, the down-regulation of GhADF6 expression rendered the cotton plants tolerant to V. dahliae infection. Accordingly, the abundance of actin filaments and bundles in the root cells was significantly higher than that in the control plant, which phenocopied that of the V. dahliae-challenged wild-type cotton plant. Altogether, our results provide evidence that an increase in filament actin (F-actin) abundance as well as dynamic actin remodelling are required for plant defence against the invading pathogen, which are likely to be fulfilled by the coordinated expressional regulation of the actin-binding proteins, including ADF.
Collapse
Affiliation(s)
- Yongduo Sun
- Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- State Key Laboratory of Plant GenomicsBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Mengmeng Zhong
- Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- State Key Laboratory of Plant GenomicsBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yuanbao Li
- Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- State Key Laboratory of Plant GenomicsBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ruihui Zhang
- University of Chinese Academy of SciencesBeijingChina
- Institute of BotanyChinese Academy of SciencesBeijingChina
| | - Lei Su
- Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- State Key Laboratory of Plant GenomicsBeijingChina
| | - Guixian Xia
- Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- State Key Laboratory of Plant GenomicsBeijingChina
| | - Haiyun Wang
- Institute of MicrobiologyChinese Academy of SciencesBeijingChina
- State Key Laboratory of Plant GenomicsBeijingChina
| |
Collapse
|
8
|
Nandakumar M, Malathi P, Sundar AR, Viswanathan R. Expression Analyses of Resistance-Associated Candidate Genes During Sugarcane-Colletotrichum falcatum Went Interaction. SUGAR TECH 2021; 23:1056-1063. [DOI: 10.1007/s12355-021-00976-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/10/2021] [Indexed: 02/08/2023]
|
9
|
Qin L, Liu L, Tu J, Yang G, Wang S, Quilichini TD, Gao P, Wang H, Peng G, Blancaflor EB, Datla R, Xiang D, Wilson KE, Wei Y. The ARP2/3 complex, acting cooperatively with Class I formins, modulates penetration resistance in Arabidopsis against powdery mildew invasion. THE PLANT CELL 2021; 33:3151-3175. [PMID: 34181022 PMCID: PMC8462814 DOI: 10.1093/plcell/koab170] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/20/2021] [Indexed: 05/19/2023]
Abstract
The actin cytoskeleton regulates an array of diverse cellular activities that support the establishment of plant-microbe interactions and plays a critical role in the execution of plant immunity. However, molecular and cellular mechanisms regulating the assembly and rearrangement of actin filaments (AFs) at plant-pathogen interaction sites remain largely elusive. Here, using live-cell imaging, we show that one of the earliest cellular responses in Arabidopsis thaliana upon powdery mildew attack is the formation of patch-like AF structures beneath fungal invasion sites. The AFs constituting actin patches undergo rapid turnover, which is regulated by the actin-related protein (ARP)2/3 complex and its activator, the WAVE/SCAR regulatory complex (W/SRC). The focal accumulation of phosphatidylinositol-4,5-bisphosphate at fungal penetration sites appears to be a crucial upstream modulator of the W/SRC-ARP2/3 pathway-mediated actin patch formation. Knockout of W/SRC-ARP2/3 pathway subunits partially compromised penetration resistance with impaired endocytic recycling of the defense-associated t-SNARE protein PEN1 and its deposition into apoplastic papillae. Simultaneously knocking out ARP3 and knocking down the Class I formin (AtFH1) abolished actin patch formation, severely impaired the deposition of cell wall appositions, and promoted powdery mildew entry into host cells. Our results demonstrate that the ARP2/3 complex and formins, two actin-nucleating systems, act cooperatively and contribute to Arabidopsis penetration resistance to fungal invasion.
Collapse
Affiliation(s)
- Li Qin
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Lijiang Liu
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, China
| | - Jiangying Tu
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2, Canada
| | - Guogen Yang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Anhui Agricultural University, Hefei 230036, China
| | - Sheng Wang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | | | - Peng Gao
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 0W9, Canada
| | - Hong Wang
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Gary Peng
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2, Canada
| | | | - Raju Datla
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 0W9, Canada
| | - Daoquan Xiang
- National Research Council Canada, Saskatoon, SK, S7N 0W9, Canada
| | - Kenneth E. Wilson
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
- Author for correspondence:
| |
Collapse
|
10
|
Shi B, Wang J, Gao H, Yang Q, Wang Y, Day B, Ma Q. The small GTP-binding protein TaRop10 interacts with TaTrxh9 and functions as a negative regulator of wheat resistance against the stripe rust. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 309:110937. [PMID: 34134844 DOI: 10.1016/j.plantsci.2021.110937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Small GTP-binding proteins, also known as ROPs (Rho of Plants), are a subfamily of the Ras superfamily of signaling G-proteins and are required for numerous signaling processes, ranging from growth and development to biotic and abiotic signaling. In this study, we cloned and characterized wheat TaRop10, a homolog of Arabidopsis ROP10 and member of the class II ROP, and uncovered a role for TaRop10 in wheat response to Puccinia striiformis f. sp. tritici (Pst). TaRop10 was downregulated by actin depolymerization and was observed to be differentially induced by abiotic stress and the perception of plant hormones. A combination of yeast two-hybrid and bimolecular fluorescence complementation assays revealed that TaRop10 interacted with a h-type thioredoxin (TaTrxh9). Knocking-down of TaRop10 and TaTrxh9 was performed using the BSMV-VIGS (barley stripe mosaic virus-based virus-induced gene silencing) technique and revealed that TaRop10 and TaTrxh9 play a role in the negative regulation of defense signaling in response to Pst infection. In total, the data presented herein further illuminate our understanding of how intact plant cells accommodate fungal infection structures, and furthermore, support the function of TaRop10 and TaTrxh9 in negative modulation of defense signaling in response to stripe rust infection.
Collapse
Affiliation(s)
- Beibei Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Juan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; School of Life Science, Shanxi Datong University, Datong, Shanxi 037009, China
| | - Haifeng Gao
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences / Key Laboratory of Integrated Pest Management on Crop in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Urumqi, Xinjiang 830091, China
| | - Qichao Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States; Plant Resilience Institute, Michigan State University, East Lansing, MI, United States.
| | - Qing Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
11
|
Pradhan AK, Kumar S, Singh AK, Budhlakoti N, Mishra DC, Chauhan D, Mittal S, Grover M, Kumar S, Gangwar OP, Kumar S, Gupta A, Bhardwaj SC, Rai A, Singh K. Identification of QTLs/Defense Genes Effective at Seedling Stage Against Prevailing Races of Wheat Stripe Rust in India. Front Genet 2020; 11:572975. [PMID: 33329711 PMCID: PMC7728992 DOI: 10.3389/fgene.2020.572975] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/30/2020] [Indexed: 01/06/2023] Open
Abstract
Resistance in modern wheat cultivars for stripe rust is not long lasting due to the narrow genetic base and periodical evolution of new pathogenic races. Though nearly 83 Yr genes conferring resistance to stripe rust have been cataloged so far, few of them have been mapped and utilized in breeding programs. Characterization of wheat germplasm for novel sources of resistance and their incorporation into elite cultivars is required to achieve durable resistance and thus to minimize the yield losses. Here, a genome-wide association study (GWAS) was performed on a set of 391 germplasm lines with the aim to identify quantitative trait loci (QTL) using 35K Axiom® array. Phenotypic evaluation disease severity against four stripe rust pathotypes, i.e., 46S119, 110S119, 238S119, and 47S103 (T) at the seedling stage in a greenhouse providing optimal conditions was carried out consecutively for 2 years (2018 and 2019 winter season). We identified, a total of 17 promising QTl which passed FDR criteria. Moreover these 17 QTL identified in the current study were mapped at different genomic locations i.e. 1B, 2A, 2B, 2D, 3A, 3B, 3D, 4B, 5B and 6B. These 17 QTLs identified in the present study might play a key role in marker-assisted breeding for developing stripe rust resistant wheat cultivars.
Collapse
Affiliation(s)
- Anjan Kumar Pradhan
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sundeep Kumar
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Amit Kumar Singh
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Neeraj Budhlakoti
- Indian Council of Agricultural Research-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dwijesh C Mishra
- Indian Council of Agricultural Research-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Divya Chauhan
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Shikha Mittal
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Monendra Grover
- Indian Council of Agricultural Research-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Suneel Kumar
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Om P Gangwar
- Indian Council of Agricultural Research-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, India
| | - Subodh Kumar
- Indian Council of Agricultural Research-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, India
| | - Arun Gupta
- Indian Council of Agricultural Research-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Subhash C Bhardwaj
- Indian Council of Agricultural Research-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, India
| | - Anil Rai
- Indian Council of Agricultural Research-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Kuldeep Singh
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
12
|
Cifrová P, Oulehlová D, Kollárová E, Martinek J, Rosero A, Žárský V, Schwarzerová K, Cvrčková F. Division of Labor Between Two Actin Nucleators-the Formin FH1 and the ARP2/3 Complex-in Arabidopsis Epidermal Cell Morphogenesis. FRONTIERS IN PLANT SCIENCE 2020; 11:148. [PMID: 32194585 PMCID: PMC7061858 DOI: 10.3389/fpls.2020.00148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/30/2020] [Indexed: 05/11/2023]
Abstract
The ARP2/3 complex and formins are the only known plant actin nucleators. Besides their actin-related functions, both systems also modulate microtubule organization and dynamics. Loss of the main housekeeping Arabidopsis thaliana Class I membrane-targeted formin FH1 (At3g25500) is known to increase cotyledon pavement cell lobing, while mutations affecting ARP2/3 subunits exhibit an opposite effect. Here we examine the role of FH1 and the ARP2/3 complex subunit ARPC5 (At4g01710) in epidermal cell morphogenesis with focus on pavement cells and trichomes using a model system of single fh1 and arpc5, as well as double fh1 arpc5 mutants. While cotyledon pavement cell shape in double mutants mostly resembled single arpc5 mutants, analysis of true leaf epidermal morphology, as well as actin and microtubule organization and dynamics, revealed a more complex relationship between the two systems and similar, rather than antagonistic, effects on some parameters. Both fh1 and arpc5 mutations increased actin network density and increased cell shape complexity in pavement cells and trichomes of first true leaves, in contrast to cotyledons. Thus, while the two actin nucleation systems have complementary roles in some aspects of cell morphogenesis in cotyledon pavement cells, they may act in parallel in other cell types and developmental stages.
Collapse
Affiliation(s)
- Petra Cifrová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Denisa Oulehlová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Eva Kollárová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Jan Martinek
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Amparo Rosero
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Kateřina Schwarzerová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
- *Correspondence: Fatima Cvrčková,
| |
Collapse
|
13
|
Sun G, Feng C, Guo J, Zhang A, Xu Y, Wang Y, Day B, Ma Q. The tomato Arp2/3 complex is required for resistance to the powdery mildew fungus Oidium neolycopersici. PLANT, CELL & ENVIRONMENT 2019; 42:2664-2680. [PMID: 31038756 PMCID: PMC7747227 DOI: 10.1111/pce.13569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 05/04/2023]
Abstract
The actin-related protein 2/3 complex (Arp2/3 complex), a key regulator of actin cytoskeletal dynamics, has been linked to multiple cellular processes, including those associated with response to stress. Herein, the Solanum habrochaites ARPC3 gene, encoding a subunit protein of the Arp2/3 complex, was identified and characterized. ShARPC3 encodes a 174-amino acid protein possessing a conserved P21-Arc domain. Silencing of ShARPC3 resulted in enhanced susceptibility to the powdery mildew pathogen Oidium neolycopersici (On-Lz), demonstrating a role for ShARPC3 in defence signalling. Interestingly, a loss of ShARPC3 coincided with enhanced susceptibility to On-Lz, a process that we hypothesize is the result of a block in the activity of SA-mediated defence signalling. Conversely, overexpression of ShARPC3 in Arabidopsis thaliana, followed by inoculation with On-Lz, showed enhanced resistance, including the rapid induction of hypersensitive cell death and the generation of reactive oxygen. Heterologous expression of ShARPC3 in the arc18 mutant of Saccharomyces cerevisiae (i.e., ∆arc18) resulted in complementation of stress-induced phenotypes, including high-temperature tolerance. Taken together, these data support a role for ShARPC3 in tomato through positive regulation of plant immunity in response to O. neolycopersici pathogenesis.
Collapse
Affiliation(s)
- Guangzheng Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Chanjing Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jia Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Ancheng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yuanliu Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan
| | - Qing Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
14
|
Sheoran S, Jaiswal S, Kumar D, Raghav N, Sharma R, Pawar S, Paul S, Iquebal MA, Jaiswar A, Sharma P, Singh R, Singh CP, Gupta A, Kumar N, Angadi UB, Rai A, Singh GP, Kumar D, Tiwari R. Uncovering Genomic Regions Associated With 36 Agro-Morphological Traits in Indian Spring Wheat Using GWAS. FRONTIERS IN PLANT SCIENCE 2019; 10:527. [PMID: 31134105 PMCID: PMC6511880 DOI: 10.3389/fpls.2019.00527] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/04/2019] [Indexed: 05/13/2023]
Abstract
Wheat genetic improvement by integration of advanced genomic technologies is one way of improving productivity. To facilitate the breeding of economically important traits in wheat, SNP loci and underlying candidate genes associated with the 36 agro-morphological traits were studied in a diverse panel of 404 genotypes. By using Breeders' 35K Axiom array in a comprehensive genome-wide association study covering 4364.79 cM of the wheat genome and applying a compressed mixed linear model, a total of 146 SNPs (-log10 P ≥ 4) were found associated with 23 traits out of 36 traits studied explaining 3.7-47.0% of phenotypic variance. To reveal this a subset of 260 genotypes was characterized phenotypically for six quantitative traits [days to heading (DTH), days to maturity (DTM), plant height (PH), spike length (SL), awn length (Awn_L), and leaf length (Leaf_L)] under five environments. Gene annotations mined ∼38 putative candidate genes which were confirmed using tissue and stage specific gene expression data from RNA Seq. We observed strong co-localized loci for four traits (glume pubescence, SL, PH, and awn color) on chromosome 1B (24.64 cM) annotated five putative candidate genes. This study led to the discovery of hitherto unreported loci for some less explored traits (such as leaf sheath wax, awn attitude, and glume pubescence) besides the refined chromosomal regions of known loci associated with the traits. This study provides valuable information of the genetic loci and their potential genes underlying the traits such as awn characters which are being considered as important contributors toward yield enhancement.
Collapse
Affiliation(s)
- Sonia Sheoran
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Sarika Jaiswal
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Deepender Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Nishu Raghav
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Ruchika Sharma
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Sushma Pawar
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Surinder Paul
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - M. A. Iquebal
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Akanksha Jaiswar
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Pradeep Sharma
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Rajender Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | | | - Arun Gupta
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Neeraj Kumar
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - U. B. Angadi
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anil Rai
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - G. P. Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Dinesh Kumar
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ratan Tiwari
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| |
Collapse
|
15
|
Badet T, Léger O, Barascud M, Voisin D, Sadon P, Vincent R, Le Ru A, Balagué C, Roby D, Raffaele S. Expression polymorphism at the ARPC4 locus links the actin cytoskeleton with quantitative disease resistance to Sclerotinia sclerotiorum in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2019; 222:480-496. [PMID: 30393937 DOI: 10.1111/nph.15580] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/25/2018] [Indexed: 06/08/2023]
Abstract
Quantitative disease resistance (QDR) is a form of plant immunity widespread in nature, and the only one active against broad host range fungal pathogens. The genetic determinants of QDR are complex and largely unknown, and are thought to rely partly on genes controlling plant morphology and development. We used genome-wide association mapping in Arabidopsis thaliana to identify ARPC4 as associated with QDR against the necrotrophic fungal pathogen Sclerotinia sclerotiorum. Mutants impaired in ARPC4 showed enhanced susceptibility to S. sclerotiorum, defects in the structure of the actin filaments and in their responsiveness to S. sclerotiorum. Disruption of ARPC4 also alters callose deposition and the expression of defense-related genes upon S. sclerotiorum infection. Analysis of ARPC4 diversity in A. thaliana identified one haplotype (ARPC4R ) showing a c. 1 kbp insertion in ARPC4 regulatory region and associated with higher level of QDR. Accessions from the ARPC4R haplotype showed enhanced ARPC4 expression upon S. sclerotiorum challenge, indicating that polymorphisms in ARPC4 regulatory region are associated with enhanced QDR. This work identifies a novel actor of plant QDR against a fungal pathogen and provides a prime example of genetic mechanisms leading to the recruitment of cell morphology processes in plant immunity.
Collapse
Affiliation(s)
- Thomas Badet
- LIPM, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| | - Ophélie Léger
- LIPM, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| | - Marielle Barascud
- LIPM, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| | - Derry Voisin
- LIPM, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| | - Pierre Sadon
- LIPM, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| | - Remy Vincent
- LIPM, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| | - Aurélie Le Ru
- Plateforme Imagerie, Pôle de Biotechnologie Végétale, Fédération de Recherche 3450, 31326, Castanet-Tolosan, France
| | - Claudine Balagué
- LIPM, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| | - Dominique Roby
- LIPM, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| | - Sylvain Raffaele
- LIPM, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| |
Collapse
|