1
|
Tang J, Guo H. Jack of all trades: crosstalk between FERONIA signaling and hormone pathways. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1907-1920. [PMID: 39972666 PMCID: PMC12066122 DOI: 10.1093/jxb/eraf071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
The receptor kinase FERONIA (FER) is a multifaceted regulator of plant growth, development, reproduction, and stress responses. FER is functionally connected to many plant hormones in diverse biological processes. This review summarizes the current understanding of the interplay between FER and phytohormones, with a focus on abscisic acid, ethylene, jasmonic acid, auxin, and brassinosteroid. The mutual regulation between FER and plant hormones happens at multiple levels including ligands, receptors, and downstream signaling components. Plant hormones can regulate the expression of genes encoding FER and its ligands RAPID ALKALINIZATION FACTORs (RALFs) as well as the abundance and kinase activity of FER proteins. On the other hand, FER can regulate hormone biosynthesis, transport, perception, and downstream signaling components such as transcription factors. Evidence of the crosstalk between FER and phytohormones is also emerging in crop species. Despite the rapid progress made in this field, more mechanistic studies are still needed to gain a comprehensive understanding of the FER-phytohormone crosstalk. Future research prospects and potential approaches are also discussed in this review.
Collapse
Affiliation(s)
- Jie Tang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Hongqing Guo
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
2
|
Chen D, Liu Y, Chen Y, Li B, Chen T, Tian S. Functions of membrane proteins in regulating fruit ripening and stress responses of horticultural crops. MOLECULAR HORTICULTURE 2024; 4:35. [PMID: 39313804 PMCID: PMC11421178 DOI: 10.1186/s43897-024-00111-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/16/2024] [Indexed: 09/25/2024]
Abstract
Fruit ripening is accompanied by the development of fruit quality traits; however, this process also increases the fruit's susceptibility to various environmental stresses, including pathogen attacks and other stress factors. Therefore, modulating the fruit ripening process and defense responses is crucial for maintaining fruit quality and extending shelf life. Membrane proteins play intricate roles in mediating signal transduction, ion transport, and many other important biological processes, thus attracting extensive research interest. This review mainly focuses on the functions of membrane proteins in regulating fruit ripening and defense responses against biotic and abiotic factors, addresses their potential as targets for improving fruit quality and resistance to environmental challenges, and further highlights some open questions to be addressed.
Collapse
Affiliation(s)
- Daoguo Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhan Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Boqiang Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Tong Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| | - Shiping Tian
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Huang X, Liu Y, Jia Y, Ji L, Luo X, Tian S, Chen T. FERONIA homologs in stress responses of horticultural plants: current knowledge and missing links. STRESS BIOLOGY 2024; 4:28. [PMID: 38847988 PMCID: PMC11161445 DOI: 10.1007/s44154-024-00161-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/12/2024] [Indexed: 06/10/2024]
Abstract
Owing to its versatile roles in almost all aspects of plants, FERONIA (FER), a receptor-like kinase of the Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) subfamily, has received extensive research interests during the past decades. Accumulating evidence has been emerged that FER homologs in horticultural crops also play crucial roles in reproductive biology and responses to environmental stimuli (abiotic and biotic stress factors). Here, we provide a review for the latest advances in the studies on FER homologs in modulating stress responses in horticultural crops, and further analyze the underlying mechanisms maintained by FER. Moreover, we also envisage the missing links in current work and provide a perspective for future studies on this star protein.
Collapse
Affiliation(s)
- Xinhua Huang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhan Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanhong Jia
- Vegetable Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, 300384, China
| | - Lizhu Ji
- Vegetable Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, 300384, China
| | - Xiaomin Luo
- China National Botanical Garden, Beijing, 100093, China.
| | - Shiping Tian
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| |
Collapse
|
4
|
Liu L, Liu X, Bai Z, Tanveer M, Zhang Y, Chen W, Shabala S, Huang L. Small but powerful: RALF peptides in plant adaptive and developmental responses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 343:112085. [PMID: 38588983 DOI: 10.1016/j.plantsci.2024.112085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
Plants live in a highly dynamic environment and require to rapidly respond to a plethora of environmental stimuli, so that to maintain their optimal growth and development. A small plant peptide, rapid alkalization factor (RALF), can rapidly increase the pH value of the extracellular matrix in plant cells. RALFs always function with its corresponding receptors. Mechanistically, effective amount of RALF is induced and released at the critical period of plant growth and development or under different external environmental factors. Recent studies also highlighted the role of RALF peptides as important regulators in plant intercellular communications, as well as their operation in signal perception and as ligands for different receptor kinases on the surface of the plasma membrane, to integrate various environmental cues. In this context, understanding the fine-print of above processes may be essential to solve the problems of crop adaptation to various harsh environments under current climate trends scenarios, by genetic means. This paper summarizes the current knowledge about the structure and diversity of RALF peptides and their roles in plant development and response to stresses, highlighting unanswered questions and problems to be solved.
Collapse
Affiliation(s)
- Lining Liu
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Xing Liu
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Zhenkun Bai
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Mohsin Tanveer
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Yujing Zhang
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Wenjie Chen
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China
| | - Sergey Shabala
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China; School of Biological Science, University of Western Australia, Crawley, Perth, Australia.
| | - Liping Huang
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, China.
| |
Collapse
|
5
|
Jin J, Wang W, Fan D, Hao Q, Jia W. Emerging Roles of Mitogen-Activated Protein Kinase Signaling Pathways in the Regulation of Fruit Ripening and Postharvest Quality. Int J Mol Sci 2024; 25:2831. [PMID: 38474080 DOI: 10.3390/ijms25052831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Fleshy fruit ripening is a unique biological process that involves dramatic changes in a diverse array of cellular metabolisms. The regulation of these metabolisms is essentially mediated by cellular signal transduction of internal (e.g., hormones) and external cues (i.e., environmental stimuli). Mitogen-activated protein kinase (MAPK) signaling pathways play crucial roles in a diverse array of biological processes, such as plant growth, development and biotic/abiotic responses. Accumulating evidence suggests that MAPK signaling pathways are also implicated in fruit ripening and quality formation. However, while MAPK signaling has been extensively reviewed in Arabidopsis and some crop plants, the comprehensive picture of how MAPK signaling regulates fruit ripening and quality formation remains unclear. In this review, we summarize and discuss research in this area. We first summarize recent studies on the expression patterns of related kinase members in relation to fruit development and ripening and then summarize and discuss the crucial evidence of the involvement of MAPK signaling in fruit ripening and quality formation. Finally, we propose several perspectives, highlighting the research matters and questions that should be afforded particular attention in future studies.
Collapse
Affiliation(s)
- Juan Jin
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China
| | - Wei Wang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Dingyu Fan
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China
| | - Qing Hao
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China
| | - Wensuo Jia
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China
- College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Liu J, Li W, Wu G, Ali K. An update on evolutionary, structural, and functional studies of receptor-like kinases in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1305599. [PMID: 38362444 PMCID: PMC10868138 DOI: 10.3389/fpls.2024.1305599] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/03/2024] [Indexed: 02/17/2024]
Abstract
All living organisms must develop mechanisms to cope with and adapt to new environments. The transition of plants from aquatic to terrestrial environment provided new opportunities for them to exploit additional resources but made them vulnerable to harsh and ever-changing conditions. As such, the transmembrane receptor-like kinases (RLKs) have been extensively duplicated and expanded in land plants, increasing the number of RLKs in the advanced angiosperms, thus becoming one of the largest protein families in eukaryotes. The basic structure of the RLKs consists of a variable extracellular domain (ECD), a transmembrane domain (TM), and a conserved kinase domain (KD). Their variable ECDs can perceive various kinds of ligands that activate the conserved KD through a series of auto- and trans-phosphorylation events, allowing the KDs to keep the conserved kinase activities as a molecular switch that stabilizes their intracellular signaling cascades, possibly maintaining cellular homeostasis as their advantages in different environmental conditions. The RLK signaling mechanisms may require a coreceptor and other interactors, which ultimately leads to the control of various functions of growth and development, fertilization, and immunity. Therefore, the identification of new signaling mechanisms might offer a unique insight into the regulatory mechanism of RLKs in plant development and adaptations. Here, we give an overview update of recent advances in RLKs and their signaling mechanisms.
Collapse
Affiliation(s)
| | | | - Guang Wu
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Khawar Ali
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
7
|
Liu HB, Sun HX, Du LQ, Jiang LL, Zhang LA, Qi YY, Cai J, Yu F. Rice receptor kinase FLR7 regulates rhizosphere oxygen levels and enriches the dominant Anaeromyxobacter that improves submergence tolerance in rice. THE ISME JOURNAL 2024; 18:wrae006. [PMID: 38366198 PMCID: PMC10900889 DOI: 10.1093/ismejo/wrae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/22/2023] [Accepted: 01/20/2024] [Indexed: 02/18/2024]
Abstract
Oxygen is one of the determinants of root microbiome formation. However, whether plants regulate rhizosphere oxygen levels to affect microbiota composition and the underlying molecular mechanisms remain elusive. The receptor-like kinase (RLK) family member FERONIA modulates the growth-defense tradeoff in Arabidopsis. Here, we established that rice FERONIA-like RLK 7 (FLR7) controls rhizosphere oxygen levels by methylene blue staining, oxygen flux, and potential measurements. The formation of oxygen-transporting aerenchyma in roots is negatively regulated by FLR7. We further characterized the root microbiota of 11 FLR mutants including flr7 and wild-type Nipponbare (Nip) grown in the field by 16S ribosomal RNA gene profiling and demonstrated that the 11 FLRs are involved in regulating rice root microbiome formation. The most abundant anaerobic-dependent genus Anaeromyxobacter in the Nip root microbiota was less abundant in the root microbiota of all these mutants, and this contributed the most to the community differences between most mutants and Nip. Metagenomic sequencing revealed that flr7 increases aerobic respiration and decreases anaerobic respiration in the root microbiome. Finally, we showed that a representative Anaeromyxobacter strain improved submergence tolerance in rice via FLR7. Collectively, our findings indicate that FLR7 mediates changes in rhizosphere oxygen levels and enriches the beneficial dominant genus Anaeromyxobacter and may provide insights for developing plant flood prevention strategies via the use of environment-specific functional soil microorganisms.
Collapse
Affiliation(s)
- Hong-Bin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, P.R. China
- Key Laboratory for Non-Wood Forest Cultivation and Conservation of Ministry of Education, College of Forestry, Central South University of Forestry and Technology, Changsha 410082, P.R. China
- Interdisciplinary and Intelligent Seed Industry Equipment Research Department, Yuelushan Laboratory, Changsha 410082, P.R. China
| | - Hong-Xia Sun
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, P.R. China
| | - Li-Qiong Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, P.R. China
| | - Ling-Li Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, P.R. China
| | - Lin-An Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, P.R. China
| | - Yin-Yao Qi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, P.R. China
| | - Jun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, P.R. China
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, P.R. China
- Interdisciplinary and Intelligent Seed Industry Equipment Research Department, Yuelushan Laboratory, Changsha 410082, P.R. China
| |
Collapse
|
8
|
Baranov D, Timerbaev V. Recent Advances in Studying the Regulation of Fruit Ripening in Tomato Using Genetic Engineering Approaches. Int J Mol Sci 2024; 25:760. [PMID: 38255834 PMCID: PMC10815249 DOI: 10.3390/ijms25020760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Tomato (Solanum lycopersicum L.) is one of the most commercially essential vegetable crops cultivated worldwide. In addition to the nutritional value, tomato is an excellent model for studying climacteric fruits' ripening processes. Despite this, the available natural pool of genes that allows expanding phenotypic diversity is limited, and the difficulties of crossing using classical selection methods when stacking traits increase proportionally with each additional feature. Modern methods of the genetic engineering of tomatoes have extensive potential applications, such as enhancing the expression of existing gene(s), integrating artificial and heterologous gene(s), pointing changes in target gene sequences while keeping allelic combinations characteristic of successful commercial varieties, and many others. However, it is necessary to understand the fundamental principles of the gene molecular regulation involved in tomato fruit ripening for its successful use in creating new varieties. Although the candidate genes mediate ripening have been identified, a complete picture of their relationship has yet to be formed. This review summarizes the latest (2017-2023) achievements related to studying the ripening processes of tomato fruits. This work attempts to systematize the results of various research articles and display the interaction pattern of genes regulating the process of tomato fruit ripening.
Collapse
Affiliation(s)
- Denis Baranov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, 142290 Pushchino, Russia;
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Vadim Timerbaev
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, 142290 Pushchino, Russia;
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| |
Collapse
|
9
|
Ma W, Du J, Yu X, Chen K, Ming Y, Jiang L, Chen T, Ji D. Genome-Wide Identification and Analysis of Catharanthus roseus Receptor-like Kinase 1-like Proteins in Eggplant. PLANTS (BASEL, SWITZERLAND) 2023; 12:3379. [PMID: 37836119 PMCID: PMC10574150 DOI: 10.3390/plants12193379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
As an important member of the plant receptor-like kinases, Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) plays vital roles in plant growth and development, as well as biotic and abiotic stress response. Numerous CrRLK1Ls have been identified and analyzed in various plant species, while our knowledge about eggplant (Solanum melongena L.) CrRLK1Ls is still scarce. Utilizing state-of-the-art genomic data, we conducted the first genome-wide identification and analysis of CrRLK1L proteins in eggplant. In this study, 32 CrRLK1L proteins were identified and analyzed in eggplant. A subsequent gene structure and protein domain analysis showed that the identified eggplant CrRLK1Ls possessed typical features of CrRLK1Ls. A subcellular localization prediction demonstrated that these proteins mostly localized on the plasma membrane. A collinearity analysis showed that some eggplant CrRLK1L genes had predicted intraspecies or interspecies evolutionary duplication events. Promoter analysis suggests that eggplant CrRLK1Ls may be involved in plant hormone signaling, host-pathogen interactions, and environmental responses. Based on transcriptomic gene expression analysis, it is indicated that eggplant CrRLK1Ls may be involved in the resistance response of eggplant to Botrytis cinerea. Together, these results will give us a theoretical foundation and guidance for elaborating the biological functions of CrRLK1Ls in eggplant growth, development, and resistance response.
Collapse
Affiliation(s)
- Wenpeng Ma
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Juan Du
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Xinlong Yu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Kai Chen
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Yucheng Ming
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Libo Jiang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
| | - Dongchao Ji
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| |
Collapse
|
10
|
Cell Wall Integrity Signaling in Fruit Ripening. Int J Mol Sci 2023; 24:ijms24044054. [PMID: 36835462 PMCID: PMC9961072 DOI: 10.3390/ijms24044054] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/04/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Plant cell walls are essential structures for plant growth and development as well as plant adaptation to environmental stresses. Thus, plants have evolved signaling mechanisms to monitor the changes in the cell wall structure, triggering compensatory changes to sustain cell wall integrity (CWI). CWI signaling can be initiated in response to environmental and developmental signals. However, while environmental stress-associated CWI signaling has been extensively studied and reviewed, less attention has been paid to CWI signaling in relation to plant growth and development under normal conditions. Fleshy fruit development and ripening is a unique process in which dramatic alternations occur in cell wall architecture. Emerging evidence suggests that CWI signaling plays a pivotal role in fruit ripening. In this review, we summarize and discuss the CWI signaling in relation to fruit ripening, which will include cell wall fragment signaling, calcium signaling, and NO signaling, as well as Receptor-Like Protein Kinase (RLKs) signaling with an emphasis on the signaling of FERONIA and THESEUS, two members of RLKs that may act as potential CWI sensors in the modulation of hormonal signal origination and transduction in fruit development and ripening.
Collapse
|
11
|
Ma W, Liu X, Chen K, Yu X, Ji D. Genome-Wide Re-Identification and Analysis of CrRLK1Ls in Tomato. Int J Mol Sci 2023; 24:ijms24043142. [PMID: 36834555 PMCID: PMC9959574 DOI: 10.3390/ijms24043142] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
The Catharanthus roseus receptor-like kinase 1-like (CrRLK1L), which is a vital member of the plant receptor-like kinase family, plays versatile roles in plant growth, development, and stress response. Although the primary screening of tomato CrRLK1Ls has been reported previously, our knowledge of these proteins is still scarce. Using the latest genomic data annotations, a genome-wide re-identification and analysis of the CrRLK1Ls in tomatoes were conducted. In this study, 24 CrRLK1L members were identified in tomatoes and researched further. Subsequent gene structures, protein domains, Western blot analyses, and subcellular localization analyses all confirmed the accuracy of the newly identified SlCrRLK1L members. Phylogenetic analyses showed that the identified SlCrRLK1L proteins had homologs in Arabidopsis. Evolutionary analysis indicated that two pairs of the SlCrRLK1L genes had predicted segmental duplication events. Expression profiling analyses demonstrated that the SlCrRLK1L genes were expressed in various tissues, and most of them were up- or down-regulated by bacteria and PAMP treatments. Together, these results will lay the foundation for elaborating the biological roles of SlCrRLK1Ls in tomato growth, development, and stress response.
Collapse
Affiliation(s)
- Wenpeng Ma
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Xin Liu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Kai Chen
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Xinlong Yu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Dongchao Ji
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| |
Collapse
|
12
|
Preharvest Application of Commercial Products Based on Chitosan, Phosphoric Acid Plus Micronutrients, and Orange Essential Oil on Postharvest Quality and Gray Mold Infections of Strawberry. Int J Mol Sci 2022; 23:ijms232415472. [PMID: 36555113 PMCID: PMC9779177 DOI: 10.3390/ijms232415472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/27/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Strawberry is a perishable fruit with a limited shelf life after harvest due to deterioration of quality and the development of gray mold, Rhizopus rot and other minor diseases. In this study, the effectiveness of commercial compounds based on chitosan, phosphoric acid plus micronutrients, and sweet orange essential oil (EO) in reducing decay and optimizing the quality of strawberries was analyzed. The plant canopy of a greenhouse crop was sprayed once and strawberry fruit were harvested three days later. Gray mold infections were evaluated after chilled storage for seven days at 4 ± 0.5 °C followed by five days shelf life. The qualitative parameters were recorded at harvest (initial day) and after three days of storage at room temperature (RT, 20 °C) or after cold storage and shelf life (CS, 4 °C). The application of sweet orange EO increased the antioxidant and flavonoid content at harvest, while a decrease was reported following three days of storage at RT. At the same time, increased ethylene production and weight loss were observed during CS three days after harvesting. Chitosan treatment maintained the harvest fruit quality and was effective in the control of postharvest decay. Our results suggest that the investigated natural compounds could improve strawberry quality after harvest. Since chitosan performed best in terms of maintaining quality and reducing postharvest decay, it could be considered as a good substitute for chemical-synthetic fungicides for the preservation of strawberry postharvest gray mold.
Collapse
|
13
|
Zhang Y, Zhu D, Ren X, Shen Y, Cao X, Liu H, Li J. Quality changes and shelf-life prediction model of postharvest apples using partial least squares and artificial neural network analysis. Food Chem 2022; 394:133526. [PMID: 35749881 DOI: 10.1016/j.foodchem.2022.133526] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 11/19/2022]
Abstract
The quality of postharvest apples is greatly affected by storage temperatures. In this paper, the sensory qualities, such as flavor, texture, color, and taste change of apples during storage at 4 °C and 20 °C were investigated. After correlation analysis, the partial least squares (PLS) and artificial neural network (ANN) techniques were used to build a shelf-life prediction model. The results showed that lower temperature storage can better maintain the color, flesh hardness, and release of volatile compounds of apples. The acidity of apples stored at 20 °C decreased much faster than that at 4 °C. The PLS models were successful in predicting the apple shelf life. When modeling using PLS with a single type index, the order of accuracy of the prediction model was texture, color, and flavor. As a nonlinear algorithm, the ANN model was also an effective predictive tool of apple shelf life at both temperatures.
Collapse
Affiliation(s)
- Yueyi Zhang
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Danshi Zhu
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China.
| | - Xiaojun Ren
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Yusi Shen
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Xuehui Cao
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - He Liu
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China.
| |
Collapse
|
14
|
Li X, Guo C, Wang Q, Li Z, Cai J, Wu D, Li Y, Yang A, Guo Y, Gao J, Wen L, Pu W. Systematic Analysis of Tobacco CrRLK1L Family Genes and Functional Identification of NtCrRLK1L47 in Environmental Stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:838857. [PMID: 35783983 PMCID: PMC9247620 DOI: 10.3389/fpls.2022.838857] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
The Catharanthus roseus RLK1-like (CrRLK1L) family is involved in the regulation of plant reproduction, growth and development, cell wall integrity sensing, as well as responses to both biotic and abiotic stress conditions. Extraordinary progress has been made in elucidating the CrRLK1L family receptor kinases-mediated signaling pathway, while limited research addressed the functions of CrRLK1L proteins in tobacco. In this study, we identified and analyzed 48 NtCrRLK1L members from the tobacco genome. The newly identified NtCrRLK1L members were divided into seven groups together with the Arabidopsis CrRLK1L members. The syntenic analysis revealed that four pairs of NtCrRLK1L genes were predicted to have arisen from segmental duplication events. Expression profiling showed that the NtCrRLK1L genes were expressed in various tissues, and most NtCrRLK1L genes were induced by salt and drought stress conditions. Notably, NtCrRLK1L47 was upregulated under drought and salinity stresses, and the NtCrRLK1L47-GFP fusion protein was located in the cell membrane. Furthermore, overexpression of the NtCrRLK1L47 gene enhanced the salt tolerance in tobacco seedlings.
Collapse
Affiliation(s)
- Xiaoxu Li
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, China
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Cun Guo
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Qi Wang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zhiyuan Li
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jun Cai
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China
| | - Dousheng Wu
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, China
| | - Yangyang Li
- Hunan Tobacco Research Institute, Changsha, China
| | - Aiguo Yang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yongfeng Guo
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Junping Gao
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Liuying Wen
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Wenxuan Pu
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| |
Collapse
|
15
|
Serra O, de Sousa RM, Guimarães JB, Matos J, Vicente P, de Sousa ML, Simões F. Genome-wide clonal variability in European pear "Rocha" using high-throughput sequencing. HORTICULTURE RESEARCH 2022; 9:uhac111. [PMID: 38486834 PMCID: PMC10939347 DOI: 10.1093/hr/uhac111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/27/2022] [Indexed: 03/17/2024]
Abstract
Pears (Pyrus) are one of the most economically important fruits worldwide. The Pyrus genus is characterized by a high degree of genetic variability between species and interspecific hybrids, and several studies have been performed to assess this variability for both cultivated and wild accessions. These studies have mostly been limited by the resolving power of traditional molecular markers, although in the recent past the availability of reference genome sequences or SNP arrays for pear have enhanced the capability of high-resolution genomics studies. These tools can also be applied to better understand the intra-varietal (or clonal) variability in pear. Here we report the first high resolution genomics analysis of a pear clonal population using whole genome sequencing (WGS). Results showed unique signatures for the accumulation of mutations and transposable element insertions in each clone, which are likely related to their history of propagation and cultivation. The nucleotide diversity remained low in the clonal collection with the exception of few genomic windows, suggesting that balancing selection may be occurring. These windows included mainly genes related to plant fertility. Regions with higher mutational load were partially associated with transcription factors, probably reflecting the distinctive phenotypes in the collection. The annotation of variants also revealed the theoretical disruption of relevant genes in pear. Taken together, the results from this study show that pear clones accumulate mutations differently, and that those mutations can play a role on pear phenotypes, meaning that the study of pear clonal populations can be relevant in genetic studies, mainly when comparing with traditional association studies.
Collapse
Affiliation(s)
- Octávio Serra
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Banco Português de Germoplasma Vegetal (BPGV), Quinta de S. José, S. Pedro de Merelim 4700-859 Braga, Portugal
| | - Rui Maia de Sousa
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Estação Nacional de Fruticultura Vieira Natividade (ENFVN), Estrada de Leiria 2460-059 Alcobaça, Portugal
| | - Joana Bagoin Guimarães
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Quinta do Marquês, 2780-159 Oeiras, Portugal
| | - José Matos
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Quinta do Marquês, 2780-159 Oeiras, Portugal
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Patricia Vicente
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Estação Nacional de Fruticultura Vieira Natividade (ENFVN), Estrada de Leiria 2460-059 Alcobaça, Portugal
| | - Miguel Leão de Sousa
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Estação Nacional de Fruticultura Vieira Natividade (ENFVN), Estrada de Leiria 2460-059 Alcobaça, Portugal
| | - Fernanda Simões
- Instituto Nacional de Investigação Agrária e Veterinária, I.P., Quinta do Marquês, 2780-159 Oeiras, Portugal
| |
Collapse
|
16
|
Xie Y, Sun P, Li Z, Zhang F, You C, Zhang Z. FERONIA Receptor Kinase Integrates with Hormone Signaling to Regulate Plant Growth, Development, and Responses to Environmental Stimuli. Int J Mol Sci 2022; 23:ijms23073730. [PMID: 35409090 PMCID: PMC8998941 DOI: 10.3390/ijms23073730] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Plant hormones are critical chemicals that participate in almost all aspects of plant life by triggering cellular response cascades. FERONIA is one of the most well studied members in the subfamily of Catharanthus roseus receptor-like kinase1-like (CrRLK1Ls) hormones. It has been proved to be involved in many different processes with the discovery of its ligands, interacting partners, and downstream signaling components. A growing body of evidence shows that FERONIA serves as a hub to integrate inter- and intracellular signals in response to internal and external cues. Here, we summarize the recent advances of FERONIA in regulating plant growth, development, and immunity through interactions with multiple plant hormone signaling pathways.
Collapse
Affiliation(s)
- Yinhuan Xie
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (Y.X.); (P.S.); (Z.L.); (F.Z.)
| | - Ping Sun
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (Y.X.); (P.S.); (Z.L.); (F.Z.)
| | - Zhaoyang Li
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (Y.X.); (P.S.); (Z.L.); (F.Z.)
| | - Fujun Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (Y.X.); (P.S.); (Z.L.); (F.Z.)
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Chunxiang You
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (Y.X.); (P.S.); (Z.L.); (F.Z.)
- Correspondence: (C.Y.); (Z.Z.)
| | - Zhenlu Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271000, China; (Y.X.); (P.S.); (Z.L.); (F.Z.)
- Correspondence: (C.Y.); (Z.Z.)
| |
Collapse
|
17
|
Xie YH, Zhang FJ, Sun P, Li ZY, Zheng PF, Gu KD, Hao YJ, Zhang Z, You CX. Apple receptor-like kinase FERONIA regulates salt tolerance and ABA sensitivity in Malus domestica. JOURNAL OF PLANT PHYSIOLOGY 2022; 270:153616. [PMID: 35051690 DOI: 10.1016/j.jplph.2022.153616] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
FERONIA (FER) is a membrane-localized receptor-like kinase that plays pivotal roles in male and female gametophyte recognition, hormone signaling crosstalk, and biotic and abiotic responses. Most reports focus on the functions of FER in model plant Arabidopsis thaliana. However, the functions of FER homologs have not been deeply investigated in apple (Malus domestica), an important economic fruit crop distributed worldwide, especially in China. In this study, we identified an apple homolog of Arabidopsis FER, named MdFER (MDP0000390677). The two proteins encoded by AtFER and MdFER share similar domains: an extracellular malectin-like domain, a transmembrane domain, and an intracellular kinase domain. MdFER was further proven to localize to the plasma membrane in the epidermal cells of Nicotiana benthamiana. MdFER was widely expressed in different apple tissues, but the highest expression was found in roots. In addition, expression of MdFER was significantly induced by treatment with abscisic acid (ABA) and salt (NaCl). Overexpressing MdFER dramatically improved the resistance to salt stress and reduced the sensitivity to ABA in apple callus, while suppressing MdFER expression showed contrary effects. Furthermore, ectopic expression of MdFER in Arabidopsis significantly increased the salt tolerance and reduced the sensitivity to ABA. In addition, under salt stress and ABA treatment, Arabidopsis with highly expressed MdFER accumulated less reactive oxygen species (ROS), and the enzymatic activity of two ROS scavengers, superoxide dismutase and catalase, was higher compared with that of wild type (WT). Our work proves that MdFER positively regulates salt tolerance and negatively regulates ABA sensitivity in apple, which enriched the functions of FER in different plant species.
Collapse
Affiliation(s)
- Yin-Huan Xie
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| | - Fu-Jun Zhang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832003, PR China.
| | - Ping Sun
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| | - Zhao-Yang Li
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| | - Peng-Fei Zheng
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| | - Kai-Di Gu
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| | - Yu-Jin Hao
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Zhenlu Zhang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| |
Collapse
|
18
|
Li X, Wang X, Zhang Y, Zhang A, You CX. Regulation of fleshy fruit ripening: From transcription factors to epigenetic modifications. HORTICULTURE RESEARCH 2022; 9:uhac013. [PMID: 35147185 PMCID: PMC9035223 DOI: 10.1093/hr/uhac013] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/01/2021] [Indexed: 05/24/2023]
Abstract
Fleshy fruits undergo a complex ripening process, developing organoleptic fruit traits that attract herbivores and maximize seed dispersal. Ripening is the terminal stage of fruit development and involves a series of physiological and biochemical changes. In fleshy fruits, ripening always involves a drastic color change triggered by the accumulation of pigments and degradation of chlorophyll, softening caused by cell wall remodeling, and flavor formation as acids and sugars accumulate alongside volatile compounds. The mechanisms underlying fruit ripening rely on the orchestration of ripening-related transcription factors, plant hormones, and epigenetic modifications. In this review, we discuss current knowledge of the transcription factors that regulate ripening in conjunction with ethylene and environmental signals (light and temperature) in the model plant tomato (Solanum lycopersicum) and other fleshy fruits. We emphasize the critical roles of epigenetic regulation, including DNA methylation and histone modification as well as RNA m6A modification, which has been studied intensively. This detailed review was compiled to provide a comprehensive description of the regulatory mechanisms of fruit ripening and guide new strategies for its effective manipulation.
Collapse
Affiliation(s)
- Xiuming Li
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Xuemei Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yi Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai-An, 271018, China
| | - Aihong Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai-An, 271018, China
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| |
Collapse
|
19
|
Zhu S, Fu Q, Xu F, Zheng H, Yu F. New paradigms in cell adaptation: decades of discoveries on the CrRLK1L receptor kinase signalling network. THE NEW PHYTOLOGIST 2021; 232:1168-1183. [PMID: 34424552 DOI: 10.1111/nph.17683] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/15/2021] [Indexed: 05/15/2023]
Abstract
Receptor-like kinases (RLKs), which constitute the largest receptor family in plants, are essential for perceiving and relaying information about various environmental stimuli. Tremendous progress has been made in the past few decades towards elucidating the mechanisms of action of several RLKs, with emerging paradigms pointing to their roles in cell adaptations. Among these paradigms, Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) proteins and their rapid alkalinization factor (RALF) peptide ligands have attracted much interest. In particular, FERONIA (FER) is a CrRLK1L protein that participates in a wide array of physiological processes associated with RALF signalling, including cell growth and monitoring cell wall integrity, RNA and energy metabolism, and phytohormone and stress responses. Here, we analyse FER in the context of CrRLK1L members and their ligands in multiple species. The FER working model raises many questions about the role of CrRLK1L signalling networks during cell adaptation. For example, how do CrRLK1Ls recognize various RALF peptides from different organisms to initiate specific phosphorylation signal cascades? How do RALF-FER complexes achieve their specific, sometimes opposite, functions in different cell types? Here, we summarize recent major findings and highlight future perspectives in the field of CrRLK1L signalling networks.
Collapse
Affiliation(s)
- Sirui Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
| | - Qiong Fu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
| | - Fan Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
| | - Heping Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Centre, Changsha, 410125, China
| |
Collapse
|
20
|
Zhu H, He M, Jahan MS, Wu J, Gu Q, Shu S, Sun J, Guo S. CsCDPK6, a CsSAMS1-Interacting Protein, Affects Polyamine/Ethylene Biosynthesis in Cucumber and Enhances Salt Tolerance by Overexpression in Tobacco. Int J Mol Sci 2021; 22:11133. [PMID: 34681792 PMCID: PMC8538082 DOI: 10.3390/ijms222011133] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 01/04/2023] Open
Abstract
S-adenosylmethionine synthetase (SAMS) plays a crucial role in regulating stress responses. In a recent study, we found that overexpression of the cucumber gene CsSAMS1 in tobacco can affect the production of polyamines and ethylene, as well as enhancing the salt stress tolerance of tobacco, but the exact underlying mechanisms are elusive. The calcium-dependent protein kinase (CDPK) family is ubiquitous in plants and performs different biological functions in plant development and response to abiotic stress. We used a yeast two-hybrid system to detect whether the protein CDPK6 could interact with SAMS1 and verified their interaction by bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation (Co-IP) assays. To further explore the function of cucumber CDPK6, we isolated and characterized CsCDPK6 in cucumber. CsCDPK6 is a membrane protein that is highly expressed under various abiotic stresses, including salt stress. It was also observed that ectopic overexpression of CsCDPK6 in tobacco enhanced salt tolerance. Under salt stress, CsCDPK6-overexpressing lines enhanced the survival rate and reduced stomatal apertures in comparison to wild-type (WT) lines, as well as lowering malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents and causing less relative electrolyte leakage. Moreover, repression of CsCDPK6 expression by virus-induced gene silencing (VIGS) in cucumber seedling cotyledons under salt stress increased ethylene production and promoted the transformation from putrescine (Put) to spermidine (Spd) and spermine (Spm). These findings shed light on the interaction of CsSAMS1 and CsCDPK6, which functions positively to regulate salt stress in plants.
Collapse
Affiliation(s)
- Heyuan Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (M.S.J.); (J.W.); (S.S.); (J.S.)
| | - Meiwen He
- Institute of China Agricultural University Press, China Agricultural University, Beijing 100094, China;
| | - Mohammad Shah Jahan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (M.S.J.); (J.W.); (S.S.); (J.S.)
| | - Jianqiang Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (M.S.J.); (J.W.); (S.S.); (J.S.)
| | - Qinsheng Gu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China;
| | - Sheng Shu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (M.S.J.); (J.W.); (S.S.); (J.S.)
| | - Jin Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (M.S.J.); (J.W.); (S.S.); (J.S.)
| | - Shirong Guo
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (M.S.J.); (J.W.); (S.S.); (J.S.)
| |
Collapse
|
21
|
Nilo-Poyanco R, Moraga C, Benedetto G, Orellana A, Almeida AM. Shotgun proteomics of peach fruit reveals major metabolic pathways associated to ripening. BMC Genomics 2021; 22:17. [PMID: 33413072 PMCID: PMC7788829 DOI: 10.1186/s12864-020-07299-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Fruit ripening in Prunus persica melting varieties involves several physiological changes that have a direct impact on the fruit organoleptic quality and storage potential. By studying the proteomic differences between the mesocarp of mature and ripe fruit, it would be possible to highlight critical molecular processes involved in the fruit ripening. RESULTS To accomplish this goal, the proteome from mature and ripe fruit was assessed from the variety O'Henry through shotgun proteomics using 1D-gel (PAGE-SDS) as fractionation method followed by LC/MS-MS analysis. Data from the 131,435 spectra could be matched to 2740 proteins, using the peach genome reference v1. After data pre-treatment, 1663 proteins could be used for comparison with datasets assessed using transcriptomic approaches and for quantitative protein accumulation analysis. Close to 26% of the genes that code for the proteins assessed displayed higher expression at ripe fruit compared to other fruit developmental stages, based on published transcriptomic data. Differential accumulation analysis between mature and ripe fruit revealed that 15% of the proteins identified were modulated by the ripening process, with glycogen and isocitrate metabolism, and protein localization overrepresented in mature fruit, as well as cell wall modification in ripe fruit. Potential biomarkers for the ripening process, due to their differential accumulation and gene expression pattern, included a pectin methylesterase inhibitor, a gibbellerin 2-beta-dioxygenase, an omega-6 fatty acid desaturase, a homeobox-leucine zipper protein and an ACC oxidase. Transcription factors enriched in NAC and Myb protein domains would target preferentially the genes encoding proteins more abundant in mature and ripe fruit, respectively. CONCLUSIONS Shotgun proteomics is an unbiased approach to get deeper into the proteome allowing to detect differences in protein abundance between samples. This technique provided a resolution so that individual gene products could be identified. Many proteins likely involved in cell wall and sugar metabolism, aroma and color, change their abundance during the transition from mature to ripe fruit.
Collapse
Affiliation(s)
- Ricardo Nilo-Poyanco
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide, 5750, Huechuraba, Chile
| | - Carol Moraga
- Université Claude Bernard Lyon 1, 69622, Villeurbanne, France
- Inria Grenoble Rhône-Alpes, 38334, Montbonnot, France
| | - Gianfranco Benedetto
- Centro de Biotecnología Vegetal, Facultad Ciencias Biológicas, Universidad Andrés Bello, República 330, Santiago, Chile
| | - Ariel Orellana
- Centro de Biotecnología Vegetal, Facultad Ciencias Biológicas, Universidad Andrés Bello, República 330, Santiago, Chile
- Center for Genome Regulation, Blanco Encalada, 2085, Santiago, Chile
| | - Andrea Miyasaka Almeida
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide, 5750, Huechuraba, Chile.
- Escuela de Agronomía, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide, 5750, Huechuraba, Chile.
| |
Collapse
|
22
|
Ji D, Cui X, Qin G, Chen T, Tian S. SlFERL Interacts with S-Adenosylmethionine Synthetase to Regulate Fruit Ripening. PLANT PHYSIOLOGY 2020; 184:2168-2181. [PMID: 32999005 PMCID: PMC7723100 DOI: 10.1104/pp.20.01203] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/23/2020] [Indexed: 05/28/2023]
Abstract
Fruit ripening is a complex and genetically programmed process modulated by transcription factors, hormones, and other regulators. However, the mechanism underlying the regulatory loop involving the membrane-protein targets of RIPENING-INHIBITOR (RIN) remains poorly understood. To unravel the function of tomato ( Solanum lycopersicum) FERONIA Like (SlFERL), a putative MADS-box transcription factor target gene, we investigated and addressed the significance of SlFERL in fruit ripening by combining reverse genetics, biochemical, and cytological analyses. Here, we report that RIN and Tomato AGAMOUS-LIKE1 (TAGL1) directly bind to the promoter region of SlFERL and further activate its expression transcriptionally, suggesting a potential role of SlFERL in fruit ripening. Overexpression of SlFERL significantly accelerated the ripening process of tomato fruit, whereas RNA interference knockdown of SlFERL resulted in delayed fruit ripening. Moreover, a surface plasmon resonance assay coupled with tandem mass spectrometry and a protein interaction assay revealed that SlFERL interacts with the key enzyme S-adenosyl-Met synthetase 1 (SlSAMS1) in the ethylene biosynthesis pathway, leading to increased S-adenosyl-Met accumulation and elevated ethylene production. Thus, SlFERL serves as a positive regulator of ethylene production and fruit ripening. This study provides clues to the molecular regulatory networks underlying fruit ripening.
Collapse
Affiliation(s)
- Dongchao Ji
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomin Cui
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, Beijing 100093, China
| |
Collapse
|
23
|
Ji D, Chen T, Zhang Z, Li B, Tian S. Versatile Roles of the Receptor-Like Kinase Feronia in Plant Growth, Development and Host-Pathogen Interaction. Int J Mol Sci 2020; 21:E7881. [PMID: 33114219 PMCID: PMC7660594 DOI: 10.3390/ijms21217881] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
As a member of the Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) protein kinase subfamily, FERONIA (FER) has emerged as a versatile player regulating multifaceted functions in growth and development, as well as responses to environmental factors and pathogens. With the concerted efforts of researchers, the molecular mechanism underlying FER-dependent signaling has been gradually elucidated. A number of cellular processes regulated by FER-ligand interactions have been extensively reported, implying cell type-specific mechanisms for FER. Here, we provide a review on the roles of FER in male-female gametophyte recognition, cell elongation, hormonal signaling, stress responses, responses to fungi and bacteria, and present a brief outlook for future efforts.
Collapse
Affiliation(s)
- Dongchao Ji
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (D.J.); (T.C.); (Z.Z.); (B.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (D.J.); (T.C.); (Z.Z.); (B.L.)
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (D.J.); (T.C.); (Z.Z.); (B.L.)
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (D.J.); (T.C.); (Z.Z.); (B.L.)
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; (D.J.); (T.C.); (Z.Z.); (B.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, Beijing 100093, China
| |
Collapse
|
24
|
Wang L, Wang D, Yang Z, Jiang S, Qu J, He W, Liu Z, Xing J, Ma Y, Lin Q, Yu F. Roles of FERONIA-like receptor genes in regulating grain size and quality in rice. SCIENCE CHINA-LIFE SCIENCES 2020; 64:294-310. [DOI: 10.1007/s11427-020-1780-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/17/2020] [Indexed: 12/20/2022]
|
25
|
Zhang X, Yang Z, Wu D, Yu F. RALF-FERONIA Signaling: Linking Plant Immune Response with Cell Growth. PLANT COMMUNICATIONS 2020; 1:100084. [PMID: 33367248 DOI: 10.1016/j.xplc.2020b.100084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 05/22/2023]
Abstract
Plants perceive various external and internal signals to self-modulate biological processes through members of the receptor-like kinase (RLK) family, among which Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) proteins with their ligands, rapid alkalinization factor (RALF) peptides, have attracted considerable interest. FERONIA (FER), a CrRLK1L member, was initially reported to act as a major plant cell growth modulator in distinct tissues. Subsequently, the RALF-FER pathway was confirmed to function as an essential regulator of plant stress responses, including but not limited to immune responses. Furthermore, the RALF-FER pathway modulates immune responses and cell growth in a context-specific manner, and the vital roles of this pathway are beginning to be appreciated in crop species. The recent remarkable advances in understanding the functions and molecular mechanisms of the RALF-FER pathway have also raised many interesting questions that need to be answered in the future. This review mainly focuses on the roles of FER and other CrRLK1L members in modulating immune responses in the context of cell growth in response to their RALF peptide ligands and presents a brief outlook for future research.
Collapse
Affiliation(s)
- Xin Zhang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P.R. China
| | - Zhuhong Yang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P.R. China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, P.R. China
| | - Dousheng Wu
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P.R. China
| | - Feng Yu
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P.R. China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, P.R. China
| |
Collapse
|
26
|
Zhang X, Yang Z, Wu D, Yu F. RALF-FERONIA Signaling: Linking Plant Immune Response with Cell Growth. PLANT COMMUNICATIONS 2020; 1:100084. [PMID: 33367248 PMCID: PMC7747976 DOI: 10.1016/j.xplc.2020.100084] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 05/26/2023]
Abstract
Plants perceive various external and internal signals to self-modulate biological processes through members of the receptor-like kinase (RLK) family, among which Catharanthus roseus receptor-like kinase 1-like (CrRLK1L) proteins with their ligands, rapid alkalinization factor (RALF) peptides, have attracted considerable interest. FERONIA (FER), a CrRLK1L member, was initially reported to act as a major plant cell growth modulator in distinct tissues. Subsequently, the RALF-FER pathway was confirmed to function as an essential regulator of plant stress responses, including but not limited to immune responses. Furthermore, the RALF-FER pathway modulates immune responses and cell growth in a context-specific manner, and the vital roles of this pathway are beginning to be appreciated in crop species. The recent remarkable advances in understanding the functions and molecular mechanisms of the RALF-FER pathway have also raised many interesting questions that need to be answered in the future. This review mainly focuses on the roles of FER and other CrRLK1L members in modulating immune responses in the context of cell growth in response to their RALF peptide ligands and presents a brief outlook for future research.
Collapse
Affiliation(s)
- Xin Zhang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P.R. China
| | - Zhuhong Yang
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P.R. China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, P.R. China
| | - Dousheng Wu
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P.R. China
| | - Feng Yu
- College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P.R. China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, P.R. China
| |
Collapse
|
27
|
Gigli-Bisceglia N, Engelsdorf T, Hamann T. Plant cell wall integrity maintenance in model plants and crop species-relevant cell wall components and underlying guiding principles. Cell Mol Life Sci 2020; 77:2049-2077. [PMID: 31781810 PMCID: PMC7256069 DOI: 10.1007/s00018-019-03388-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/28/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023]
Abstract
The walls surrounding the cells of all land-based plants provide mechanical support essential for growth and development as well as protection from adverse environmental conditions like biotic and abiotic stress. Composition and structure of plant cell walls can differ markedly between cell types, developmental stages and species. This implies that wall composition and structure are actively modified during biological processes and in response to specific functional requirements. Despite extensive research in the area, our understanding of the regulatory processes controlling active and adaptive modifications of cell wall composition and structure is still limited. One of these regulatory processes is the cell wall integrity maintenance mechanism, which monitors and maintains the functional integrity of the plant cell wall during development and interaction with environment. It is an important element in plant pathogen interaction and cell wall plasticity, which seems at least partially responsible for the limited success that targeted manipulation of cell wall metabolism has achieved so far. Here, we provide an overview of the cell wall polysaccharides forming the bulk of plant cell walls in both monocotyledonous and dicotyledonous plants and the effects their impairment can have. We summarize our current knowledge regarding the cell wall integrity maintenance mechanism and discuss that it could be responsible for several of the mutant phenotypes observed.
Collapse
Affiliation(s)
- Nora Gigli-Bisceglia
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, 6708 PB, The Netherlands
| | - Timo Engelsdorf
- Division of Plant Physiology, Department of Biology, Philipps University of Marburg, 35043, Marburg, Germany
| | - Thorsten Hamann
- Institute for Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, 5 Høgskoleringen, 7491, Trondheim, Norway.
| |
Collapse
|
28
|
Guo DL, Zhao HL, Li Q, Zhang GH, Jiang JF, Liu CH, Yu YH. Genome-wide association study of berry-related traits in grape [ Vitis vinifera L.] based on genotyping-by-sequencing markers. HORTICULTURE RESEARCH 2019; 6:11. [PMID: 30603096 PMCID: PMC6312537 DOI: 10.1038/s41438-018-0089-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 05/18/2023]
Abstract
Deciphering the genetic control of grape berry traits is crucial for optimizing yield, fruit quality, and consumer acceptability. In this study, an association panel of 179 grape genotypes comprising a mixture of ancient cultivars, landraces, and modern varieties collected worldwide were genotyped with genotyping-by-sequencing using a genome-wide association approach based on 32,311 single-nucleotide polymorphism (SNP) markers. Genome-wide efficient mixed-model association was selected as the optimal statistical model based on the results of known control loci of grape berry color traits. Many of the associated SNPs identified in this study were in accordance with the previous QTL analyses using biparental mapping. The grape skin color locus was found to be associated with a mybA transcription factor on chromosome 2. Two strong and distinct association signals associated with berry development periods were found on chromosome 16. Most candidate genes of the interval were highlighted as receptor-like protein kinase. For berry weight, significant association loci were identified on chromosome 18, as previously known, and on chromosome 19 and chromosome 17, as newly mapped. Berry flesh texture was newly located on chromosome 16; candidate genes in the interval were related to calcium. Berry flavor was determined on chromosome 5. Genomic regions were further investigated to reveal candidate genes. In this work, we identified interesting genetic determinants of grape berry-related traits. The identification of the markers closely associated with these berry traits may be useful for grape molecular breeding.
Collapse
Affiliation(s)
- Da-Long Guo
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
| | - Hui-Li Zhao
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
| | - Qiong Li
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
| | - Guo-Hai Zhang
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
| | - Jian-Fu Jiang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009 Henan Province China
| | - Chong-Huai Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009 Henan Province China
| | - Yi-He Yu
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023 Henan Province China
| |
Collapse
|
29
|
Li C, Liu X, Qiang X, Li X, Li X, Zhu S, Wang L, Wang Y, Liao H, Luan S, Yu F. EBP1 nuclear accumulation negatively feeds back on FERONIA-mediated RALF1 signaling. PLoS Biol 2018; 16:e2006340. [PMID: 30339663 PMCID: PMC6195255 DOI: 10.1371/journal.pbio.2006340] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/28/2018] [Indexed: 12/22/2022] Open
Abstract
FERONIA (FER), a plasma membrane receptor-like kinase, is a central regulator of cell growth that integrates environmental and endogenous signals. A peptide ligand rapid alkalinization factor 1 (RALF1) binds to FER and triggers a series of downstream events, including inhibition of Arabidopsis H+-ATPase 2 activity at the cell surface and regulation of gene expression in the nucleus. We report here that, upon RALF1 binding, FER first promotes ErbB3-binding protein 1 (EBP1) mRNA translation and then interacts with and phosphorylates the EBP1 protein, leading to EBP1 accumulation in the nucleus. There, EBP1 associates with the promoters of previously identified RALF1-regulated genes, such as CML38, and regulates gene transcription in response to RALF1 signaling. EBP1 appears to inhibit the RALF1 peptide response, thus forming a transcription-translation feedback loop (TTFL) similar to that found in circadian rhythm control. The plant RALF1-FER-EBP1 axis is reminiscent of animal epidermal growth factor receptor (EGFR) signaling, in which EGF peptide induces EGFR to interact with and phosphorylate EBP1, promoting EBP1 nuclear accumulation to control cell growth. Thus, we suggest that in response to peptide signals, plant FER and animal EGFR use the conserved key regulator EBP1 to control cell growth in the nucleus.
Collapse
Affiliation(s)
- Chiyu Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, People’s Republic of China
| | - Xuanming Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, People’s Republic of China
| | - Xiaonan Qiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, People’s Republic of China
| | - Xiaoyan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, People’s Republic of China
| | - Xiushan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, People’s Republic of China
| | - Sirui Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, People’s Republic of China
| | - Long Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, People’s Republic of China
| | - Yuan Wang
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Hongdong Liao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, People’s Republic of China
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, People’s Republic of China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
- * E-mail:
| |
Collapse
|