1
|
Masepan N, Intarasit S, Panya A, Jungklang J. Low NaCl Concentrations Increase Cotyledon Growth in Chinese White Radish ( Raphanus sativus L. var. longipinnatus Bailey) Seedlings via Aquaporin-Mediated Water Transport. PLANTS (BASEL, SWITZERLAND) 2025; 14:1616. [PMID: 40508291 PMCID: PMC12157832 DOI: 10.3390/plants14111616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2025] [Revised: 05/18/2025] [Accepted: 05/20/2025] [Indexed: 06/16/2025]
Abstract
This study aimed to elucidate the specific role of low NaCl concentrations, particularly 10 and 20 mM, in stimulating cotyledon growth in Chinese white radish (Raphanus sativus L. var. longipinnatus Bailey) seedlings. Chinese white radish seeds were cultivated in sand culture and subjected to daily watering with solutions containing 0, 10, 20, 50, or 100 mM NaCl. Growth, water status, aquaporin gene expression, ion contents, and physiology-related parameters were assessed 4 days after sowing. Applying 10 and 20 mM NaCl significantly promoted the growth of 4-day-old seedlings. Notably, the cotyledons exhibited the most significant growth, achieving a rate of 177% compared with the 125-138% growth observed in the hypocotyl and root parts. This substantial enhancement in cotyledon growth, including biomass, cotyledon area, cotyledon thickness, and mesophyll cell size, was induced by an optimal concentration of 10 mM NaCl. This induction correlated with the increased water content, degree of succulence, and expression of aquaporin genes, specifically within PIP1-1, PIP1-2, PIP2-1, PIP2-2, and TIP1-1, in addition to the maintenance of the Hill reaction, heightened free radical scavenging, and the elevated accumulation of Na+, Cl-, K+, proline, total N, and C. These findings suggest a beneficial role of low NaCl levels in optimising early-stage seedling growth.
Collapse
Affiliation(s)
- Nutkamol Masepan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.M.); (S.I.)
- Ph.D.’s Degree Program in Biology (International Program), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sitthisak Intarasit
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.M.); (S.I.)
| | - Aussara Panya
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.M.); (S.I.)
| | - Jarunee Jungklang
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.M.); (S.I.)
| |
Collapse
|
2
|
Yuan Y, Liu C, Bao J, Li F. Selection and Validation of Appropriate Reference Genes for qRT-PCR Analysis of Iris germanica L. Under Various Abiotic Stresses. Food Sci Nutr 2025; 13:e4765. [PMID: 39803220 PMCID: PMC11725058 DOI: 10.1002/fsn3.4765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/12/2024] [Accepted: 12/24/2024] [Indexed: 01/16/2025] Open
Abstract
Choosing the appropriate reference genes for quantitative real-time PCR (qRT-PCR) is very important for accurately evaluating expression of target genes. Iris germanica L. is a widely used horticultural plant with high ornamental value, which also shows a strong ability to tolerate abiotic stresses. No comprehensive research has been carried out on optimal reference genes in Iris germanica L. under abiotic stress. In this study, nine reference genes were selected as candidates based on the transcriptome sequencing data of Iris germanica L. The assessment of expression stability under various abiotic stress was conducted using four distinct methods (GeNorm, NormFinder, BestKeeper, and RefFinder). It was found that the optimal reference genes were ACT and F3H for drought and different temperature stresses. EF1α and ACT exhibited superior performance under salt stress. The expression of the IgP5CS gene was evaluated to provide additional validation for the accuracy of the selected optimal reference genes, indicating that inappropriate may lead to significant deviations in the results. This research identified reliable reference genes in I. germanica L. across various abiotic stress conditions, thereby facilitating the investigation into the molecular mechanisms responsible for stress tolerance in I. germanica L.
Collapse
Affiliation(s)
- Yuan Yuan
- Jiangsu Lixiahe District Institute of Agricultural SciencesYangzhouJiangsuChina
| | - Chungui Liu
- Jiangsu Lixiahe District Institute of Agricultural SciencesYangzhouJiangsuChina
| | - Jianzhong Bao
- Jiangsu Lixiahe District Institute of Agricultural SciencesYangzhouJiangsuChina
| | - Fengtong Li
- Jiangsu Lixiahe District Institute of Agricultural SciencesYangzhouJiangsuChina
| |
Collapse
|
3
|
Choi P, Nugroho ABD, Moon H, Kim DH. A 2-oxoglutarate-dependent dioxygenase, GLUCORAPHASATIN SYNTHASE 1 (GRS1) is a major determinant for different aliphatic glucosinolates between radish and Chinese cabbage. PLANT MOLECULAR BIOLOGY 2024; 115:1. [PMID: 39656296 DOI: 10.1007/s11103-024-01537-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/15/2024] [Indexed: 02/20/2025]
Abstract
Glucosinolates (GSLs) are secondary metabolites in Brassicaceae plants and play a defensive role against a variety of abiotic and biotic stresses. Also, it exhibits anti-cancer activity against cancer cell in human. Different profiles of aliphatic GSL compounds between radish and Chinese cabbage were previously reported. However, molecular details underlying the divergent profile between two species were not clearly understood. In this study, we found that major difference of aliphatic GSLs profiles between two species is determined by the dominantly expressed genes in first step of the secondary modification phase, which are responsible for enzymatic catalysis of methylthioalkyl-glucosinolate. For instance, active expression of GLUCORAPHASATIN SYNTHASE 1 (GRS1) gene in radish play an important role in the production of glucoraphasatin (GRH) and glucoraphenin (GRE), a major aliphatic GSLs in radish. Meanwhile, Chinese cabbage was found to merely produce glucoraphasatin (GRH), instead producing glucoraphanin (GRA) and gluconapin (GNP) due to the mere expression of GRS1 homologs and abundant expressions of FLAVIN-CONTAINING MONOOXYGENASES (FMO GS-OX) homologs in Chinese cabbage. In addition, we noticed that wounding treatment on leaf tissues substantially enhanced the production of aliphatic and benzenic GSLs in both Chinese cabbage and radish, indicating that GSLs are wound-induced defensive compounds in both Chinese cabbage and radish plants.
Collapse
Affiliation(s)
- Peter Choi
- Department of Plant Science and Technology, Chung-Ang University, Anseong, the Republic of Korea
| | - Adji Baskoro Dwi Nugroho
- Department of Plant Science and Technology, Chung-Ang University, Anseong, the Republic of Korea
| | - Heewon Moon
- Department of Plant Science and Technology, Chung-Ang University, Anseong, the Republic of Korea
| | - Dong-Hwan Kim
- Department of Plant Science and Technology, Chung-Ang University, Anseong, the Republic of Korea.
| |
Collapse
|
4
|
Soorni A, Rezvani M, Bigdeli H. Transcriptome-guided selection of stable reference genes for expression analysis in spinach. Sci Rep 2024; 14:22113. [PMID: 39333266 PMCID: PMC11436919 DOI: 10.1038/s41598-024-73444-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
Accurate measurement of gene expression levels is vital for advancing plant biology research. This study explores the identification and validation of stable reference genes (RGs) for gene expression analysis in Spinacia oleracea. Leveraging transcriptome data from various developmental stages, we employed rigorous statistical analyses to identify potential RGs. A total of 1196 candidate genes were initially screened based on expression variability, with subsequent refinement using criteria such as low variance and stability. Among 12 commonly used candidate RGs, EF1α and H3 emerged as the most stable across diverse experimental conditions, while GRP and PPR exhibited lower stability. These findings were further validated through qRT-PCR assays and comprehensive statistical analyses, including geNorm, NormFinder, BestKeeper, and RefFinder. Our study underscores the importance of systematic RG selection to ensure accurate normalization in gene expression studies, particularly in the context of S. oleracea developmental stages and physiological processes like flowering. These validated RGs provide a robust foundation for future gene expression analysis in S. oleracea and contribute to the advancement of molecular research in plant biology.
Collapse
Affiliation(s)
- Aboozar Soorni
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.
| | - Maryam Rezvani
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Haniye Bigdeli
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
5
|
Jiang J, Mu C, Bai Y, Cheng W, Geng R, Xu J, Dou Y, Cheng Z, Gao J. Selection and Validation of Reference Genes in Dendrocalamus brandisii for Quantitative Real-Time PCR. PLANTS (BASEL, SWITZERLAND) 2024; 13:2363. [PMID: 39273847 PMCID: PMC11396877 DOI: 10.3390/plants13172363] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024]
Abstract
Dendrocalamus brandisii (Munro) Kurz is a sympodial bamboo species with a wide distribution in tropical and subtropical regions. Due to its remarkable regenerative ability and exceptional flavor, this species plays a pivotal role in bolstering the economies of numerous nations across these regions. We recently published a high-quality genome of this species. To date, no study results have identified the optimal reference genes for quantitative real-time polymerase chain reaction (qRT-PCR) normalization in Dendrocalamus brandisii. qRT-PCR offers a highly accurate and effective approach to analyzing gene expression. However, the precision of the resulting quantitative data hinges on the correct choice of reference genes. Twenty-one potential reference genes were identified from the D. brandisii transcriptomes. Their expression in 23 samples, including 8 different tissue organs and 15 samples of D. brandisii under various treatment conditions, were evaluated through qRT-PCR. Subsequently, four software programs-Delta CT, geNorm, NormFinder, and RefFinder-were employed to compare their expression stability. The results revealed that the selection of optimal reference genes varied based on the particular organ and condition being examined. EF-1-α-2 consistently exhibits the most stable expression across diverse tissues, while ACTIN-1, TUBULIN-1, and EF-1-α-2 were the most consistent reference genes in roots, culms, and leaves under various treatments, respectively. In this study, we identified and characterized appropriate internal genes utilized for calibrating qRT-PCR analyses of D. brandisii across different tissue organs and under various treatments. This research will provide key insights for advancing the study of gene functionality and molecular biology in D. brandisii and related species.
Collapse
Affiliation(s)
- Jutang Jiang
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Changhong Mu
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Yucong Bai
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Wenlong Cheng
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Ruiman Geng
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Junlei Xu
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Yuping Dou
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Zhanchao Cheng
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Jian Gao
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
| |
Collapse
|
6
|
Lee SW, Nugroho ABD, Park M, Moon H, Kim J, Kim DH. Identification of vernalization-related genes and cold memory element (CME) required for vernalization response in radish (Raphanus sativus L.). PLANT MOLECULAR BIOLOGY 2024; 114:5. [PMID: 38227117 DOI: 10.1007/s11103-023-01412-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/11/2023] [Indexed: 01/17/2024]
Abstract
Floral transition is accelerated by exposure to long-term cold like winter in plants, which is called as vernalization. Acceleration of floral transition by vernalization is observed in a diversity of biennial and perennial plants including Brassicaceae family plants. Scientific efforts to understand molecular mechanism underlying vernalization-mediated floral transition have been intensively focused in model plant Arabidopsis thaliana. To get a better understanding on floral transition by vernalization in radish (Raphanus sativus L.), we investigated transcriptomic changes taking place during vernalization in radish. Thousands of genes were differentially regulated along time course of vernalization compared to non-vernalization (NV) sample. Twelve major clusters of DEGs were identified based on distinctive expression profiles during vernalization. Radish FLC homologs were shown to exert an inhibition of floral transition when transformed into Arabidopsis plants. In addition, DNA region containing RY motifs located within a Raphanus sativus FLC homolog, RsFLC1 was found to be required for repression of RsFLC1 by vernalization. Transgenic plants harboring disrupted RY motifs were impaired in the enrichment of H3K27me3 on RsFLC1 chromatin, thus resulting in the delayed flowering in Arabidopsis. Taken together, we report transcriptomic profiles of radish during vernalization and demonstrate the requirement of RY motif for vernalization-mediated repression of RsFLC homologs in radish (Raphanus sativus L.).
Collapse
Affiliation(s)
- Sang Woo Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | | | | | - Heewon Moon
- Department of Plant Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Jun Kim
- Department of Plant Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Dong-Hwan Kim
- Department of Plant Science and Technology, Chung-Ang University, Anseong, Republic of Korea.
| |
Collapse
|
7
|
Wang W, Zhang X, Xu X, Xu X, Fu L, Chen H. Systematic identification of reference genes for qRT-PCR of Ardisia kteniophylla A. DC under different experimental conditions and for anthocyanin-related genes studies. FRONTIERS IN PLANT SCIENCE 2023; 14:1284007. [PMID: 38023897 PMCID: PMC10656778 DOI: 10.3389/fpls.2023.1284007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
Ardisia kteniophylla A. DC, widely known as folk medicinal herb and ornamental plant, has been extensively investigated due to its unique leaf color, anti-cancer and other pharmacological activities. The quantitative real-time PCR (qRT-PCR) was an excellent tool for the analysis of gene expression with its high sensitivity and quantitative properties. Normalizing gene expression with stable reference genes was essential for qRT-PCR accuracy. In addition, no studies have yet been performed on the selection, verification and stability of internal reference genes suitable for A. kteniophylla, which has greatly hindered the biomolecular researches of this species. In this study, 29 candidate genes were successfully screened according to stable expression patterns of large-scale RNA seq data that from a variety of tissues and the roots of different growth stages in A. kteniophylla. The candidates were then further determined via qRT-PCR in various experimental samples, including MeJA, ABA, SA, NaCl, CuSO4, AgNO3, MnSO4, CoCl2, drought, low temperature, heat, waterlogging, wounding and oxidative stress. To assess the stability of the candidates, five commonly used strategies were employed: delta-CT, geNorm, BestKeeper, NormFinder, and the comprehensive tool RefFinder. In summary, UBC2 and UBA1 were found to be effective in accurately normalizing target gene expression in A. kteniophella regardless of experimental conditions, while PP2A-2 had the lowest stability. Additionally, to verify the reliability of the recommended reference genes under different colored leaf samples, we examined the expression patterns of six genes associated with anthocyanin synthesis and regulation. Our findings suggested that PAP1 and ANS3 may be involved in leaf color change in A. kteniphella. This study successfully identified the ideal reference gene for qRT-PCR analysis in A. kteniphella, providing a foundation for future research on gene function, particularly in the biosynthesis of anthocyanins.
Collapse
Affiliation(s)
- Wentao Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Modern Agricultural Sciences, University of Chinese Acadamy of Science, Beijing, China
| | - Xiaohang Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Modern Agricultural Sciences, University of Chinese Acadamy of Science, Beijing, China
| | - Xiaoxia Xu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Modern Agricultural Sciences, University of Chinese Acadamy of Science, Beijing, China
| | - Xingchou Xu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Science, Gannan Normal University, Ganzhou, China
| | - Lin Fu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Hongfeng Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
8
|
Gaines D, Brodsky E, Kaur H, Nestorova GG. RNA capture pin technology: investigating long-term stability and mRNA purification specificity of oligonucleotide immobilization on gold and streptavidin surfaces. Anal Bioanal Chem 2023; 415:6077-6089. [PMID: 37516691 DOI: 10.1007/s00216-023-04882-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
Advancing biomedical studies necessitates the development of cutting-edge technologies for the rapid extraction of nucleic acid. We characterized an RNA capture pin (RCP) tool that is non-destructive to the sample and enables rapid purification and enrichment of mRNA for subsequent genetic analysis. At the core of this technology is a pin (200 µm × 3 cm) functionalized with dT15 capture sequences that hybridize to mRNA within 2 min of insertion in the specimen. Two methods for immobilizing the oligos on the surface of the RCPs were investigated: gold-thiol and biotin-streptavidin. The RNA capture efficiency of the RCPs was assessed using a radish plant. The average reverse transcription-quantitative polymerase chain reaction (RT-qPCR) cycle amplification values were 19.93 and 24.84 for gold- and streptavidin-coated pins, respectively. The amount of RNA present on the surface of the probes was measured using the Agilent 2100 Bioanalyzer. RNA sequencing was performed to determine the mRNA selectivity of the RNA capture pin. Gene read count analysis confirmed that the RNA purified via the gold-plated RCPs contained 70% messenger RNA, 10% ribosomal RNA, and 20% non-coding RNA. The long-term stability of the bond between the dT15 oligos and the surface of the RCPs was assessed over 4 months. A significant decrease in the dT15 surface coverage of the streptavidin-coated RCPs was observed after 2 weeks of storage at 4 °C. The gold-thiol RNA capture pins exhibited a retention rate of 40% of the oligos after 4 months of storage.
Collapse
Affiliation(s)
- Deriesha Gaines
- Molecular Sciences and Nanotechnology, Louisiana Tech University, Ruston, LA, USA
| | | | | | - Gergana G Nestorova
- School of Biological Sciences, Louisiana Tech University, 1 Adams Blvd., Ruston, LA, 71272, USA.
| |
Collapse
|
9
|
Hu CM, Zhou CL, Wan JN, Guo T, Ji GY, Luo SZ, Ji KP, Cao Y, Tan Q, Bao DP, Yang RH. Selection and validation of internal control genes for quantitative real-time RT‒qPCR normalization of Phlebopus portentosus gene expression under different conditions. PLoS One 2023; 18:e0288982. [PMID: 37756330 PMCID: PMC10530043 DOI: 10.1371/journal.pone.0288982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 07/03/2023] [Indexed: 09/29/2023] Open
Abstract
Phlebopus portentosus (Berk. and Broome) Boedijn is an attractive edible mushroom and is considered the only bolete for which artificial cultivation in vitro has been achieved. Gene expression analysis has become widely used in research on edible fungi and is important for elucidating the functions of genes involved in complex biological processes. Selecting appropriate reference genes is crucial to ensuring reliable RT‒qPCR gene expression analysis results. In our study, a total of 12 candidate control genes were selected from 25 traditional housekeeping genes based on their expression stability in 9 transcriptomes of 3 developmental stages. These genes were further evaluated using geNorm, NormFinder, and RefFinder under different conditions and developmental stages. The results revealed that MSF1 domain-containing protein (MSF1), synaptobrevin (SYB), mitogen-activated protein kinase genes (MAPK), TATA-binding protein 1 (TBP1), and SPRY domain protein (SPRY) were the most stable reference genes in all sample treatments, while elongation factor 1-alpha (EF1), actin and ubiquitin-conjugating enzyme (UBCE) were the most unstably expressed. The gene SYB was selected based on the transcriptome results and was identified as a novel reference gene in P. portentosus. This is the first detailed study on the identification of reference genes in this fungus and may provide new insights into selecting genes and quantifying gene expression.
Collapse
Affiliation(s)
- Chen-Menghui Hu
- Key Laboratory of Agricultural Genetics and Breeding of Shanghai, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungal Resources and Utilization (South), Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Chen-Li Zhou
- Key Laboratory of Agricultural Genetics and Breeding of Shanghai, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungal Resources and Utilization (South), Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jia-Ning Wan
- Key Laboratory of Agricultural Genetics and Breeding of Shanghai, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungal Resources and Utilization (South), Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ting Guo
- Key Laboratory of Agricultural Genetics and Breeding of Shanghai, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungal Resources and Utilization (South), Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Guang-Yan Ji
- Hongzhen Agricultural Science and Technology Co. Ltd., Jinghong, China
| | - Shun-Zhen Luo
- Hongzhen Agricultural Science and Technology Co. Ltd., Jinghong, China
| | - Kai-Ping Ji
- Hongzhen Agricultural Science and Technology Co. Ltd., Jinghong, China
| | - Yang Cao
- Hongzhen Agricultural Science and Technology Co. Ltd., Jinghong, China
| | - Qi Tan
- Key Laboratory of Agricultural Genetics and Breeding of Shanghai, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungal Resources and Utilization (South), Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Da-Peng Bao
- Key Laboratory of Agricultural Genetics and Breeding of Shanghai, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungal Resources and Utilization (South), Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Rui-Heng Yang
- Key Laboratory of Agricultural Genetics and Breeding of Shanghai, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungal Resources and Utilization (South), Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
10
|
Renganathan VG, Renuka R, Vanniarajan C, Raveendran M, Elangovan A. Selection and validation of reliable reference genes for quantitative real-time PCR in Barnyard millet (Echinochloa spp.) under varied abiotic stress conditions. Sci Rep 2023; 13:15573. [PMID: 37731036 PMCID: PMC10511452 DOI: 10.1038/s41598-023-40526-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 08/11/2023] [Indexed: 09/22/2023] Open
Abstract
Quantitative real-time polymerase chain reaction (RT-qPCR) using a stable reference gene is widely used for gene expression research. Barnyard millet (Echinochloa spp.) is an ancient crop in Asia and Africa that is widely cultivated for food and fodder. It thrives well under drought, salinity, cold, and heat environmental conditions, besides adapting to any soil type. To date, there are no gene expression studies performed to identify the potential candidate gene responsible for stress response in barnyard millet, due to lack of reference gene. Here, 10 candidate reference genes, Actin (ACT), α-tubulin (α-TUB), β-tubulin (β-TUB), RNA pol II (RP II), elongation factor-1 alpha (EF-1α), adenine phosphoribosyltransferase (APRT), TATA-binding protein-like factor (TLF), ubiquitin-conjugating enzyme 2 (UBC2), ubiquitin-conjugating enzyme E2L5 (UBC5) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), were selected from mRNA sequences of E. crus-galli and E. colona var frumentacea. Five statistical algorithms (geNorm, NormFinder, BestKeeper, ΔCt, and RefFinder) were applied to determine the expression stabilities of these genes in barnyard millet grown under four different abiotic stress (drought, salinity, cold and heat) exposed at different time points. The UBC5 and ɑ-TUB in drought, GAPDH in salinity, GAPDH and APRT in cold, and EF-1α and RP II in heat were the most stable reference genes, whereas ß-TUB was the least stable irrespective of stress conditions applied. Further Vn/Vn + 1 analysis revealed two reference genes were sufficient to normalize gene expression across all sample sets. The suitability of identified reference genes was validated with Cu-ZnSOD (SOD1) in the plants exposed to different abiotic stress conditions. The results revealed that the relative quantification of the SOD1 gene varied according to reference genes and the number of reference genes used, thus highlighting the importance of the choice of a reference gene in such experiments. This study provides a foundational framework for standardizing RT-qPCR analyses, enabling accurate gene expression profiling in barnyard millet.
Collapse
Affiliation(s)
- Vellaichamy Gandhimeyyan Renganathan
- Department of Biotechnology, Centre of Excellence for Innovations, Agricultural College & Research Institute, Tamil Nadu Agricultural University, Madurai, India
| | - Raman Renuka
- Department of Biotechnology, Centre of Excellence for Innovations, Agricultural College & Research Institute, Tamil Nadu Agricultural University, Madurai, India.
| | - Chockalingam Vanniarajan
- Anbil Dharmalingam Agricultural College & Research Institute, Tamil Nadu Agricultural University, Tiruchirappalli, India
| | - Muthurajan Raveendran
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Allimuthu Elangovan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| |
Collapse
|
11
|
Ji T, Ma S, Liang M, Wang X, Gao L, Tian Y. Reference genes identification for qRT-PCR normalization of gene expression analysis in Cucumis sativus under Meloidogyne incognita infection and Pseudomonas treatment. FRONTIERS IN PLANT SCIENCE 2022; 13:1061921. [PMID: 36589116 PMCID: PMC9799720 DOI: 10.3389/fpls.2022.1061921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
qRT-PCR is a common and key technical means to study gene expression in biological research. However, reliability and accuracy of quantification by qRT-PCR is entirely dependent on the identification of appropriate reference genes. Cucumber as an economical vegetable is widely cultivated worldwide and is subject to serious nematode infection, especially from M. incognita. Plant could employ beneficial soil bacteria in the rhizosphere to enhance plant adaptability to various stresses. In this study, the optimal reference genes in cucumber under M. incognita stress and Pseudomonas treatment were calculated and confirmed. A total of thirteen candidate reference genes were identified across three different treatments. Of these, geNorm, NormFinder and BestKeeper programs combined RefFinder software identified EF1 and UBI are the most suitable reference gene in the root knot and whole root of cucumber infected M. incognita, respectively, and CACS is the most suitable reference gene in the whole root of cucumber treated by Pseudomonas. The work first validated the most suitable reference genes for the normalization gene expression in cucumber by nematode infected or Pseudomonas inoculated, and these results would facilitate the further research on M. incognita or Pseudomonas soil rhizosphere microbe interaction with cucumber.
Collapse
Affiliation(s)
| | | | | | | | - Lihong Gao
- *Correspondence: Yongqiang Tian, ; Lihong Gao,
| | | |
Collapse
|
12
|
Yi S, Lu H, Tian C, Xu T, Song C, Wang W, Wei P, Gu F, Liu D, Cai Y, Han B. Selection of Suitable Reference Genes for Gene Expression Normalization Studies in Dendrobium huoshanense. Genes (Basel) 2022; 13:genes13081486. [PMID: 36011396 PMCID: PMC9408602 DOI: 10.3390/genes13081486] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Dendrobium huoshanense is a kind of precious herb with important medicinal and edible value in China, which is widely used in traditional Chinese medicine for various diseases. Recent studies have paid close attention to the genetic expression of the biosynthetic pathway of the main active components (polysaccharides, alkaloids, and flavonoids), and real-time polymerase chain reaction (qPCR) is one of the most widely used methods for doing so. However, so far, no reference gene selections have been reported in D. huoshanense. In this study, 15 reference gene candidates (GAPDH, eIF, EF-1α, PP2A, UBCE, RPL5, TBP, APT1, MDH, PTBP3, PEPC, CYP71, NCBP2, TIP41, and F-box) were selected and evaluated for their expression stability in D. huoshanense under various experimental conditions, including in different tissues (root, stem, and leaf), abiotic stresses (oxidative, drought, cold, and UV), and hormone treatment (methyl jasmonate) using three statistical programs (geNorm, NormFinder, and BestKeeper). Then, the RefFinder program was employed to comprehensively validate the stability of the selected reference genes. Finally, the expression profiles of the CESA and GMPP genes were further analyzed, and these results indicated that TBP, NCBP2, and CYP71 were the top three most stable reference genes after comprehensive comparison, which could be used as stable reference genes for normalizing the genes expression in D. huoshanense. This study described here provides the first data regarding on reference gene selection in D. huoshanense, which will be extremely beneficial for future research on the gene expression normalization in D. huoshanense.
Collapse
Affiliation(s)
- Shanyong Yi
- Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu’an 237061, China
| | - Haibo Lu
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu’an 237061, China
| | - Chuanjun Tian
- Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China
| | - Tao Xu
- Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu’an 237061, China
| | - Cheng Song
- Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu’an 237061, China
| | - Wei Wang
- Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu’an 237061, China
| | - Peipei Wei
- Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu’an 237061, China
| | - Fangli Gu
- Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu’an 237061, China
| | - Dong Liu
- Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu’an 237061, China
| | - Yongping Cai
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Correspondence: (Y.C.); (B.H.); Tel.: +86-564-3307060 (B.H.)
| | - Bangxing Han
- Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu’an 237061, China
- Correspondence: (Y.C.); (B.H.); Tel.: +86-564-3307060 (B.H.)
| |
Collapse
|
13
|
Yang J, Han F, Yang L, Wang J, Jin F, Luo A, Zhao F. Identification of Reference Genes for RT-qPCR Analysis in Gleditsia microphylla under Abiotic Stress and Hormone Treatment. Genes (Basel) 2022; 13:genes13071227. [PMID: 35886010 PMCID: PMC9315665 DOI: 10.3390/genes13071227] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/25/2022] Open
Abstract
Gleditsia microphylla is an important galactomannan gums source plant with characteristics of drought resistance, barren tolerance, and good adaptability. However, the underlying molecular mechanisms of the biological process are not yet fully understood. Real-time quantitative PCR (RT-qPCR) is an accurate and convenient method to quantify the gene expression level and transcription abundance of suitable reference genes. This study aimed to screen the best internal reference genes in G. microphylla under abiotic stresses, hormone treatments, and different tissues. Based on the transcriptome data, twelve candidate reference genes were selected, and ultimately, nine of them were further evaluated by the geNorm, NormFinder, BestKeeper, and RefFinder algorithms. These results show that TATA-binding protein 1 (TBP1)and Eukaryotic translation initiation factor 4A1 (EIF4A1)were the two most stable reference genes, and glyceraldehyde-3-phosphate dehydrogenase A subunit, chloroplastic (GAPA)and glyceraldehyde-3-phosphate dehydrogenase B subunit, chloroplastic (GAPB)were the two most unstable reference genes across all samples under the given experimental conditions. Meanwhile, the most stable reference genes varied among the different groups and tissues. Therefore, this study suggests that it is better to use a specific reference gene for a particular case rather than using a common reference gene.
Collapse
|
14
|
Li G, Ma J, Yin J, Guo F, Xi K, Yang P, Cai X, Jia Q, Li L, Liu Y, Zhu Y. Identification of Reference Genes for Reverse Transcription-Quantitative PCR Analysis of Ginger Under Abiotic Stress and for Postharvest Biology Studies. FRONTIERS IN PLANT SCIENCE 2022; 13:893495. [PMID: 35734245 PMCID: PMC9207462 DOI: 10.3389/fpls.2022.893495] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Gene expression analysis largely improves our understanding of the molecular basis underpinning various plant biological processes. Stable reference genes play a foundational role during the normalization of gene expression levels. However, until now, there have been few reference genes suitable for ginger reverse transcription-quantitative PCR (RT-qPCR) research. In this study, 29 candidate reference genes with stable expression patterns across multiple ginger tissues and 13 commonly used reference genes were selected to design RT-qPCR primers. After amplification specificity validation, 32 candidates were selected and further evaluated by RT-qPCR using samples from various organs subjected to NaCl, drought, heat, waterlogging, and chilling stress. Four strategies, including delta-CT, BestKeeper, geNorm, and NormFinder, were used to rank the stability of reference genes, and the ranks produced by these four strategies were comprehensively evaluated by RefFinder to determine the final rank. Overall, the top three stability reference genes indicated by RefFinder were RBP > ATPase > 40S_S3. Their expression pattern correlation analysis showed that the coefficients among each pair of RBP, ATPase, and 40S_S3 were larger than 0.96, revealing consistent and stable expression patterns under various treatments. Then, the expression of three pathogenesis-related (PR) genes and seven MYB genes in rhizomes during postharvest storage and subjected to pathogen infection was normalized by RBP, ATPase, 40S_S3, RBP and ATPase, ATPase and 40S-S3, and RBP and 40S-S3. The results showed that PR and MYB genes were induced by postharvest deterioration and pathogen infection. The correlation coefficients of RBP/ATPase, RBP/40S_S3, ATPase/40S_S3, RBP and ATPase/ATPase and 40S-S3, RBP and ATPase/RBP and 40S-S3, and ATPase and 40S-S3/RBP and 40S-S3 were 0.99, 0.96, 0.99, 0.99, 1.00, and 1.00, respectively, which confirmed the stability of these three reference genes in postharvest biology studies of ginger. In summary, this study identified appropriate reference genes for RT-qPCR in ginger and facilitated gene expression studies under biotic and abiotic stress conditions.
Collapse
Affiliation(s)
- Gang Li
- College of Horticulture and Gardening, Spice Crops Research Institute, Yangtze University, Jingzhou, China
| | - Jiawei Ma
- College of Horticulture and Gardening, Spice Crops Research Institute, Yangtze University, Jingzhou, China
| | - Junliang Yin
- College of Horticulture and Gardening, Spice Crops Research Institute, Yangtze University, Jingzhou, China
| | - Fengling Guo
- Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Keyong Xi
- College of Horticulture and Gardening, Spice Crops Research Institute, Yangtze University, Jingzhou, China
| | - Peihua Yang
- College of Horticulture and Gardening, Spice Crops Research Institute, Yangtze University, Jingzhou, China
| | - Xiaodong Cai
- College of Horticulture and Gardening, Spice Crops Research Institute, Yangtze University, Jingzhou, China
| | - Qie Jia
- College of Horticulture and Gardening, Spice Crops Research Institute, Yangtze University, Jingzhou, China
| | - Lu Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Yiqing Liu
- College of Horticulture and Gardening, Spice Crops Research Institute, Yangtze University, Jingzhou, China
| | - Yongxing Zhu
- College of Horticulture and Gardening, Spice Crops Research Institute, Yangtze University, Jingzhou, China
| |
Collapse
|
15
|
Wang J, Hu T, Wang W, Hu H, Wei Q, Yan Y, He J, Hu J, Bao C. Comparative transcriptome analysis reveals distinct responsive biological processes in radish genotypes contrasting for Plasmodiophora brassicae interaction. Gene 2022; 817:146170. [PMID: 35031420 DOI: 10.1016/j.gene.2021.146170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/16/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022]
Abstract
Plasmodiophora brassicae is a protozoan pathogen that causes clubroot disease, which is one of the most destructive diseases for Brassica crops, including radish. However, little is known about the molecular mechanism of clubroot resistance in radish. In this study, we performed a comparative transcriptome analysis between resistant and susceptible radish inoculated with P. brassicae. More differentially expressed genes (DEGs) were identified at 28 days after inoculation (DAI) compared to 7 DAI in both genotypes. Gene ontology (GO) and KEGG enrichment indicated that stress/defense response, secondary metabolic biosynthesis, hormone metabolic process, and cell periphery are directly involved in the defense response process. Further analysis of the transcriptome revealed that effector-triggered immunity (ETI) plays key roles in the defense response. The plant hormones jasmonic acid (JA), ethylene (ET), and abscisic acid (ABA) related genes are activated in clubroot defense in the resistant line. Auxin (AUX) hormone related genes are activated in the developing galls of susceptible radish. Our study provides a global transcriptional overview for clubroot development for insights into the P. brassicae defense mechanisms in radish.
Collapse
Affiliation(s)
- Jinglei Wang
- Institute of Vegetables Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tianhua Hu
- Institute of Vegetables Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wuhong Wang
- Institute of Vegetables Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Haijiao Hu
- Institute of Vegetables Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qingzhen Wei
- Institute of Vegetables Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Yaqin Yan
- Institute of Vegetables Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiangming He
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Jingfeng Hu
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Chonglai Bao
- Institute of Vegetables Research, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
16
|
de Oliveira LF, Piovezani AR, Ivanov DA, Yoshida L, Segal Floh EI, Kato MJ. Selection and validation of reference genes for measuring gene expression in Piper species at different life stages using RT-qPCR analysis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 171:201-212. [PMID: 35007951 DOI: 10.1016/j.plaphy.2021.12.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/03/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
The secondary metabolism of Piper species is known to produce a myriad of natural products from various biosynthetic pathways which, represent a rich source of previously uncharacterized chemical compounds. The determination of gene expression profiles in multiple tissue/organ samples could provide valuable clues towards understanding the potential biological functions of chemical changes in these plants. Studies on gene expression by RT-qPCR require particularly careful selection of suitable reference genes as a control for normalization. Here, we provide a study for the identification of reliable reference genes in P. arboreum, P. gaudichaudianum, P. malacophyllum, and P. tuberculatum, at two different life stages: 2-month-old seedlings and adult plants. To do this, annotated sequences were recovered from transcriptome datasets of the above listed Piper spp. These sequences were subjected to expression analysis using RT-qPCR, followed by analysis using the geNorm and NormFinder algorithms. A set of five genes were identified showing stable expression: ACT7 (Actin-7), Cyclophilin (Peptidyl-prolyl cis-trans isomerase), EF1α (Elongation factor 1-alpha), RNABP (RNA-binding protein), and UBCE (Ubiquitin conjugating enzyme). The universality of these genes was then validated using two target genes, ADC (arginine decarboxylase) and SAMDC (S-adenosylmethionine decarboxylase), which are involved in the biosynthesis of polyamines. We showed that normalization genes varied according to Piper spp., and we provide a list of recommended pairs of the best combination for each species. This study provides the first set of suitable candidate genes for gene expression studies in the four Piper spp. assayed, and the findings will facilitate subsequent transcriptomic and functional gene research.
Collapse
Affiliation(s)
- Leandro Francisco de Oliveira
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, Rua Do Matão, 277, 05508-090, São Paulo, SP, Brazil
| | - Amanda Rusiska Piovezani
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-900, São Paulo, Brazil; Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, Rua Do Matão, 277, 05508-090, São Paulo, SP, Brazil
| | - Dimitre A Ivanov
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-900, São Paulo, Brazil; Department of Biology, University of Western Ontario, 1151 Richmond St, London, ON, Canada, N6A 3K7
| | - Leonardo Yoshida
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-900, São Paulo, Brazil
| | - Eny Iochevet Segal Floh
- Laboratory of Plant Cell Biology, Department of Botany, Institute of Biosciences, University of São Paulo, Rua Do Matão, 277, 05508-090, São Paulo, SP, Brazil.
| | - Massuo Jorge Kato
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-900, São Paulo, Brazil
| |
Collapse
|
17
|
Liu YP, Zhang Y, Liu F, Liu T, Chen JY, Fu G, Zheng CY, Su DD, Wang YN, Zhou HK, Su X, Aj H, Wang XM. Establishment of reference (housekeeping) genes via quantitative real-time PCR for investigation of the genomic basis of abiotic stress resistance in Psammochloa villosa (Poaceae). JOURNAL OF PLANT PHYSIOLOGY 2022; 268:153575. [PMID: 34837885 DOI: 10.1016/j.jplph.2021.153575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Psammochloa villosa is a desert plant growing in Northwest China with considerable resistance to abiotic stress, including drought, cold, and salt. To facilitate future studies of stress resistance in Psammochloa villosa, we sought to establish a suite of reference (or housekeeping) genes for utilization within future gene expression studies. Specifically, we selected nine candidate genes based on prior studies and new transcriptomic data for P. villosa, and we evaluated their expression stability in three different tissues of P. villosa under different treatments simulating abiotic stress conditions using four different bioinformatics assessments. Our results showed that TIP41 (TIP41-like family protein) was the most stable reference gene in drought- and salt-stressed leaves and salt-stressed stems, ELF-1α (elongation factor 1-α) was the most stable in cold-stressed leaves and drought- and salt-stressed roots, ACT (actin) was the most stable in drought-stressed stems, TUA (α-tubulin) was the most stable in cold-stressed stems, and 18S rRNA (18S ribosomal RNA) was the most stable in cold-stressed roots. Additionally, we tested the utility of these candidate reference genes to detect the expression pattern of P5CS (Δ1-pyrroline-5-carboxylate synthetase), which is a drought-related gene. This study is the first report on selecting and validating reference genes of P. villosa under various stress conditions and will benefit future investigations of the genomic mechanisms of stress resistance in this ecologically important species.
Collapse
Affiliation(s)
- Yu Ping Liu
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810016, China; Key Laboratory of Medicinal Animal and Plant Resources of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, Xining, 810008, China.
| | - Yu Zhang
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Feng Liu
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Tao Liu
- School of Geography, Qinghai Normal University, Xining, 810008, China; Key Laboratory of Land Surface Processes and Ecological Conservation of the Qinghai-Tibet Plateau, The Ministry of Education, Qinghai Normal University, Xining, 810008, China
| | - Jin Yuan Chen
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Gui Fu
- School of Geography, Qinghai Normal University, Xining, 810008, China
| | - Chang Yuan Zheng
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Dan Dan Su
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Ya Nan Wang
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Hua Kun Zhou
- Key Laboratory of Cold Regions Restoration Ecology in Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Xu Su
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810016, China; Key Laboratory of Medicinal Animal and Plant Resources of the Qinghai-Tibet Plateau in Qinghai Province, Qinghai Normal University, Xining, 810008, China; Key Laboratory of Land Surface Processes and Ecological Conservation of the Qinghai-Tibet Plateau, The Ministry of Education, Qinghai Normal University, Xining, 810008, China
| | - Harris Aj
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xiu Mei Wang
- School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| |
Collapse
|
18
|
Henschel JM, Brito FAL, Pimenta TM, Picoli EAT, Zsögön A, Ribeiro DM. Irradiance-regulated biomass allocation in Raphanus sativus plants depends on gibberellin biosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:43-52. [PMID: 34619597 DOI: 10.1016/j.plaphy.2021.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/21/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Gibberellin has been proposed to increase leaf elongation in radish (Raphanus sativus L.) plants, which is associated with decreased tuber growth. Since light intensity can control growth through interaction with gibberellin, investigation of the effect of gibberellin levels on the growth of radish plants would be a step forward towards unraveling factors that underlie biomass accumulation and allocation in response to irradiance levels. Here, we report that the gibberellin biosynthesis inhibitor paclobutrazol (PAC) decreased petiole elongation, but not lamina growth of radish plants grown under full sunlight. However, shading promoted an increase in shoot elongation, while in plants treated with PAC the petiole and leaf lamina fail to elongate. Plants treated with PAC allocated proportionally more biomass to their tubers and less to shoot compared to control under shade. Moreover, PAC decreased the abundance of transcripts encoding cell wall expansion proteins in leaf lamina and petiole of plants grown under shade, which was positively correlated with sugar consumption by the tuber, thereby increasing the mass fraction and concentrations of minerals for tuber. Thus, allocation of biomass during the growth of radish plants and nutritional quality of tubers depend on gibberellin and light intensity.
Collapse
Affiliation(s)
- Juliane M Henschel
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Fred A L Brito
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Thaline M Pimenta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Edgard A T Picoli
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Agustín Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Dimas M Ribeiro
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
19
|
Evaluation of Angelica decursiva reference genes under various stimuli for RT-qPCR data normalization. Sci Rep 2021; 11:18993. [PMID: 34556773 PMCID: PMC8460625 DOI: 10.1038/s41598-021-98434-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 08/17/2021] [Indexed: 11/23/2022] Open
Abstract
Angelica decursiva is one of the lending traditional Chinese medicinal plants producing coumarins. Notably, several studies have focused on the biosynthesis and not the RT-qPCR (quantitative real-time reverse transcription polymerase chain reaction) study of coumarins. This RT-qPCR technique has been extensively used to investigate gene expression levels in plants and the selection of reference genes which plays a crucial role in standardizing the data form the RT-qPCR analysis. In our study, 11 candidate reference genes were selected from the existing transcriptome data of Angelica decursiva. Here, four different types of statistical algorithms (geNorm, NormFinder, BestKeeper, and Delta Ct) were used to calculate and evaluate the stability of gene expression under different external treatments. Subsequently, RefFinder analysis was used to determine the geometric average of each candidate gene ranking, and to perform comprehensive index ranking. The obtained results showed that among all the 11 candidate reference genes, SAND family protein (SAND), protein phosphatase 2A gene (PP2A), and polypyrimidine tract-binding protein (PTBP) were the most stable reference genes, where Nuclear cap binding protein 2 (NCBP2), TIP41-like protein (TIP41), and Beta-6-tubulin (TUBA) were the least stable genes. To the best of our knowledge, this work is the first to evaluate the stability of reference genes in the Angelica decursiva which has provided an important foundation on the use of RT-qPCR for an accurate and far-reaching gene expression analysis in this medicinal plant.
Collapse
|
20
|
Xiao Z, Yue L, Wang C, Chen F, Ding Y, Liu Y, Cao X, Chen Z, Rasmann S, Wang Z. Downregulation of the photosynthetic machinery and carbon storage signaling pathways mediate La 2O 3 nanoparticle toxicity on radish taproot formation. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:124971. [PMID: 33429308 DOI: 10.1016/j.jhazmat.2020.124971] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
The molecular and physiological mechanisms of how rare earth oxide nanoparticles (NPs) alter radish (Raphanus sativus L.) taproot formation and cracking were investigated in the present study. We compared plants that received suspensions of 10, 50, 100, 300 mg L-1 of La2O3 NPs, 300 m L-1 La2O3 bulk-particles (BPs), 0.8 m L-1 La3+, or only water for six days during their tuber formation period. 100 and 300 mg L-1 La2O3 NPs exposure decreased storage root biomass by 38% and 60%, respectively, and they both induced visible root cracking. Physiological analyses showed that La2O3 NPs exposure (>100 mg L-1) significantly inhibited leaf net photosynthetic rate, cell wall pectin synthesis of both storage root epidermis and xylem parenchyma tissues, but increased the contents of cellulose and hemicellulose 1 in root epidermis cell walls. Moreover, transcriptome analysis further found that La2O3 NPs changed root cell wall structure by down-regulating core genes involved in cell wall pectin and IAA biosynthesis, which coincided with the observed La2O3 NPs-induced root cracking. Our results revealed the molecular mechanisms related to cell wall carbohydrate metabolism in response to NPs stress, providing a step forward for understanding the causes of NPs phytotoxicity on edible plant taproot formation and cracking.
Collapse
Affiliation(s)
- Zhenggao Xiao
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Ying Ding
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Yinglin Liu
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhe Chen
- Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Science, Haikou 571100, China
| | - Sergio Rasmann
- Institute of Biology, University of Neuchâtel, Rue-Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
21
|
González-Morales S, Solís-Gaona S, Valdés-Caballero MV, Juárez-Maldonado A, Loredo-Treviño A, Benavides-Mendoza A. Transcriptomics of Biostimulation of Plants Under Abiotic Stress. Front Genet 2021; 12:583888. [PMID: 33613631 PMCID: PMC7888440 DOI: 10.3389/fgene.2021.583888] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/06/2021] [Indexed: 12/20/2022] Open
Abstract
Plant biostimulants are compounds, living microorganisms, or their constituent parts that alter plant development programs. The impact of biostimulants is manifested in several ways: via morphological, physiological, biochemical, epigenomic, proteomic, and transcriptomic changes. For each of these, a response and alteration occur, and these alterations in turn improve metabolic and adaptive performance in the environment. Many studies have been conducted on the effects of different biotic and abiotic stimulants on plants, including many crop species. However, as far as we know, there are no reviews available that describe the impact of biostimulants for a specific field such as transcriptomics, which is the objective of this review. For the commercial registration process of products for agricultural use, it is necessary to distinguish the specific impact of biostimulants from that of other legal categories of products used in agriculture, such as fertilizers and plant hormones. For the chemical or biological classification of biostimulants, the classification is seen as a complex issue, given the great diversity of compounds and organisms that cause biostimulation. However, with an approach focused on the impact on a particular field such as transcriptomics, it is perhaps possible to obtain a criterion that allows biostimulants to be grouped considering their effects on living systems, as well as the overlap of the impact on metabolism, physiology, and morphology occurring between fertilizers, hormones, and biostimulants.
Collapse
|
22
|
Selection and Validation of Reference Genes for RT-qPCR Analysis in Spinacia oleracea under Abiotic Stress. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4853632. [PMID: 33623781 PMCID: PMC7875621 DOI: 10.1155/2021/4853632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/16/2021] [Indexed: 11/17/2022]
Abstract
Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is an accurate and convenient method for mRNA quantification. Selection of optimal reference gene(s) is an important step in RT-qPCR experiments. However, the stability of housekeeping genes in spinach (Spinacia oleracea) under various abiotic stresses is unclear. Evaluating the stability of candidate genes and determining the optimal gene(s) for normalization of gene expression in spinach are necessary to investigate the gene expression patterns during development and stress response. In this study, ten housekeeping genes, 18S ribosomal RNA (18S rRNA), actin, ADP ribosylation factor (ARF), cytochrome c oxidase subunit 5C (COX), cyclophilin (CYP), elongation factor 1-alpha (EF1α), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), histone H3 (H3), 50S ribosomal protein L2 (RPL2), and tubulin alpha chain (TUBα) from spinach, were selected as candidates in roots, stems, leaves, flowers, and seedlings in response to high temperature, CdCl2, NaCl, NaHCO3, and Na2CO3 stresses. The expression of these genes was quantified by RT-qPCR and evaluated by NormFinder, BestKeeper, and geNorm. 18S rRNA, actin, ARF, COX, CYP, EF1α, GAPDH, H3, and RPL2 were detected as optimal reference genes for gene expression analysis of different organs and stress responses. The results were further confirmed by the expression pattern normalized with different reference genes of two heat-responsive genes. Here, we optimized the detection method of the gene expression pattern in spinach. Our results provide the optimal candidate reference genes which were crucial for RT-qPCR analysis.
Collapse
|
23
|
Wang W, Hu S, Cao Y, Chen R, Wang Z, Cao X. Selection and evaluation of reference genes for qRT-PCR of Scutellaria baicalensis Georgi under different experimental conditions. Mol Biol Rep 2021; 48:1115-1126. [PMID: 33511512 PMCID: PMC7842394 DOI: 10.1007/s11033-021-06153-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/12/2021] [Indexed: 10/28/2022]
Abstract
Scutellaria baicalensis Georgi is a famous medicinal plant with its dried roots having been used as a traditional Chinese medicinal for more than 2000 years. Although its genome sequence has previously been published and molecular biology methods have been used to study this species, no suitable internal reference genes have been investigated for standardization of gene expression via quantitative real-time polymerase chain reaction (qRT-PCR). Here, the stabilities of 10 candidate reference genes, ACT11, ACT7, α-TUB, β-TUB, GAPDH, UBC, RPL, SAM, HSP70, and PP2A, were analyzed by four different procedures of GeNorm, NormFinder, BestKeeper, and RefFinder. Their expression stabilities were evaluated under various conditions, including different tissue types (root, stem, leaf, and flower), hormone stimuli treatments (methyl jasmonate, salicylic acid, and abscisic acid), and abiotic stresses (heavy metal, salt, drought, cold, and wounding). The results indicated that β-TUB was the most stable gene for all tested samples, while ACT11 was the most unstable. The most stable reference gene was not consistent under different conditions. β-TUB exhibited the highest stability for different tissue types and abiotic stresses, while for hormone stimuli treatments, ACT7 showed the highest stability. To confirm the applicability of suitable reference genes, we selected to SbF6H and SbF8H as target genes to analyze their expression levels in different tissues. This study helps to the accurate quantification of the relative expression levels of interest genes in S. baicalensis via qRT-PCR analysis.
Collapse
Affiliation(s)
- Wentao Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi'an, China
| | - Suying Hu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi'an, China
| | - Yao Cao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi'an, China
| | - Rui Chen
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi'an, China
| | - Zhezhi Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi'an, China.
| | - Xiaoyan Cao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
24
|
Yin Z, Xie F, Michalak K, Zhang B, Zimnoch-Guzowska E. Reference gene selection for miRNA and mRNA normalization in potato in response to potato virus Y. Mol Cell Probes 2020; 55:101691. [PMID: 33358935 DOI: 10.1016/j.mcp.2020.101691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/03/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023]
Abstract
This was the first report on evaluating candidate reference genes for quantifying the expression profiles of both coding (e.g., mRNA) and non-coding (e.g., miRNA) genes in potato response to potato virus Y (PVY) inoculation. The reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) method was employed to quantify the expression profiles of eight selected candidate reference genes; their expression stability was analyzed by four statistical algorithms, i.e., geNorm, BestKeeper, NormFinder and RefFinder. The most stable reference genes were sEF1a, sTUBb and seIF5 with a high stability. The least stable ones were sPP2A, sSUI1 and sGAPDH. The same reference gene allows for normalization of both miRNA and mRNA levels from a single RNA sample using cDNAs synthesized in a single RT reaction, in which a stem-loop primer was used for miRNAs and the oligo (dT) for mRNAs.
Collapse
Affiliation(s)
- Zhimin Yin
- Plant Breeding and Acclimatization Institute, National Research Institute, Młochów Research Center, Platanowa 19, Młochów, PL-05-831, Poland.
| | - Fuliang Xie
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Krystyna Michalak
- Plant Breeding and Acclimatization Institute, National Research Institute, Młochów Research Center, Platanowa 19, Młochów, PL-05-831, Poland
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Ewa Zimnoch-Guzowska
- Plant Breeding and Acclimatization Institute, National Research Institute, Młochów Research Center, Platanowa 19, Młochów, PL-05-831, Poland
| |
Collapse
|
25
|
Khaing YY, Kobayashi Y, Takeshita M. The 2b protein and C-terminal region of the 2a protein indispensably facilitate systemic movement of cucumber mosaic virus in radish with supplementary function by either the 3a or the coat protein. Virol J 2020; 17:49. [PMID: 32264933 PMCID: PMC7140367 DOI: 10.1186/s12985-020-01303-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/25/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In Raphanus sativus (Japanese radish), strain D8 of cucumber mosaic virus (CMV-D8) establishes a systemic infection and induces mild mosaic on upper, non-inoculated leaves, whereas strain Y of CMV (CMV-Y) causes only a local infection in the inoculated leaves. Here, we further analyzed the specific viral factor(s) of CMV-D8 that is (are) indispensable for systemic infection in Japanese radish. METHODS To identify which genomic RNA(s) is (are) involved in systemic infection in radish, we carried out a pseudorecombination analysis between CMV-D8 and CMV-Y. With recombination analyses between CMV-D8 and CMV-Y using mutant/recombinant RNA2s, chimeric and point-mutated RNA3s, we identified viral factors that are indispensable for systemic infection. RESULTS Viral RNA2 and RNA3 of CMV-D8 facilitated efficient virus spread into the upper, non-inoculated plant tissues of radish (cv. Tokinashi), but not those of CMV-Y. Recombinant RNA2s demonstrated that the 2b protein (2b) and the C-terminus of the 2a protein (2a) of CMV-D8 have a crucial role in systemic infection. In addition, we used chimeric and point-mutated RNA3s to that Pro17 and Pro129 in the coat protein (CP) of CMV-D8 are involved in efficient systemic infection and that Ser51 in the 3a protein (3a) of CMV-D8 has positive effects on systemic spread. The results suggested that these viral factors facilitate systemic infection of CMV-D8 in Japanese radish. CONCLUSION The C-terminal region of 2a, the entire region of 2b, and supplementary function of either Ser51 in 3a or Pro17/Pro 129 in CP confer systemic infectivity on CMV-D8 in radish. These results further elucidate the complex interaction of viral proteins of CMV to complete systemic infection as a host-specific manner.
Collapse
Affiliation(s)
- Yu Yu Khaing
- Laboratory of Plant Pathology, Faculty of Agriculture, Department of Agricultural and Environmental Sciences, University of Miyazaki, Gakuenkibanadainishi 1-1, Miyazaki, 889-2192, Japan
| | - Yudai Kobayashi
- Laboratory of Plant Pathology, Faculty of Agriculture, Department of Agricultural and Environmental Sciences, University of Miyazaki, Gakuenkibanadainishi 1-1, Miyazaki, 889-2192, Japan
| | - Minoru Takeshita
- Laboratory of Plant Pathology, Faculty of Agriculture, Department of Agricultural and Environmental Sciences, University of Miyazaki, Gakuenkibanadainishi 1-1, Miyazaki, 889-2192, Japan.
| |
Collapse
|
26
|
Xu W, Dong Y, Yu Y, Xing Y, Li X, Zhang X, Hou X, Sun X. Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plants under differential biotic stresses. Sci Rep 2020; 10:2429. [PMID: 32051495 PMCID: PMC7015943 DOI: 10.1038/s41598-020-59168-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/23/2020] [Indexed: 12/03/2022] Open
Abstract
The selection of reliable reference genes (RGs) for normalization under given experimental conditions is necessary to develop an accurate qRT-PCR assay. To the best of our knowledge, only a small number of RGs have been rigorously identified and used in tea plants (Camellia sinensis (L.) O. Kuntze) under abiotic stresses, but no critical RG identification has been performed for tea plants under any biotic stresses till now. In the present study, we measured the mRNA transcriptional levels of ten candidate RGs under five experimental conditions; these genes have been identified as stable RGs in tea plants. By using the ΔCt method, geNorm, NormFinder and BestKeeper, CLATHRIN1 and UBC1, TUA1 and SAND1, or SAND1 and UBC1 were identified as the best combination for normalizing diurnal gene expression in leaves, stems and roots individually; CLATHRIN1 and GAPDH1 were identified as the best combination for jasmonic acid treatment; ACTIN1 and UBC1 were identified as the best combination for Toxoptera aurantii-infested leaves; UBC1 and GAPDH1 were identified as the best combination for Empoasca onukii-infested leaves; and SAND1 and TBP1 were identified as the best combination for Ectropis obliqua regurgitant-treated leaves. Furthermore, our results suggest that if the processing time of the treatment was long, the best RGs for normalization should be recommended according to the stability of the proposed RGs in different time intervals when intragroup differences were compared, which would strongly increase the accuracy and sensitivity of target gene expression in tea plants under biotic stresses. However, when the differences of intergroup were compared, the RGs for normalization should keep consistent across different time points. The results of this study provide a technical guidance for further study of the molecular mechanisms of tea plants under different biotic stresses.
Collapse
Affiliation(s)
- Wei Xu
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Yanan Dong
- College of Plant Protection, Jilin Agricultural University, Changchun, China.,Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Yongchen Yu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China.,Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, Zhejiang, China
| | - Yuxian Xing
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China.,Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, Zhejiang, China
| | - Xiwang Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China.,Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, Zhejiang, China
| | - Xin Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China.,Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, Zhejiang, China
| | - Xiangjie Hou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China.,Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, Zhejiang, China
| | - Xiaoling Sun
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China. .,Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, Zhejiang, China.
| |
Collapse
|
27
|
Selection and Validation of Appropriate Reference Genes for Quantitative RT-PCR Analysis in Rubia yunnanensis Diels Based on Transcriptome Data. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5824841. [PMID: 31998793 PMCID: PMC6973195 DOI: 10.1155/2020/5824841] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/06/2019] [Accepted: 09/28/2019] [Indexed: 12/17/2022]
Abstract
Real-time quantitative polymerase chain reaction (RT-qPCR) has been widely applied in gene expression and transcription abundance analysis because of its high sensitivity, good repeatability, and strong specificity. Selection of relatively stable reference genes is a precondition in order to obtain the reliable analysis results. However, little is known about evaluation of a set of reference genes through scientific experiments in Rubia plants. Here, 15 candidate reference genes were selected from R. yunnanensis transcriptome database and analyzed under abiotic stresses, hormone treatments, and different tissues. Among these 15 candidate reference genes, heterogeneous nuclear ribonucleoprotein (hnRNP), TATA binding protein (TBP), ribosomal protein L5 (RPL5), malate dehydrogenase (MDH), and elongation factor 1-alpha (EF-1α) were indicated as the five most stable reference genes by four statistical programs (geNorm, NormFinder, BestKeeper, and RefFinder). Ultimately, the validity of reference genes was confirmed by normalizing the expression of o-succinylbenzoate-CoA ligase (OSBL) and isochorismate synthase (ICS) involved in the anthraquinone biosynthesis pathway in different tissues and hormone treatments. Meanwhile, four other putative genes involved in the anthraquinone biosynthesis pathway were also normalized with the selected reference genes, which showed similar expression levels with those given by transcriptome data. This work is the first research that aims at a systematic validation on the stability of reference genes selected from R. yunnanensis transcriptome data and will be conducive to analyze gene expression in R. yunnanensis or other Rubia species.
Collapse
|
28
|
Identification of Appropriate Reference Genes for Normalizing miRNA Expression in Citrus Infected by Xanthomonas citri subsp. citri. Genes (Basel) 2019; 11:genes11010017. [PMID: 31877985 PMCID: PMC7017248 DOI: 10.3390/genes11010017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 01/01/2023] Open
Abstract
MicroRNAs (miRNAs) are short noncoding RNA molecules that regulate gene expression at the posttranscriptional level. Reverse transcription-quantitative PCR (RT-qPCR) is one of the most common methods used for quantification of miRNA expression, and the levels of expression are normalized by comparing with reference genes. Thus, the selection of reference genes is critically important for accurate quantification. The present study was intended to identify appropriate miRNA reference genes for normalizing the level of miRNA expression in Citrus sinensis L. Osbeck and Citrus reticulata Blanco infected by Xanthomonas citri subsp. citri, which caused citrus canker disease. Five algorithms (Delta Ct, geNorm, NormFinder, BestKeeper and RefFinder) were used for screening reference genes, and two quantification approaches, poly(A) extension RT-qPCR and stem-loop RT-qPCR, were used to determine the most appropriate method for detecting expression patterns of miRNA. An overall comprehensive ranking output derived from the multi-algorithms showed that poly(A)-tailed miR162-3p/miR472 were the best reference gene combination for miRNA RT-qPCR normalization in citrus canker research. Candidate reference gene expression profiles determined by poly(A) RT-qPCR were more consistent in the two citrus species. To the best of our knowledge, this is the first systematic comparison of two miRNA quantification methods for evaluating reference genes. These results highlight the importance of rigorously assessing candidate reference genes and clarify some contradictory results in miRNA research on citrus.
Collapse
|
29
|
Bioinformatics Analysis of the Lipoxygenase Gene Family in Radish ( Raphanus sativus) and Functional Characterization in Response to Abiotic and Biotic Stresses. Int J Mol Sci 2019; 20:ijms20236095. [PMID: 31816887 PMCID: PMC6928601 DOI: 10.3390/ijms20236095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/23/2019] [Accepted: 11/28/2019] [Indexed: 12/15/2022] Open
Abstract
Lipoxygenases (LOXs) are non-heme iron-containing dioxygenases involved in many developmental and stress-responsive processes in plants. However, little is known about the radish LOX gene family members and their functions in response to biotic and abiotic stresses. In this study, we completed a genome-wide analysis and expression profiling of RsLOX genes under abiotic and biotic stress conditions. We identified 11 RsLOX genes, which encoded conserved domains, and classified them in 9-LOX and 13-LOX categories according to their phylogenetic relationships. The characteristic structural features of 9-LOX and 13-LOX genes and the encoded protein domains as well as their evolution are presented herein. A qRT-PCR analysis of RsLOX expression levels in the roots under simulated drought, salinity, heat, and cold stresses, as well as in response to a Plasmodiophora brassicae infection, revealed three tandem-clustered RsLOX genes that are involved in responses to various environmental stresses via the jasmonic acid pathway. Our findings provide insights into the evolution and potential biological roles of RsLOXs related to the adaptation of radish to stress conditions.
Collapse
|
30
|
Dixit S, Jangid VK, Grover A. Evaluation of suitable reference genes in Brassica juncea and its wild relative Camelina sativa for qRT-PCR analysis under various stress conditions. PLoS One 2019; 14:e0222530. [PMID: 31539385 PMCID: PMC6754150 DOI: 10.1371/journal.pone.0222530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 09/01/2019] [Indexed: 01/23/2023] Open
Abstract
Quantitative real-time PCR (qRT-PCR) is an efficient method to estimate the gene expression levels but the accuracy of its result largely depends on the stability of the reference gene. Many studies have reported considerable variation in the expression of reference genes (RGs) in different tissue and conditions. Therefore, screening for appropriate RGs with stable expression is crucial for functional analysis of the target gene. Two closely related crucifers Brassica juncea (cultivated) and Camelina sativa (wild) respond differently towards various abiotic and biotic stress where C. sativa exhibits higher tolerance to various stress. Comparative gene expression analysis of the target genes between two such species is the key approach to understand the mechanism of a plant’s response to stress. However, using an unsuitable RG can lead to misinterpretation of expression levels of the target gene in such studies. In this investigation, the stability of seven candidate RGs including traditional housekeeping genes (HKGs) and novel candidate RGs were identified across diverse sample sets of B. juncea and C. sativa representing- hormone treated, wounded, Alternaria brassicae inoculated and combination treated samples (exogenous hormone treatment followed by A. brassicae inoculation). In this investigation, we identified stable RGs in both the species and the most suitable RGs to perform an unbiased comparative gene expression analysis between B. juncea and C. sativa. Results revealed that TIPS41 and PP2A were identified as the overall best performing RGs in both the species. However, the most suitable RG for each sample subset representing different condition must be individually selected. In Hormone treated and wounded samples TIPS41 expressed stably in both the species and in A. brassicae inoculated and combination treatment performance of PP2A was the best. In this study, for the first time, we have identified and validated stable reference gene in C. sativa for accurate normalization of gene expression data.
Collapse
Affiliation(s)
- Shikha Dixit
- Plant-Pathogen Interaction Laboratory, National Institute for Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Vinod Kumar Jangid
- Plant-Pathogen Interaction Laboratory, National Institute for Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Anita Grover
- Plant-Pathogen Interaction Laboratory, National Institute for Plant Biotechnology, Pusa Campus, New Delhi, India
- * E-mail:
| |
Collapse
|
31
|
Selection and validation of reference genes for quantitative real-time PCR in Rosmarinus officinalis L. in various tissues and under elicitation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Zhang J, Xie W, Yu X, Zhang Z, Zhao Y, Wang N, Wang Y. Selection of Suitable Reference Genes for RT-qPCR Gene Expression Analysis in Siberian Wild Rye ( Elymus sibiricus) under Different Experimental Conditions. Genes (Basel) 2019; 10:E451. [PMID: 31200580 PMCID: PMC6627066 DOI: 10.3390/genes10060451] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/05/2019] [Accepted: 06/11/2019] [Indexed: 11/17/2022] Open
Abstract
Elymus sibiricus, which is a perennial and self-pollinated grass, is the typical species of the genus Elymus, which plays an important role in forage production and ecological restoration. No reports have, so far, systematically described the selection of optimal reference genes for reverse transcriptase quantitative real-time polymerase chain reaction (RT-qPCR) analysis in E. sibiricus. The goals of this study were to evaluate the expression stability of 13 candidate reference genes in different experimental conditions, and to determine the appropriate reference genes for gene expression analysis in E. sibiricus. Five methods including Delta Ct (ΔCt), BestKeeper, NormFinder, geNorm, and RefFinder were used to assess the expression stability of 13 potential reference genes. The results of the RefFinder analysis showed that TBP2 and HIS3 were the most stable reference genes in different genotypes. TUA2 and PP2A had the most stable expression in different developmental stages. TBP2 and PP2A were suitable reference genes in different tissues. Under salt stress, ACT2 and TBP2 were identified as the most stable reference genes. ACT2 and TUA2 showed the most stability under heat stress. For cold stress, PP2A and ACT2 presented the highest degree of expression stability. DNAJ and U2AF were considered as the most stable reference genes under osmotic stress. The optimal reference genes were selected to investigate the expression pattern of target gene CSLE6 in different conditions. This study provides suitable reference genes for further gene expression analysis using RT-qPCR in E. sibiricus.
Collapse
Affiliation(s)
- Junchao Zhang
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Wengang Xie
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Xinxuan Yu
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Zongyu Zhang
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Yongqiang Zhao
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Na Wang
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Yanrong Wang
- The State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| |
Collapse
|
33
|
Miao L, Qin X, Gao L, Li Q, Li S, He C, Li Y, Yu X. Selection of reference genes for quantitative real-time PCR analysis in cucumber ( Cucumis sativus L.), pumpkin ( Cucurbita moschata Duch .) and cucumber-pumpkin grafted plants. PeerJ 2019; 7:e6536. [PMID: 31024757 PMCID: PMC6475253 DOI: 10.7717/peerj.6536] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/29/2019] [Indexed: 11/20/2022] Open
Abstract
Background Quantitative real-time PCR (qRT-PCR) is a commonly used high-throughput technique to measure mRNA transcript levels. The accuracy of this evaluation of gene expression depends on the use of optimal reference genes. Cucumber-pumpkin grafted plants, made by grafting a cucumber scion onto pumpkin rootstock, are superior to either parent plant, as grafting conveys many advantages. However, although many reliable reference genes have been identified in both cucumber and pumpkin, none have been obtained for cucumber-pumpkin grafted plants. Methods In this work, 12 candidate reference genes, including eight traditional genes and four novel genes identified from our transcriptome data, were selected to assess their expression stability. Their expression levels in 25 samples, including three cucumber and three pumpkin samples from different organs, and 19 cucumber-pumpkin grafted samples from different organs, conditions, and varieties, were analyzed by qRT-PCR, and the stability of their expression was assessed by the comparative ΔCt method, geNorm, NormFinder, BestKeeper, and RefFinder. Results The results showed that the most suitable reference gene varied dependent on the organs, conditions, and varieties. CACS and 40SRPS8 were the most stable reference genes for all samples in our research. TIP41 and CACS showed the most stable expression in different cucumber organs, TIP41 and PP2A were the optimal reference genes in pumpkin organs, and CACS and 40SRPS8 were the most stable genes in all grafted cucumber samples. However, the optimal reference gene varied under different conditions. CACS and 40SRPS8 were the best combination of genes in different organs of cucumber-pumpkin grafted plants, TUA and RPL36Aa were the most stable in the graft union under cold stress, LEA26 and ARF showed the most stable expression in the graft union during the healing process, and TIP41 and PP2A were the most stable across different varieties of cucumber-pumpkin grafted plants. The use of LEA26, ARF and LEA26+ARF as reference genes were further verified by analyzing the expression levels of csaCYCD3;1, csaRUL, cmoRUL, and cmoPIN in the graft union at different time points after grafting. Discussion This work is the first report of appropriate reference genes in grafted cucumber plants and provides useful information for the study of gene expression and molecular mechanisms in cucumber-pumpkin grafted plants.
Collapse
Affiliation(s)
- Li Miao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.,Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Xing Qin
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Qing Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuzhen Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chaoxing He
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yansu Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianchang Yu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
34
|
Sun H, Jiang X, Sun M, Cong H, Qiao F. Evaluation of reference genes for normalizing RT-qPCR in leaves and suspension cells of Cephalotaxus hainanensis under various stimuli. PLANT METHODS 2019; 15:31. [PMID: 30962812 PMCID: PMC6434779 DOI: 10.1186/s13007-019-0415-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Reverse transcription quantitative real-time PCR (RT-qPCR) is a widely used approach for investigating gene expression levels in plants because of its high reproducibility, sensitivity, accuracy and rapidness. Evaluation of reference genes for normalizing RT-qPCR data is a necessary step, especially in new plant varieties. Cephalotaxus hainanensis is a precious medicinal plant belonging to the family of Cephalotaxaceae and no RT-qPCR studies have been reported on it. RESULTS In this study, 9 candidate reference genes were selected from the transcriptome data of C. hainanensis; 3 statistical algorithms (geNorm, NormFinder, BestKeeper) were applied to evaluate their expression stabilities through 180 samples under 6 stimuli treatments in leaves and leaf-derived suspension cultured cells; a comprehensive stabilities ranking was also performed by RefFinder. The results showed that suitable reference genes in C. hainanensis should be selected for normalization relative to different experimental sets. 18S showed a higher stability than other candidate reference genes which ranked at the top two suitable genes under all experimental setups in this study. CONCLUSION This study is the first to evaluate the stability of reference genes in C. hainanensis and supply an important foundation to use the RT-qPCR for an accurate and far-reaching gene expression analysis in C. hainanensis.
Collapse
Affiliation(s)
- Huapeng Sun
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture/Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737 Hainan People’s Republic of China
| | - Xuefei Jiang
- Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources/Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228 Hainan People’s Republic of China
| | - Mengli Sun
- Hainan Key Laboratory of Sustainable Utilization of Tropical Bioresources/Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228 Hainan People’s Republic of China
| | - Hanqing Cong
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture/Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737 Hainan People’s Republic of China
| | - Fei Qiao
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture/Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737 Hainan People’s Republic of China
| |
Collapse
|
35
|
Tortosa M, Cartea ME, Velasco P, Soengas P, Rodriguez VM. Calcium-signaling proteins mediate the plant transcriptomic response during a well-established Xanthomonas campestris pv. campestris infection. HORTICULTURE RESEARCH 2019; 6:103. [PMID: 31645958 PMCID: PMC6804691 DOI: 10.1038/s41438-019-0186-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/25/2019] [Accepted: 07/24/2019] [Indexed: 05/21/2023]
Abstract
The plant immune system is divided into two branches; one branch is based on the recognition of pathogen-associated molecular patterns (PAMP-triggered immunity), and the other relies on pathogenic effector detection (effector-triggered immunity). Despite each branch being involved in different complex mechanisms, both lead to transcription reprogramming and, thus, changes in plant metabolism. To study the defense mechanisms involved in the Brassica oleracea-Xanthomonas campestris pv. campestris (Xcc) interaction, we analyzed the plant transcriptome dynamics at 3 and 12 days postinoculation (dpi) by using massive analysis of 3'-cDNA ends. We identified more induced than repressed transcripts at both 3 and 12 dpi, although the response was greater at 12 dpi. Changes in the expression of genes related to the early infection stages were only detected at 12 dpi, suggesting that the timing of triggered defenses is crucial to plant survival. qPCR analyses in susceptible and resistant plants allowed us to highlight the potential role of two calcium-signaling proteins, CBP60g and SARD1, in the resistance against Xcc. This role was subsequently confirmed using Arabidopsis knockout mutants.
Collapse
Affiliation(s)
- Maria Tortosa
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia, Spanish Council for Scientific Research (CSIC), PO Box 28 E-36080 Pontevedra, Spain
| | - Maria E. Cartea
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia, Spanish Council for Scientific Research (CSIC), PO Box 28 E-36080 Pontevedra, Spain
| | - Pablo Velasco
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia, Spanish Council for Scientific Research (CSIC), PO Box 28 E-36080 Pontevedra, Spain
| | - Pilar Soengas
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia, Spanish Council for Scientific Research (CSIC), PO Box 28 E-36080 Pontevedra, Spain
| | - Victor M. Rodriguez
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia, Spanish Council for Scientific Research (CSIC), PO Box 28 E-36080 Pontevedra, Spain
| |
Collapse
|
36
|
Su W, Yuan Y, Zhang L, Jiang Y, Gan X, Bai Y, Peng J, Wu J, Liu Y, Lin S. Selection of the optimal reference genes for expression analyses in different materials of Eriobotrya japonica. PLANT METHODS 2019; 15:7. [PMID: 30705689 PMCID: PMC6348664 DOI: 10.1186/s13007-019-0391-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 01/19/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Loquat (Eriobotrya japonica) is a subtropical tree bearing fruit that ripens during late spring and early summer, which is the off-season for fruit production. The specific flowering habit of loquat, which starts in fall and ends in winter, has attracted an increasing number of researchers who believe that it may represent an ideal model for studying flowering shift adaptations to climate change in Rosaceae. These studies require an understanding of gene expression patterns within the fruit and other tissues of this plant. Although ACTINs (ACTs) have previously been used as reference genes (RGs) for gene expression studies in loquats, a comprehensive analysis of whether these RGs are optimal for normalizing RT-qPCR data has not been performed. RESULTS In this study, 11 candidate RGs (RIBOSOMAL-LIKE PROTEIN4 (RPL4), RIBOSOMAL-LIKE PROTEIN18 (RPL18), Histone H3.3 (HIS3), Alpha-tubulin-3 (TUA3), S-Adenosyl Methionine Decarboxylase (SAMDC), TIP41-like Family Protein (TIP41), (UDP)-glucose Pyrophosphorylase (UGPase), 18S ribosomal RNA (18S), Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH), Plasma Intrinsic Protein 2 (PIP2) and ACTIN(ACT)) were assessed to determine their expression stability in 23 samples from different tissues or organs of loquat. Integrated expression stability evaluations using five computational statistical methods (GeNorm, NormFinder, ΔCt, BestKeeper, and RefFinder) suggested that a RG set, including RPL4, RPL18, HIS3 and TUA3, was the most stable one across all of the tested loquat samples. The expression pattern of EjCDKB1;2 in the tested loquat tissues normalized to the selected RG set demonstrated its reliability. CONCLUSIONS This study reveals the reliable RGs for accurate normalization of gene expression in loquat. In addition, our findings demonstrate an efficient system for identifying the most effective RGs for different organs, which may be applied to related rosaceous crops.
Collapse
Affiliation(s)
- Wenbing Su
- Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture), College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
- Key Laboratory of Loquat Germplasm Innovation and Utilization, Putian University, Putian, 351100 China
| | - Yuan Yuan
- Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture), College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
- Guangzhou Institute of Agricultural Sciences, Guangzhou, 510308 China
| | - Ling Zhang
- Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture), College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Yuanyuan Jiang
- Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture), College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Xiaoqing Gan
- Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture), College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Yunlu Bai
- Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture), College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Jiangrong Peng
- Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture), College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Jincheng Wu
- Key Laboratory of Loquat Germplasm Innovation and Utilization, Putian University, Putian, 351100 China
| | - Yuexue Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866 China
- Key Laboratory of Loquat Germplasm Innovation and Utilization, Putian University, Putian, 351100 China
| | - Shunquan Lin
- Key Laboratory of Innovation and Utilization of Horticultural Crop Resources in South China (Ministry of Agriculture), College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
37
|
Sudhakar Reddy P, Dhaware MG, Srinivas Reddy D, Pradeep Reddy B, Divya K, Sharma KK, Bhatnagar-Mathur P. Comprehensive evaluation of candidate reference genes for real-time quantitative PCR (RT-qPCR) data normalization in nutri-cereal finger millet [Eleusine Coracana (L.)]. PLoS One 2018; 13:e0205668. [PMID: 30321245 PMCID: PMC6188778 DOI: 10.1371/journal.pone.0205668] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/30/2018] [Indexed: 11/19/2022] Open
Abstract
Finger millet (Eleusine coracana L.) is an annual herbaceous self-pollinating C4 cereal crop of the arid and semi-arid regions of the world. Finger millet is a food security crop proven to have resilience to changing climate and scores very high in nutrition. In the current study, we have assessed sixteen candidate reference genes for their appropriateness for the normalization studies in finger millet subjected to experimental regimes and treatments. Ten candidate reference genes (GAPDH, β-TUB, CYP, EIF4α, TIP41, UBC, G6PD, S24, MACP and MDH) were cloned and six (ACT, ELF1α, PP2A, PT, S21 and TFIID) were mined from the NCBI database as well as from the literature. Expression stability ranking of the finger millet reference genes was validated using four different statistical tools i.e., geNorm, NormFinder, BestKeeper, ΔCt and RefFinder. From the study, we endorse MACP, CYP, EIF4α to be most stable candidate reference genes in all 'tissues', whereas PT, TFIID, MACP ranked high across genotypes, β-TUB, CYP, ELF1α were found to be best under abiotic stresses and 'all samples set'. The study recommends using minimum of two reference genes for RT-qPCR data normalizations in finger millet. All in all, CYP, β-TUB, and EF1α, in combination were found to be best for robust normalizations under most experimental conditions. The best and the least stable genes were validated for confirmation by assessing their appropriateness for normalization studies using EcNAC1 gene. The report provides the first comprehensive list of suitable stable candidate reference genes for nutritional rich cereal finger millet that will be advantageous to gene expression studies in this crop.
Collapse
Affiliation(s)
- Palakolanu Sudhakar Reddy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, India
- * E-mail:
| | - Mahamaya G. Dhaware
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, India
| | - Dumbala Srinivas Reddy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, India
| | - Bommineni Pradeep Reddy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, India
| | - Kummari Divya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, India
| | - Kiran K. Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, India
| | - Pooja Bhatnagar-Mathur
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, India
| |
Collapse
|
38
|
Huang T, Long J, Liu SW, Yang ZW, Zhu QJ, Zhao XL, Peng C. Selection and Validation of Reference Genes for mRNA Expression by Quantitative Real-Time PCR Analysis in Neolamarckia cadamba. Sci Rep 2018; 8:9311. [PMID: 29915368 PMCID: PMC6006177 DOI: 10.1038/s41598-018-27633-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 06/07/2018] [Indexed: 12/20/2022] Open
Abstract
Neolamarckia cadamba is an economically-important fast-growing tree species in South China and Southeast Asia. As a prerequisite first step for future gene expression studies, we have identified and characterized a series of stable reference genes that can be used as controls for quantitative real time PCR (qRT-PCR) expression analysis in this study. The expression stability of 15 candidate reference genes in various tissues and mature leaves under different conditions was evaluated using four different algorithms, i.e., geNorm, NormFinder, BestKeeper and RefFinder. Our results showed that SAMDC was the most stable of the selected reference genes across the set of all samples, mature leaves at different photosynthetic cycles and under drought stress, whereas RPL10A had the most stable expression in various tissues. PGK and RPS25 were considered the most suitable reference for mature leaves at different developmental stages and under cold treatment, respectively. Additionally, the gene expression profiles of sucrose transporter 4 (NcSUT4), and 9-cis-epoxycarotenoid dioxygenase 3 (NcNCED3) were used to confirm the validity of candidate reference genes. Collectively, our study is the first report to validate the optimal reference genes for normalization under various conditions in N. cadamba and will benefit the future discovery of gene function in this species.
Collapse
Affiliation(s)
- Tian Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianmei Long
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Si-Wen Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Zi-Wei Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Qi-Jin Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao-Lan Zhao
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Changcao Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
39
|
Fei X, Shi Q, Yang T, Fei Z, Wei A. Expression Stabilities of Ten Candidate Reference Genes for RT-qPCR in Zanthoxylum bungeanum Maxim. Molecules 2018; 23:molecules23040802. [PMID: 29601541 PMCID: PMC6017173 DOI: 10.3390/molecules23040802] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 01/26/2023] Open
Abstract
Real-time reverse transcription quantitative PCR has become a common method for studying gene expression, however, the optimal selection of stable reference genes is a prerequisite for obtaining accurate quantification of transcript abundance. Suitable reference genes for RT-qPCR have not yet been identified for Chinese prickly ash (Zanthoxylum bungeanum Maxim.). Chinese prickly ash is the source of an important food seasoning in China. In recent years, Chinese prickly ash has also been developed as a medicinal plant. The expression stabilities of ten genes (18S, 28S, EF, UBA, UBQ, TIF, NTB, TUA, RPS, and TIF5A) were evaluated in roots, stems, leaves, flowers and fruits at five developmental stages and also under stress from cold, drought, and salt. To do this we used three different statistical algorithms: geNorm, NormFinder and BestKeeper. Among the genes investigated, UBA and UBQ were found to be most stable for the different cultivars and different tissues examined, UBQ and TIF for fruit developmental stage. Meanwhile, EF and TUA were most stable under cold treatment, EF and UBQ under drought treatment and NTB and RPS under salt treatment. UBA and UBQ for all samples evaluated were most stably expressed, but 18S, TUA and RPS were found to be generally unreliable as reference genes. Our results provide a basis for the future selection of reference genes for biological research with Chinese prickly ash, under a variety of conditions.
Collapse
Affiliation(s)
- Xitong Fei
- College of Forestry, Northwest A&F University, Yangling 712100, China.
| | - Qianqian Shi
- College of Forestry, Northwest A&F University, Yangling 712100, China.
| | - Tuxi Yang
- College of Forestry, Northwest A&F University, Yangling 712100, China.
| | - Zhaoxue Fei
- College of Forestry, Northwest A&F University, Yangling 712100, China.
| | - Anzhi Wei
- College of Forestry, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|