1
|
Zhu H, Li D, Yue C, Li H. Development of Single Nucleotide Polymorphism and Phylogenetic Analysis of Rhododendron Species in Zhejiang Province, China, Using ddRAD-Seq Technology. PLANTS (BASEL, SWITZERLAND) 2025; 14:1548. [PMID: 40431115 PMCID: PMC12115105 DOI: 10.3390/plants14101548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/19/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025]
Abstract
The genus Rhododendron presents significant challenges for systematic classification due to extensive hybridization and adaptive radiation. Here, we employed double-digest restriction site-associated DNA sequencing (ddRAD-seq) to resolve phylogenetic relationships among nine ecologically significant Rhododendron species (34 accessions) endemic to Zhejiang Province, China, a biodiversity hotspot for this genus. Using R. simsii as the reference genome, we generated 39.40 Gb of high-quality sequencing data with a Q30 score of 96.65% and a GC content of 39.63%, achieving an average alignment rate of 92.79%. Through stringent filtering (QD ≥ 2, MQ ≥ 40), we identified 14,048,702 genome-wide single nucleotide polymorphism (SNP), predominantly characterized by the mutation types T:A>C:G and C:G>T:A. The widespread R. simsii and R. simsii var. putuoense exhibited significant genetic diversity, whereas the low-altitude widespread R. molle and the endemic R. simiarum exhibited lower genetic diversity. Moderate genetic differentiation (Fst = 0.097) was observed between R. simsii and R. simsii var. putuoense, while substantial genetic differentiation was detected among the other Rhododendron species. Principal component analysis (PCA), combined with phylogenomic reconstruction, demonstrated that the Rhododendron genus can be stratified into six well-supported genetic clades. Furthermore, this study provides the first genomic validation of the sibling relationship between R. simsii and its variety, R. simsii var. putuoense, and clarifies the systematic position of R. huadingense, suggesting that it should be classified as a new subgenus. This study establishes ddRAD-seq as a cost-effective tool, providing both a theoretical framework for SNP-based phylogenetics and critical insights for conserving China's azalea biodiversity.
Collapse
Affiliation(s)
- Hong Zhu
- Research Centre for Zhejiang Wetland, Zhejiang Academy of Foresty, Hangzhou 310023, China; (H.Z.); (C.Y.)
| | - Dongbin Li
- Ningbo Forestry Development Center, Ningbo 315440, China;
| | - Chunlei Yue
- Research Centre for Zhejiang Wetland, Zhejiang Academy of Foresty, Hangzhou 310023, China; (H.Z.); (C.Y.)
| | - Hepeng Li
- Research Centre for Zhejiang Wetland, Zhejiang Academy of Foresty, Hangzhou 310023, China; (H.Z.); (C.Y.)
| |
Collapse
|
2
|
Rawat S, Jugran AK, Sharma H. Recent advancements in the physiological, genetic, and genomic research on Rhododendrons for trait improvement. 3 Biotech 2024; 14:164. [PMID: 38808301 PMCID: PMC11128433 DOI: 10.1007/s13205-024-04006-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/09/2024] [Indexed: 05/30/2024] Open
Abstract
High species diversity, hybridization potential, broad geographical dispersal range and ornamental characteristics (i.e., attractive size, shape, structure, flowers, and evergreen) have fetched a good international market for Rhododendron. However, most species are restricted to specific geographic areas due to their habitat specificity in acidic soil and cold climates, resulting many species being classified under threat categories of the IUCN. In this review, advances in research on Rhododendron for improvement to floral display quality and stress resistance have been described. The low genetic barrier among species has created opportunities for extensive hybridization and ploidy alteration for introducing quality and adaptive traits during the development of new varieties. Recent technological advances have supported investigations into the mechanism of flower development, as well as cold tolerance and pathogen resistance mechanisms in the Rhododendron. However, most of the species have limited adaptability to drought, line-tolerance, pathogen resistance, and high-temperature conditions and this resistance ability present in few species largely remains unexplored. Additionally, the available genetic diversity and genomic information on species, and possibilities for their application in molecular breeding have been summarized. Overall, genomic resource data are scarce in the majority of the members of this genus. Finally, various research gaps such as genetic mapping of quality traits, understanding the molecular mechanism of quality-related traits and genomic assortment in Rhododendron members have been discussed in the future perspective section. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04006-6.
Collapse
Affiliation(s)
- Sandeep Rawat
- Sikkim Regional Centre, G. B. Pant National Institute of Himalayan Environment, Pangthang, Gangtok, Sikkim 737101 India
| | - Arun K. Jugran
- Garhwal Regional Centre, G. B. Pant National Institute of Himalayan Environment, Srinagar, Uttarakhand 246174 India
| | - Himanshu Sharma
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, Punjab 140306 India
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh 173229 India
| |
Collapse
|
3
|
Mahdavikia F, Ebadi MT, Shojaeiyan A, Ayyari M, Falahati-Anbaran M. Genetic variation and structure of endemic and endangered wild celery ( Kelussia odoratissima Mozaff.) quantified using novel microsatellite markers developed by next-generation sequencing. FRONTIERS IN PLANT SCIENCE 2024; 15:1301936. [PMID: 38638345 PMCID: PMC11024376 DOI: 10.3389/fpls.2024.1301936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/29/2024] [Indexed: 04/20/2024]
Abstract
Kelussia odoratissima Mozaff. (Apiaceae) is a native plant that has been traditionally consumed in Iran's food and pharmaceutical industries. Overharvesting of the taxon, especially at the beginning of the growing season, due to its considerable medicinal and economic value, is believed to be the main reason for the extirpating of this plant. The consequences of the severe anthropogenic impacts on the genetic diversity of populations are poorly known. In order to investigate the level of genetic variation and patterns of the genetic structure of K. odoratissima, we developed novel microsatellite markers using the 454 Roche next-generation sequencing (NGS) platform for the first time. Out of 1,165 microsatellite markers bioinformatically confirmed, twenty-five were tested, of which 23 were used to screen genetic variation across 12 natural populations. Our results showed that the average number of alleles per locus and the polymorphic information content (PIC) were 10.87 (range 7 to 27), and 0.81 (range 0.67 to 0.94), respectively. The mean observed and expected heterozygosities (± SD) across all populations were 0.80 ± 0.31 and 0.72 ± 0.14, respectively. The average pairwise FST among the populations was 0.37 (range 0.04 to 0.81). Bayesian and distance-based clustering, and principal coordinate analyses revealed at least four major genetic clusters. Although high level of structure can be explained by landscape topography and geographic distance, presence of admixed populations can be associated to seed or pollen dispersal. Contrary to expectations, the high level of genetic variation and lack of inbreeding suggest that overexploitation has not yet significantly purged the allelic variability within the natural populations in protected areas.
Collapse
Affiliation(s)
- Faezeh Mahdavikia
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University (TMU), Tehran, Iran
| | - Mohammad-Taghi Ebadi
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University (TMU), Tehran, Iran
| | - Abdolali Shojaeiyan
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University (TMU), Tehran, Iran
| | - Mahdi Ayyari
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University (TMU), Tehran, Iran
| | - Mohsen Falahati-Anbaran
- NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
4
|
Singh R, Singh A, Mahato AK, Paliwal R, Tiwari G, Kumar A. De Novo Transcriptome Profiling for the Generation and Validation of Microsatellite Markers, Transcription Factors, and Database Development for Andrographis paniculata. Int J Mol Sci 2023; 24:ijms24119212. [PMID: 37298166 DOI: 10.3390/ijms24119212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 06/12/2023] Open
Abstract
Andrographis paniculata belongs to the family Acanthaceae and is known for its medicinal properties owing to the presence of unique constituents belonging to the lactones, diterpenoids, diterpene glycosides, flavonoids, and flavonoid glycosides groups of chemicals. Andrographolide, a major therapeutic constituent of A. paniculata, is extracted primarily from the leaves of this plant and exhibits antimicrobial and anti-inflammatory activities. Using 454 GS-FLX pyrosequencing, we have generated a whole transcriptome profile of entire leaves of A. paniculata. A total of 22,402 high-quality transcripts were generated, with an average transcript length and N50 of 884 bp and 1007 bp, respectively. Functional annotation revealed that 19,264 (86%) of the total transcripts showed significant similarity with the NCBI-Nr database and were successfully annotated. Out of the 19,264 BLAST hits, 17,623 transcripts were assigned GO terms and distributed into three major functional categories: molecular function (44.62%), biological processes (29.19%), and cellular component (26.18%) based on BLAST2GO. Transcription factor analysis showed 6669 transcripts, belonging to 57 different transcription factor families. Fifteen TF genes that belong to the NAC, MYB, and bHLH TF categories were validated by RT PCR amplification. In silico analysis of gene families involved in the synthesis of biochemical compounds having medicinal values, such as cytochrome p450, protein kinases, heat shock proteins, and transporters, was completed and a total of 102 different transcripts encoding enzymes involved in the biosynthesis of terpenoids were predicted. Out of these, 33 transcripts belonged to terpenoid backbone biosynthesis. This study also identified 4254 EST-SSRs from 3661 transcripts, representing 16.34% of the total transcripts. Fifty-three novel EST-SSR markers generated from our EST dataset were used to assess the genetic diversity among eighteen A. paniculata accessions. The genetic diversity analysis revealed two distinct sub-clusters and all accessions based on the genetic similarity index were distinct from each other. A database based on EST transcripts, EST-SSR markers, and transcription factors has been developed using data generated from the present study combined with available transcriptomic resources from a public database using Meta transcriptome analysis to make genomic resources available in one place to the researchers working on this medicinal plant.
Collapse
Affiliation(s)
- Rakesh Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India
| | - Akshay Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India
| | - Ajay Kumar Mahato
- The Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Ritu Paliwal
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India
| | - Gunjan Tiwari
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Ashok Kumar
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India
| |
Collapse
|
5
|
Liu C, Zhang M, Zhao X. Development of unigene-derived SSR markers from RNA-seq data of Uraria lagopodioides (Fabaceae) and their application in the genus Uraria Desv. (Fabaceae). BMC PLANT BIOLOGY 2023; 23:87. [PMID: 36759771 PMCID: PMC9912670 DOI: 10.1186/s12870-023-04086-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Uraria Desv. belongs to the tribe Desmodieae (Fabaceae), a group of legume plants, some of which have medicinal properties. However, due to a lack of genomic information, the interspecific relationships, genetic diversity, population genetics, and identification of functional genes within Uraria species are still unclear. RESULTS Using RNA-Seq, a total of 66,026 Uraria lagopodioides unigenes with a total sequence content of 52,171,904 bp were obtained via de novo assembly and annotated using GO, KEGG, and KOG databases. 17,740 SSRs were identified from a set of 66,026 unigenes. Cross-species amplification showed that 54 out of 150 potential unigene-derived SSRs were transferable in Uraria, of which 19 polymorphic SSRs were developed. Cluster analysis based on polymorphisms successfully distinguished seven Uraria species and revealed their interspecific relationships. Seventeen samples of seven Uraria species were clustered into two monophyletic clades, and phylogenetic relationships of Uraria species based on unigene-derived SSRs were consistent with classifications based on morphological characteristics. CONCLUSIONS Unigenes annotated in the present study will provide new insights into the functional genomics of Uraria species. Meanwhile, the unigene-derived SSR markers developed here will be invaluable for assessing the genetic diversity and evolutionary history of Uraria and relatives.
Collapse
Affiliation(s)
- Chaoyu Liu
- College of Forestry, Southwest Forestry University, Kunming, 650224, China
| | - Maomao Zhang
- College of Forestry, Southwest Forestry University, Kunming, 650224, China
| | - Xueli Zhao
- College of Forestry, Southwest Forestry University, Kunming, 650224, China.
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, 650224, China.
| |
Collapse
|
6
|
Li Y, Wei CM, Li XY, Meng DC, Gu ZJ, Qu SP, Huang MJ, Huang HQ. De novo transcriptome sequencing of Impatiens uliginosa and the analysis of candidate genes related to spur development. BMC PLANT BIOLOGY 2022; 22:553. [PMID: 36456926 PMCID: PMC9713998 DOI: 10.1186/s12870-022-03894-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/20/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Spur, a structure capable of producing and storing nectar, not only plays a vital role in the pollination process but also promotes the rapid diversification of some plant lineages, which is considered a key innovation in plants. Spur is the focus of many studies, such as evolution and ecological hypothesis, but the current understanding of spur development is limited. High-throughput sequencing of Impatiens uliginosa was carried out to study the molecular mechanism of its spur development, which is believed to provide some insights into the spur development of Impatiens. RESULTS Transcriptomic sequencing and analysis were performed on spurs and limbs of I. uliginosa at three developmental stages. A total of 47.83 Gb of clean data were obtained, and 49,716 unigene genes were assembled. After comparison with NR, Swiss-Prot, Pfam, COG, GO and KEGG databases, a total of 27,686 genes were annotated successfully. Through comparative analysis, 19,356 differentially expressed genes were found and enriched into 208 GO terms and 146 KEGG pathways, among which plant hormone signal transduction was the most significantly enriched pathway. One thousand thirty-two transcription factors were identified, which belonged to 33 TF families such as MYB, bHLH and TCP. Twenty candidate genes that may be involved in spur development were screened and verified by qPCR, such as SBP, IAA and ABP. CONCLUSIONS Transcriptome data of different developmental stages of spurs were obtained, and a series of candidate genes related to spur development were identified. The importance of genes related to cell cycle, cell division, cell elongation and hormones in spur development was clarified. This study provided valuable information and resources for understanding the molecular mechanism of spur development in Impatiens.
Collapse
Affiliation(s)
- Yang Li
- College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Southwest Forestry University, Kunming, 650224 Yunnan China
| | - Chun-Mei Wei
- College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Southwest Forestry University, Kunming, 650224 Yunnan China
| | - Xin-Yi Li
- College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Southwest Forestry University, Kunming, 650224 Yunnan China
| | - Dan-Chen Meng
- College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Southwest Forestry University, Kunming, 650224 Yunnan China
| | - Zhi-Jia Gu
- Key Laboratory for Plant Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Su-Ping Qu
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 Yunnan China
| | - Mei-Juan Huang
- College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Southwest Forestry University, Kunming, 650224 Yunnan China
| | - Hai-Quan Huang
- College of Landscape Architecture and Horticulture Sciences, Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, Research and Development Center of Landscape Plants and Horticulture Flowers, Southwest Forestry University, Kunming, 650224 Yunnan China
| |
Collapse
|
7
|
Tang H, Saina JK, Long ZC, Chen J, Dai C. De novo transcriptome assembly using Illumina sequencing and development of EST-SSR markers in a monoecious herb Sagittaria trifolia Linn. PeerJ 2022; 10:e14268. [PMID: 36317118 PMCID: PMC9617548 DOI: 10.7717/peerj.14268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/28/2022] [Indexed: 01/24/2023] Open
Abstract
Background Sagittaria trifolia Linn. is a widespread macrophyte in Asia and southeast Europe and cultivated in parts of Asia. Although a few genomic studies have been conducted for S. trifolia var. sinensis, a crop breed, there is limited genomic information on the wild species of S. trifolia. Effective microsatellite markers are also lacking. Objective To assemble transcriptome sequence and develop effective EST-SSR markers for S. trifolia. Methods Here we developed microsatellite markers based on tri-, tetra-, penta-, and hexa-nucleotide repeat sequences by comparatively screening multiple transcriptome sequences of eleven individuals from ten natural populations of S. trifolia. Results A total of 107,022 unigenes were de novo assembled, with a mean length of 730 bp and an N50 length of 1,378 bp. The main repeat types were mononucleotide, trinucleotide, and dinucleotide, accounting for 55.83%, 23.51%, and 17.56% of the total repeats, respectively. A total of 86 microsatellite loci were identified with repeats of tri-, tetra-, penta-, and hexa-nucleotide. For SSR verification, 28 polymorphic loci from 41 randomly picked markers were found to produce stable and polymorphic bands, with the number of alleles per locus ranging from 2 to 11 and a mean of 5.2. The range of polymorphic information content (PIC) of each SSR locus varied from 0.25 to 0.80, with an average of 0.58. The expected heterozygosity ranged from 0.29 to 0.82, whereas the observed heterozygosity ranged from 0.25 to 0.90. Conclusion The assembled transcriptome and annotated unigenes of S. trifolia provide a basis for future studies on gene functions, pathways, and molecular mechanisms associated with this species and other related. The newly developed EST-SSR markers could be effective in examining population genetic structure, differentiation, and parentage analyses in ecological and evolutionary studies of S. trifolia.
Collapse
Affiliation(s)
- Hanqing Tang
- School of Resources and Environmental Science, Hubei University, Wuhan, China
| | - Josphat K. Saina
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China,Current Affiliation: Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China
| | | | - Jinming Chen
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Can Dai
- School of Resources and Environmental Science, Hubei University, Wuhan, China,Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan, China
| |
Collapse
|
8
|
Ma M, Meng H, Lei E, Wang T, Zhang W, Lu B. De novo transcriptome assembly, gene annotation, and EST-SSR marker development of an important medicinal and edible crop, Amomum tsaoko (Zingiberaceae). BMC PLANT BIOLOGY 2022; 22:467. [PMID: 36171538 PMCID: PMC9519402 DOI: 10.1186/s12870-022-03827-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/30/2022] [Indexed: 05/14/2023]
Abstract
BACKGROUND Amomum tsaoko is a medicinal and food dual-use crop that belongs to the Zingiberaceae family. However, the lack of transcriptomic and genomic information has limited the understanding of the genetic basis of this species. Here, we performed transcriptome sequencing of samples from different A. tsaoko tissues, and identified and characterized the expressed sequence tag-simple sequence repeat (EST-SSR) markers. RESULTS A total of 58,278,226 high-quality clean reads were obtained and de novo assembled to generate 146,911 unigenes with an N50 length of 2002 bp. A total of 128,174 unigenes were successfully annotated by searching seven protein databases, and 496 unigenes were identified as annotated as putative terpenoid biosynthesis-related genes. Furthermore, a total of 55,590 EST-SSR loci were detected, and 42,333 primer pairs were successfully designed. We randomly selected 80 primer pairs to validate their polymorphism in A. tsaoko; 18 of these primer pairs produced distinct, clear, and reproducible polymorphisms. A total of 98 bands and 96 polymorphic bands were amplified by 18 pairs of EST-SSR primers for the 72 A. tsaoko accessions. The Shannon's information index (I) ranged from 0.477 (AM208) to 1.701 (AM242) with an average of 1.183, and the polymorphism information content (PIC) ranged from 0.223 (AM208) to 0.779 (AM247) with an average of 0.580, indicating that these markers had a high level of polymorphism. Analysis of molecular variance (AMOVA) indicated relatively low genetic differentiation among the six A. tsaoko populations. Cross-species amplification showed that 14 of the 18 EST-SSR primer pairs have transferability between 11 Zingiberaceae species. CONCLUSIONS Our study is the first to provide transcriptome data of this important medicinal and edible crop, and these newly developed EST-SSR markers are a very efficient tool for germplasm evaluation, genetic diversity, and molecular marker-assisted selection in A. tsaoko.
Collapse
Affiliation(s)
- Mengli Ma
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, Honghe University, Mengzi, 661199, China
| | - Hengling Meng
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, Honghe University, Mengzi, 661199, China
| | - En Lei
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661199, China
| | - Tiantao Wang
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661199, China
| | - Wei Zhang
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, Honghe University, Mengzi, 661199, China
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661199, China
| | - Bingyue Lu
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, Honghe University, Mengzi, 661199, China.
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661199, China.
| |
Collapse
|
9
|
Singh KP, Kumari P, Yadava DK. Development of de-novo transcriptome assembly and SSRs in allohexaploid Brassica with functional annotations and identification of heat-shock proteins for thermotolerance. Front Genet 2022; 13:958217. [PMID: 36186472 PMCID: PMC9524822 DOI: 10.3389/fgene.2022.958217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022] Open
Abstract
Crop Brassicas contain monogenomic and digenomic species, with no evidence of a trigenomic Brassica in nature. Through somatic fusion (Sinapis alba + B. juncea), a novel allohexaploid trigenomic Brassica (H1 = AABBSS; 2n = 60) was produced and used for transcriptome analysis to uncover genes for thermotolerance, annotations, and microsatellite markers for future molecular breeding. Illumina Novaseq 6000 generated a total of 76,055,546 paired-end raw reads, which were used for de-novo assembly, resulting in the development of 486,066 transcripts. A total of 133,167 coding sequences (CDSs) were predicted from transcripts with a mean length of 507.12 bp and 46.15% GC content. The BLASTX search of CDSs against public protein databases showed a maximum of 126,131 (94.72%) and a minimum of 29,810 (22.39%) positive hits. Furthermore, 953,773 gene ontology (GO) terms were found in 77,613 (58.28%) CDSs, which were divided into biological processes (49.06%), cellular components (31.67%), and molecular functions (19.27%). CDSs were assigned to 144 pathways by a pathway study using the KEGG database and 1,551 pathways by a similar analysis using the Reactome database. Further investigation led to the discovery of genes encoding over 2,000 heat shock proteins (HSPs). The discovery of a large number of HSPs in allohexaploid Brassica validated our earlier findings for heat tolerance at seed maturity. A total of 15,736 SSRs have been found in 13,595 CDSs, with an average of one SSR per 4.29 kb length and an SSR frequency of 11.82%. The first transcriptome assembly of a meiotically stable allohexaploid Brassica has been given in this article, along with functional annotations and the presence of SSRs, which could aid future genetic and genomic studies.
Collapse
Affiliation(s)
| | - Preetesh Kumari
- Genetics Division, ICAR—Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Preetesh Kumari,
| | | |
Collapse
|
10
|
Zhang L, Song J, Peng L, Xie W, Li S, Wang J. Comprehensive Biochemical, Physiological, and Transcriptomic Analyses Provide Insights Into Floral Bud Dormancy in Rhododendron delavayi Franch. Front Genet 2022; 13:856922. [PMID: 35656313 PMCID: PMC9152171 DOI: 10.3389/fgene.2022.856922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/19/2022] [Indexed: 01/17/2023] Open
Abstract
Due to a scarcity of relevant data, the ornamental woody flower Rhododendron delavayi Franch. is examined in the current study for its low temperature-induced floral bud dormancy (late October-end December) aspect. This study used transcriptome data profiling and co-expression network analyses to identify the interplay between endogenous hormones and bud dormancy phases such as pre-dormancy, para-dormancy, endo-dormancy, eco-dormancy, and dormancy release. The biochemical and physiological assays revealed the significance of the abundance of phytohormones (abscisic acid, auxin, zeatin, and gibberellins), carbohydrate metabolism, oxidative species, and proteins (soluble proteins, proline, and malondialdehyde) in the regulatory mechanism of floral bud dormancy. The transcriptome sequencing generated 65,531 transcripts, out of which 504, 514, 307, and 240 expressed transcripts were mapped uniquely to pre-, para-, endo-, and eco-phases of dormancy, showing their roles in the stimulation of dormancy. The transcripts related to LEA29, PGM, SAUR family, RPL9e, ATRX, FLOWERING LOCUS T, SERK1, ABFs, ASR2, and GID1 were identified as potential structural genes involved in floral bud dormancy. The transcription factors, including Zinc fingers, CAD, MADS-box family, MYB, and MYC2, revealed their potential regulatory roles concerning floral bud dormancy. The gene co-expression analysis highlighted essential hub genes involved in cold stress adaptations encoding proteins, viz, SERPIN, HMA, PMEI, LEA_2, TRX, PSBT, and AMAT. We exposed the connection among low temperature-induced dormancy in floral buds, differentially expressed genes, and hub genes via strict screening steps to escalate the confidence in selected genes as being truly putative in the pathways regulating bud dormancy mechanism. The identified candidate genes may prove worthy of further in-depth studies on molecular mechanisms involved in floral bud dormancy of Rhododendron species.
Collapse
Affiliation(s)
- Lu Zhang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, China.,National Engineering Research Center for Ornamental Horticulture, Kunming, China
| | - Jie Song
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, China.,National Engineering Research Center for Ornamental Horticulture, Kunming, China
| | - Lvchun Peng
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, China.,National Engineering Research Center for Ornamental Horticulture, Kunming, China
| | - Weijia Xie
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, China.,National Engineering Research Center for Ornamental Horticulture, Kunming, China
| | - Shifeng Li
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, China.,National Engineering Research Center for Ornamental Horticulture, Kunming, China
| | - Jihua Wang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, China.,National Engineering Research Center for Ornamental Horticulture, Kunming, China
| |
Collapse
|
11
|
Zhou XL, Ma JY, Liu ZD, Dai NF, Yang HQ, Yang L, Wang YH, Shen SK. Gene Co-expression Network and Regression Analysis Identify the Transcriptomic, Physiological, and Biochemical Indicators of the Response of Alpine Woody Plant Rhododendron rex to Drought Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:896691. [PMID: 35693180 PMCID: PMC9174646 DOI: 10.3389/fpls.2022.896691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Increasing severity of drought stress due to global change and extreme weather has been affecting the biodiversity, function, and stability of forest ecosystems. However, despite being an important component in the alpine and subalpine vegetation in forest ecosystems, Rhododendron species have been paid rare attention in the study of molecular mechanism of tolerance or response to drought. Herein, we investigated the correlation of transcriptomic changes with the physiological and biochemical indicators of Rhododendron rex under drought stress by using the co-expression network approach and regression analysis. Compared with the control treatment, the number of significantly differentially expressed unigenes (DEGs) increased with the degree of drought stress. The DEGs were mainly enriched in the cell wall metabolic process, signaling pathways, sugar metabolism, and nitrogen metabolism. Coupled analysis of the transcriptome, physiological, and biochemical parameters indicated that the metabolic pathways were highly correlated with the physiological and biochemical indicators under drought stress, especially the chlorophyll fluorescence parameters, such as the actual photosynthetic efficiency of photosystem II, electron transport rate, photochemical quenching coefficient, and the maximum quantum efficiency of photosystem II photochemistry. The majority of the response genes related to the metabolic pathways, including photosynthesis, sugar metabolism, and phytohormone signal pathway, were highly expressed under drought stress. In addition, genes associated with cell wall, pectin, and galacturonan metabolism also played crucial roles in the response of R. rex to drought stress. The results provided novel insight into the molecular response of the alpine woody species under drought stress and may improve the understanding of the response of forest ecosystems to the global climate change.
Collapse
Affiliation(s)
- Xiong-Li Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, China
| | - Jin-Yan Ma
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Zhen-Dian Liu
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Ni-fei Dai
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Hui-Qin Yang
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Liu Yang
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
| | - Yue-Hua Wang
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
| | - Shi-Kang Shen
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming, China
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming, China
| |
Collapse
|
12
|
Zhou XJ, Li JT, Wang HL, Han JW, Zhang K, Dong SW, Zhang YZ, Ya HY, Cheng YW, Sun SS. The chromosome-scale genome assembly, annotation and evolution of Rhododendron henanense subsp. lingbaoense. Mol Ecol Resour 2021; 22:988-1001. [PMID: 34652864 DOI: 10.1111/1755-0998.13529] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 01/21/2023]
Abstract
Rhododendron henanense subsp. lingbaoense (hereafter referred to as R. henanense) is an endemic species naturally distributed in the Henan province, China, with high horticultural, ornamental and medicinal value. Herein, we report a de novo genome assembly for R. henanense using a combination of PacBio long read and Illumina short read sequencing technologies. In total, we assembled 634.07 Mb with a contig N50 of 2.5 Mb, representing ~96.93% of the estimated genome size. By applying Hi-C data, 13 pseudochromosomes of R. henanense genome were assembled, covering ~98.21% of the genome assembly. The genome was composed of ~65.76% repetitive sequences and 31,098 protein-coding genes, 88.77% of which could be functionally annotated. Rhododendron henanense displayed a high level of synteny with other Rhododendron species from the Hymenanthes subgenus. Our data also suggests that R. henanense genes related to stress responses have undergone expansion, which may underly the unique abiotic and biotic stress resistance of the species. This alpine Rhododendron chromosome-scale genome assembly provides fundamental molecular resources for germplasm conservation, breeding efforts, evolutionary studies, and elucidating the unique biological characteristics of R. henanense.
Collapse
Affiliation(s)
- Xiao-Jun Zhou
- Life Science College, Luoyang Normal University, Luoyang, China
| | - Jian-Tao Li
- Wuhan Frasergen Bioinformatics Co., Ltd., Wuhan, China
| | - Hai-Liang Wang
- Henan Xiaoqinling National Nature Reserve Management Bureau, Sanmenxia, China
| | - Jun-Wang Han
- Henan Xiaoqinling National Nature Reserve Management Bureau, Sanmenxia, China
| | - Kai Zhang
- Henan Xiaoqinling National Nature Reserve Management Bureau, Sanmenxia, China
| | - Shuai-Wei Dong
- Henan Xiaoqinling National Nature Reserve Management Bureau, Sanmenxia, China
| | - Yan-Zhao Zhang
- Life Science College, Luoyang Normal University, Luoyang, China
| | - Hui-Yuan Ya
- Life Science College, Luoyang Normal University, Luoyang, China
| | - Yan-Wei Cheng
- Life Science College, Luoyang Normal University, Luoyang, China
| | - Shan-Shan Sun
- Life Science College, Luoyang Normal University, Luoyang, China
| |
Collapse
|
13
|
Zhang C, Wu Z, Jiang X, Li W, Lu Y, Wang K. De novo transcriptomic analysis and identification of EST-SSR markers in Stephanandra incisa. Sci Rep 2021; 11:1059. [PMID: 33441871 PMCID: PMC7806653 DOI: 10.1038/s41598-020-80329-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/16/2020] [Indexed: 02/03/2023] Open
Abstract
Stephanandra incisa is a wild-type shrub with beautiful leaves and white flowers and is commonly used as a garden decoration accessory. However, the limited availability of genomic data of S. incisa has restricted its breeding process. Here, we identified EST-SSR markers using de novo transcriptome sequencing. In this study, a transcriptome database containing 35,251 unigenes, having an average length of 985 bp, was obtained from S. incisa. From these unigene sequences, we identified 5,555 EST-SSRs, with a distribution density of one SSR per 1.60 kb. Dinucleotides (52.96%) were the most detected SSRs, followed by trinucleotides (34.64%). From the EST-SSR loci, we randomly selected 100 sites for designing primer and used the DNA of 60 samples to verify the polymorphism. The average value of the effective number of alleles (Ne), Shannon's information index (I), and expective heterozygosity (He) was 1.969, 0.728, and 0.434, respectively. The polymorphism information content (PIC) value was in the range of 0.108 to 0.669, averaging 0.406, which represented a middle polymorphism level. Cluster analysis of S. incisa were also performed based on the obtained EST-SSR data in our work. As shown by structure analysis, 60 individuals could be classified into two groups. Thus, the identification of these novel EST-SSR markers provided valuable sequence information for analyzing the population structure, genetic diversity, and genetic resource assessment of S. incisa and other related species.
Collapse
Affiliation(s)
- Cuiping Zhang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhonglan Wu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xinqiang Jiang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wei Li
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yizeng Lu
- Shandong Provincial Center of Forest Tree Germplasm Resources, Jinan, 250102, Shandong, China
| | - Kuiling Wang
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
14
|
De novo transcriptome assembly and mining of EST-SSR markers in Gloriosa superba. J Genet 2020. [DOI: 10.1007/s12041-020-01235-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Vu DD, Shah SNM, Pham MP, Bui VT, Nguyen MT, Nguyen TPT. De novo assembly and Transcriptome characterization of an endemic species of Vietnam, Panax vietnamensis Ha et Grushv., including the development of EST-SSR markers for population genetics. BMC PLANT BIOLOGY 2020; 20:358. [PMID: 32727354 PMCID: PMC7391578 DOI: 10.1186/s12870-020-02571-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 07/23/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Understanding the genetic diversity in endangered species that occur inforest remnants is necessary to establish efficient strategies for the species conservation, restoration and management. Panax vietnamensis Ha et Grushv. is medicinally important, endemic and endangered species of Vietnam. However, genetic diversity and structure of population are unknown due to lack of efficient molecular markers. RESULTS In this study, we employed Illumina HiSeq™ 4000 sequencing to analyze the transcriptomes of P. vietnamensis (roots, leaves and stems). Raw reads total of 23,741,783 was obtained and then assembled, from which the generated unigenes were 89,271 (average length = 598.3191 nt). The 31,686 unigenes were annotated in different databases i.e. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, Nucleotide Collection (NR/NT) and Swiss-Prot for functional annotation. Further, 11,343 EST-SSRs were detected. From 7774 primer pairs, 101 were selected for polymorphism validation, in which; 20 primer pairs were successfully amplified to DNA fragments and significant amounts of polymorphism was observed within population. The nine polymorphic microsatellite loci were used for population structure and diversity analyses. The obtained results revealed high levels of genetic diversity in populations, the average observed and expected heterozygosity were HO = 0.422 and HE = 0.479, respectively. During the Bottleneck analysis using TPM and SMM models (p < 0.01) shows that targeted population is significantly heterozygote deficient. This suggests sign of the bottleneck in all populations. Genetic differentiation between populations was moderate (FST = 0.133) and indicating slightly high level of gene flow (Nm = 1.63). Analysis of molecular variance (AMOVA) showed 63.17% of variation within individuals and 12.45% among populations. Our results shows two genetic clusters related to geographical distances. CONCLUSION Our study will assist conservators in future conservation management, breeding, production and habitats restoration of the species.
Collapse
Affiliation(s)
- Dinh Duy Vu
- Vietnam - Russia Tropical Centre, 63 Nguyen Van Huyen, Nghia Do, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Department of Experimental Taxonomy & Genetic Diversity, Vietnam National Museum of Nature, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Syed Noor Muhammad Shah
- Department of Horticulture, Faculty of Agriculture, Gomal University Dera Ismail Khan, Dera Ismail Khan, Pakistan
| | - Mai Phuong Pham
- Vietnam - Russia Tropical Centre, 63 Nguyen Van Huyen, Nghia Do, Cau Giay, Hanoi, Vietnam
| | - Van Thang Bui
- College of Forestry Biotechnology, Vietnam National University of Forestry, Xuan Mai, Hanoi, Vietnam
| | - Minh Tam Nguyen
- Department of Experimental Taxonomy & Genetic Diversity, Vietnam National Museum of Nature, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Thi Phuong Trang Nguyen
- Institute of Ecology and Biological Resource, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, , Cau Giay, Hanoi, Vietnam.
| |
Collapse
|
16
|
Cross-transferability of SSR markers developed in Rhododendron species of Himalaya. Mol Biol Rep 2020; 47:6399-6406. [PMID: 32623614 DOI: 10.1007/s11033-020-05606-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/20/2020] [Indexed: 12/22/2022]
Abstract
Rhododendron is a genus of evergreen woody ornamental plants of northern hemisphere with strong cold resistance, attractive flowers and high altitude adaptation capacity. The genus originated and diversified from Sino-Himalayan region and spread across the world, and has high species diversity in Northeast India. To assess cross-species amplification, we tested 32 microsatellites markers in fifteen taxa of the genus Rhododendron of North-eastern Himalaya, of which fourteen microsatellites were newly developed from Rhododendron simsii, and eighteen microsatellites were previously developed from Rhododendron catawbiense and Rhododendron mucronatum var. ripense. Nine pairs of primers were amplified successfully in all species, however, none of them was failed for amplification in any of the species. The average observed heterozygosity, expected heterozygosity and PIC value were recorded as 0.310, 0.433 and 0.379 respectively. Clustering based on neighbour-joining analysis revealed the potential of these markers to segregate species according to their subgenus level, however, subspecies exhibited closeness with each other. Cross-application of these microsatellite loci will provide a potentially useful tool to investigate the genetic diversity, population structure, gene flow, phylogenetics and evolutionary relationships in species of genus Rhododendron.
Collapse
|
17
|
Hina F, Yisilam G, Wang S, Li P, Fu C. De novo Transcriptome Assembly, Gene Annotation and SSR Marker Development in the Moon Seed Genus Menispermum (Menispermaceae). Front Genet 2020; 11:380. [PMID: 32457795 PMCID: PMC7227793 DOI: 10.3389/fgene.2020.00380] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/27/2020] [Indexed: 12/27/2022] Open
Abstract
The moonseed genus Menispermum L. (Menispermaceae) is disjunctly distributed in East Asia and eastern North America. Although Menispermum has important medicinal value, genetic and genomic information is scarce, with very few available molecular markers. In the current study, we used Illumina transcriptome sequencing and de novo assembly of the two Menispermum species to obtain in-depth genetic knowledge. From de novo assembly, 53,712 and 78,921 unigenes were generated for M. canadense and M. dauricum, with 37,527 (69.87%) and 55,211 (69.96%) showing significant similarities against the six functional databases, respectively. Moreover, 521 polymorphic EST-SSRs were identified. Of them, 23 polymorphic EST-SSR markers were selected to investigate the population genetic diversity within the genus. The newly developed EST-SSR markers also revealed high transferability among the three examined Menispermaceae species. Overall, we provide the very first transcriptomic analyses of this important medicinal genus. In addition, the novel microsatellite markers developed here will aid future studies on the population genetics and phylogeographic patterns of Menispermum at the intercontinental geographical scale.
Collapse
Affiliation(s)
- Faiza Hina
- Laboratory of Systematic and Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Gulbar Yisilam
- Laboratory of Systematic and Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shenyi Wang
- Department of Botany, University of Wisconsin–Madison, Madison, WI, United States
| | - Pan Li
- Laboratory of Systematic and Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chengxin Fu
- Laboratory of Systematic and Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Zhang X, Liu YH, Wang YH, Shen SK. Genetic Diversity and Population Structure of Rhododendron rex Subsp. rex Inferred from Microsatellite Markers and Chloroplast DNA Sequences. PLANTS (BASEL, SWITZERLAND) 2020; 9:E338. [PMID: 32156013 PMCID: PMC7154904 DOI: 10.3390/plants9030338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 01/05/2023]
Abstract
Genetic diversity is vital to the sustainable utilization and conservation of plant species. Rhododendron rex subsp. rex Lévl. is an endangered species endemic to the southwest of China. Although the natural populations of this species are facing continuous decline due to the high frequency of anthropogenic disturbance, the genetic information of R. rex subsp. rex is not yet elucidated. In the present study, 10 pairs of microsatellite markers (nSSRs) and three pairs of chloroplast DNA (cpDNAs) were used in the elucidation of the genetic diversity, population structure, and demographic history of 11 R. rex subsp. rex populations. A total of 236 alleles and 12 haplotypes were found. A moderate genetic diversity within populations (HE = 0.540 for nSSRs, Hd = 0.788 for cpDNA markers), high historical and low contemporary gene flows, and moderate genetic differentiation (nSSR: FST = 0.165***; cpDNA: FST = 0.841***) were detected among the R. rex subsp. rex populations. Genetic and geographic distances showed significant correlation (p < 0.05) determined by the Mantel test. The species exhibited a conspicuous phylogeographical structure among the populations. Using the Bayesian skyline plot and species distribution models, we found that R. rex subsp. rex underwent a population demography contraction approximately 50,000-100,000 years ago. However, the species did not experience a recent population expansion event. Thus, habitat loss and destruction, which result in a population decline and species inbreeding depression, should be considered in the management and conservation of R. rex subsp. rex.
Collapse
Affiliation(s)
- Xue Zhang
- School of Life Sciences, Yunnan University, Kunming 650091, China
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650091, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming 650091, China
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Key Laboratory for Restoration and Reconstruction of Degraded Ecosystem in Northwest China of Ministry of Education, Ningxia University, Yinchuan 750021, China
| | - Yuan-Huan Liu
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yue-Hua Wang
- School of Life Sciences, Yunnan University, Kunming 650091, China
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650091, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming 650091, China
| | - Shi-Kang Shen
- School of Life Sciences, Yunnan University, Kunming 650091, China
- School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650091, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming 650091, China
| |
Collapse
|
19
|
Sharma H, Kumar P, Singh A, Aggarwal K, Roy J, Sharma V, Rawat S. Development of polymorphic EST-SSR markers and their applicability in genetic diversity evaluation in Rhododendron arboreum. Mol Biol Rep 2020; 47:2447-2457. [PMID: 32124167 DOI: 10.1007/s11033-020-05300-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 01/31/2020] [Indexed: 12/21/2022]
Abstract
The genus Rhododendron, known for large impressive flowers is widely distributed throughout the world. Rhododendrons have limited genetic information, despite of comprising high species diversity, morphological overlap and weak genetic barrier. In present study, expressed sequence tag (EST) data from Rhododendron catawbiense Michx (Subgenus Hymenanthes, Section Ponticum) and Rhododendron mucronatum var. ripense (Makino) E.H. Wilson (Subgenus Tsutsusi, Section Tsutsusi) were utilized for mining and identification of the SSRs for genetic diversity analysis of R. arboreum Smith (Subgenus Tsutsusi, Section Tsutsusi). A total of 249 SSRs were developed from 1767 contigs. Di-nucleotide was found to be most abundant repeat followed by tri- and tetra-nucleotide repeats. The motif AG/CT was most common di-nucleotide motif (31.73%), whereas, AAC/GTT (8.43%), ACG/CGT (8.03%), AAG/CTT (7.23%) and AGG/CCT (6.43%) were most abundant tri-nucleotide repeat motif. Among these SSRs, 168 sequences were only fit into the criteria to design flanking primer pairs. A total of 30 randomly selected primer pairs were utilized for validation and genetic diversity study in 36 genotypes of R. arboreum collected from western Himalayan region. In aggregate, 26 SSR markers (86.66%) produced good and repeatable amplifications. Expected heterozygosity (HE) ranged from 0.322 to 0.841 and observed heterozygosity (HO) ranged from 0.327 to 1.000 and PIC value ranged from 0.008 to 0.786. These primers were able to distinguish the geographic differences of occurrence based on cluster analysis. These developed EST-SSRs can be useful in future population genetics analysis and micro-evolutionary studies in Rhododendron species.
Collapse
Affiliation(s)
- Himanshu Sharma
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, Punjab, 140306, India
| | - Pankaj Kumar
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, Punjab, 140306, India
| | - Abhishek Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Kanika Aggarwal
- Sophisticated Instruments Centre, Punjabi University Patiala, Punjab, India
| | - Joy Roy
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, Punjab, 140306, India
| | - Vikas Sharma
- Department of Botany, Sant Baba Bhag Singh University, Khiala, Jalandhar, Punjab, 144030, India.
| | - Sandeep Rawat
- Sikkim Regional Centre, G. B. Pant National Institute of Himalayan Environment and Sustainable Development, Pangthang, Gangtok, Sikkim, 737101, India.
| |
Collapse
|
20
|
Soza VL, Lindsley D, Waalkes A, Ramage E, Patwardhan RP, Burton JN, Adey A, Kumar A, Qiu R, Shendure J, Hall B. The Rhododendron Genome and Chromosomal Organization Provide Insight into Shared Whole-Genome Duplications across the Heath Family (Ericaceae). Genome Biol Evol 2019; 11:3353-3371. [PMID: 31702783 PMCID: PMC6907397 DOI: 10.1093/gbe/evz245] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
The genus Rhododendron (Ericaceae), which includes horticulturally important plants such as azaleas, is a highly diverse and widely distributed genus of >1,000 species. Here, we report the chromosome-scale de novo assembly and genome annotation of Rhododendron williamsianum as a basis for continued study of this large genus. We created multiple short fragment genomic libraries, which were assembled using ALLPATHS-LG. This was followed by contiguity preserving transposase sequencing (CPT-seq) and fragScaff scaffolding of a large fragment library, which improved the assembly by decreasing the number of scaffolds and increasing scaffold length. Chromosome-scale scaffolding was performed by proximity-guided assembly (LACHESIS) using chromatin conformation capture (Hi-C) data. Chromosome-scale scaffolding was further refined and linkage groups defined by restriction-site associated DNA (RAD) sequencing of the parents and progeny of a genetic cross. The resulting linkage map confirmed the LACHESIS clustering and ordering of scaffolds onto chromosomes and rectified large-scale inversions. Assessments of the R. williamsianum genome assembly and gene annotation estimate them to be 89% and 79% complete, respectively. Predicted coding sequences from genome annotation were used in syntenic analyses and for generating age distributions of synonymous substitutions/site between paralgous gene pairs, which identified whole-genome duplications (WGDs) in R. williamsianum. We then analyzed other publicly available Ericaceae genomes for shared WGDs. Based on our spatial and temporal analyses of paralogous gene pairs, we find evidence for two shared, ancient WGDs in Rhododendron and Vaccinium (cranberry/blueberry) members that predate the Ericaceae family and, in one case, the Ericales order.
Collapse
Affiliation(s)
- Valerie L Soza
- Department of Biology, University of Washington, Seattle, WA
| | - Dale Lindsley
- Department of Biology, University of Washington, Seattle, WA
- Retired
| | - Adam Waalkes
- Department of Biology, University of Washington, Seattle, WA
- Department of Laboratory Medicine, University of Washington, Seattle, WA
| | | | | | - Joshua N Burton
- Department of Genome Sciences, University of Washington, Seattle, WA
- Adaptive Biotechnologies, Seattle, WA
| | - Andrew Adey
- Department of Genome Sciences, University of Washington, Seattle, WA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR
| | - Akash Kumar
- Department of Genome Sciences, University of Washington, Seattle, WA
- Department of Pediatrics, Stanford University, Palo Alto, CA
| | - Ruolan Qiu
- Department of Genome Sciences, University of Washington, Seattle, WA
- Retired
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA
- Brotman Baty Institute for Precision Medicine, Seattle, WA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA
| | - Benjamin Hall
- Department of Biology, University of Washington, Seattle, WA
| |
Collapse
|
21
|
Zhang Z, Zhang Y, Song M, Guan Y, Ma X. Species Identification of Dracaena Using the Complete Chloroplast Genome as a Super-Barcode. Front Pharmacol 2019; 10:1441. [PMID: 31849682 PMCID: PMC6901964 DOI: 10.3389/fphar.2019.01441] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 11/12/2019] [Indexed: 01/04/2023] Open
Abstract
The taxonomy and nomenclature of Dracaena plants are much disputed, particularly for several Dracaena species in Asia. However, neither morphological features nor common DNA regions are ideal for identification of Dracaena spp. Meanwhile, although multiple Dracaena spp. are sources of the rare traditional medicine dragon's blood, the Pharmacopoeia of the People's Republic of China has defined Dracaena cochinchinensis as the only source plant. The inaccurate identification of Dracaena spp. will inevitably affect the clinical efficacy of dragon's blood. It is therefore important to find a better method to distinguish these species. Here, we report the complete chloroplast (CP) genomes of six Dracaena spp., D. cochinchinensis, D. cambodiana, D. angustifolia, D. terniflora, D. hokouensis, and D. elliptica, obtained through high-throughput Illumina sequencing. These CP genomes exhibited typical circular tetramerous structure, and their sizes ranged from 155,055 (D. elliptica) to 155,449 bp (D. cochinchinensis). The GC content of each CP genome was 37.5%. Furthermore, each CP genome contained 130 genes, including 84 protein-coding genes, 38 tRNA genes, and 8 rRNA genes. There were no potential coding or non-coding regions to distinguish these six species, but the maximum likelihood tree of the six Dracaena spp. and other related species revealed that the whole CP genome can be used as a super-barcode to identify these Dracaena spp. This study provides not only invaluable data for species identification and safe medical application of Dracaena but also an important reference and foundation for species identification and phylogeny of Liliaceae plants.
Collapse
Affiliation(s)
- Zhonglian Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Yunnan Branch of Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Jinghong, China
| | - Yue Zhang
- Yunnan Branch of Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Jinghong, China
| | - Meifang Song
- Yunnan Branch of Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Jinghong, China
| | - Yanhong Guan
- Yunnan Branch of Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Jinghong, China
| | - Xiaojun Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
22
|
Cai K, Zhu L, Zhang K, Li L, Zhao Z, Zeng W, Lin X. Development and Characterization of EST-SSR Markers From RNA-Seq Data in Phyllostachys violascens. FRONTIERS IN PLANT SCIENCE 2019; 10:50. [PMID: 30774640 PMCID: PMC6367221 DOI: 10.3389/fpls.2019.00050] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 01/15/2019] [Indexed: 05/02/2023]
Abstract
Bamboo are woody grass species containing important economic and ecological values. Lei bamboo (Phyllostachys violascens) is a kind of shoot-producing bamboo species with the highest economic yield per unit area. However, identifying different varieties of Lei bamboo based on morphological characteristics is difficult. Microsatellites play an important role in plant identification and genetic diversity analysis and are superior to other molecular markers. In this study, we identified 18,356 expressed sequence tag-simple sequence repeat (EST-SSR) loci in Lei bamboo transcriptome data. A total of 11,264 primer pairs were successfully designed from unigenes of all EST-SSR loci, and 96 primer pairs were randomly selected and synthesized. A total of 54 primer pairs were used for classifying 16 Lei bamboo varieties and 10 different Phyllostachys species. The number of polymorphism alleles among the 54 primer pairs ranged from 3 to 12 for P. violascens varieties and 3 to 20 for Phyllostachys. The phylogenetic tree based on polymorphism alleles successfully distinguished 16 P. violascens varieties and 10 Phyllostachys species. Our study provides abundant EST-SSR resources that are useful for genetic diversity analysis and molecular verification of bamboo and suggests that SSR markers developed from Lei bamboo are more efficient and reliable than ISSR, SRAP or AFLP markers.
Collapse
Affiliation(s)
- Kai Cai
- Sino-Australia Plant Cell Wall Research Centre, State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A & F University, Lin’an, China
| | - Longfei Zhu
- Sino-Australia Plant Cell Wall Research Centre, State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, China
- Department of Genome Biology, Adam Mickiewicz University, Poznań, Poland
| | - Keke Zhang
- Sino-Australia Plant Cell Wall Research Centre, State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, China
| | - Ling Li
- Sino-Australia Plant Cell Wall Research Centre, State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, China
| | - Zhongyu Zhao
- Sino-Australia Plant Cell Wall Research Centre, State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, China
| | - Wei Zeng
- Sino-Australia Plant Cell Wall Research Centre, State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, China
| | - Xinchun Lin
- Sino-Australia Plant Cell Wall Research Centre, State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A & F University, Lin’an, China
| |
Collapse
|
23
|
Park S, Son S, Shin M, Fujii N, Hoshino T, Park S. Transcriptome-wide mining, characterization, and development of microsatellite markers in Lychnis kiusiana (Caryophyllaceae). BMC PLANT BIOLOGY 2019; 19:14. [PMID: 30621589 PMCID: PMC6325733 DOI: 10.1186/s12870-018-1621-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 12/27/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Lychnis kiusiana Makino is an endangered perennial herb native to wetland areas in Korea and Japan. Despite its conservational and evolutionary significance, population genetic resources are lacking for this species. Next-generation sequencing has been accepted as a rapid and cost-effective solution for the identification of microsatellite markers in nonmodel plants. RESULTS Using Illumina HiSeq 2000 sequencing technology, we assembled 67,498,600 reads into 91,900 contigs and identified 11,403 microsatellite repeat motifs in 9563 contigs. A total of 4510 microsatellite-containing transcripts had Gene Ontology (GO) annotations, and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified 124 pathways with significant scores. Many microsatellites in the L. kiusiana leaf transcriptome were linked to genes involved in the plant response to light intensity, salt stress, temperature stimulus, and nutrient and water deprivation. A total of 12,486 single-nucleotide polymorphisms (SNPs) were identified on transcripts harboring microsatellites. The analysis of nucleotide substitution rates for 2389 unigenes indicated that 39 genes were under strong positive selection. The primers of 6911 microsatellites were designed, and 40 of 50 selected primer pairs were consistently and successfully amplified from 51 individuals. Twenty-five of these were polymorphic, and the average number of alleles per SSR locus was 6.96, with a range from 2 to 15. The observed and expected heterozygosities ranged from 0.137 to 0.902 and 0.131 to 0.827, respectively, and locus-specific FIS estimates ranged from - 0.116 to 0.290. Eleven of the 25 primer pairs were successfully amplified in three additional species of Lychnis: 56% in L. wilfordii, 64% in L. cognata and 80% in L. fulgens. CONCLUSIONS The transcriptomic SSR markers of Lychnis kiusiana provide a valuable resource for understanding the population genetics, evolutionary history, and effective conservation management of this species. Furthermore, the identified microsatellite loci linked to the annotated genes should be useful for developing functional markers of L. kiusiana. The developed markers represent a potentially valuable source of transcriptomic SSR markers for population genetic analyses with moderate levels of cross-taxon portability.
Collapse
Affiliation(s)
- Seongjun Park
- Institute of Natural Science, Yeungnam University, Gyeongsan, Gyeongbuk 38541 South Korea
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541 South Korea
| | - Sungwon Son
- Plant Conservation Division, Korea National Arboretum, Pocheon, Gyeonggi 11186 South Korea
| | - Myungju Shin
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541 South Korea
| | - Noriyuki Fujii
- Department of Biological Science, Graduate School of Science and Technology, Kumamoto University, Chuo-ku, Kumamoto, 860-8555 Japan
| | - Takuji Hoshino
- Faculty of Biosphere-Geosphere Science, Okayama University of Science, Kita-ku, Okayama, 700-0005 Japan
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541 South Korea
| |
Collapse
|
24
|
De Novo Transcriptomic Analysis and Development of EST–SSRs for Styrax japonicus. FORESTS 2018. [DOI: 10.3390/f9120748] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Styrax japonicus sieb. et Zucc. is widely distributed in China with ornamental and medicinal values. However, the transcriptome of S. japonicus has not yet been reported. In this study, we carried out the first transcriptome analysis of S. japonicus and developed a set of expressed sequence tag–simple sequence repeats (EST–SSRs). We obtained 338,570,222 clean reads in total, of which the mean GC content was 41.58%. In total, 136,071 unigenes were obtained having an average length of 611 bp and 71,226 unigenes were favorably annotated in the database. In total, we identified 55,977 potential EST–SSRs from 38,611 unigenes, of which there was 1 SSR per 6.73 kb. The di-nucleotide repeats (40.40%) were the most identified SSRs. One set of 60 primer pairs was randomly selected, and the amplified products in S. japonicus were validated; 28 primer pairs successfully produced clear amplicons. A total of 21 (35%) polymorphic genic SSR markers were identified between two populations. In total, 15 alleles were detected and the average number was 6. The average of observed heterozygosity and expected heterozygosity was 0.614 and 0.552, respectively. The polymorphism information content (PIC) value fluctuated between 0.074 and 0.855, with a mean value of 0.504, which was also the middle level. This study provides useful information for diversity studies and resource assessments of S. japonicus.
Collapse
|
25
|
Zhang X, Zhang Y, Wang YH, Shen SK. Transcriptome Analysis of Cinnamomum chago: A Revelation of Candidate Genes for Abiotic Stress Response and Terpenoid and Fatty Acid Biosyntheses. Front Genet 2018; 9:505. [PMID: 30455715 PMCID: PMC6231050 DOI: 10.3389/fgene.2018.00505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 10/08/2018] [Indexed: 12/26/2022] Open
Abstract
Cinnamomum chago, an endangered species endemic to Yunnan province, possesses large economic and phylogenetic values in Lauraceae. However, the genomic information of this species remains relatively unexplored. In this study, we used RNAseq technology to characterize and annotate the C. chago transcriptome and identify candidate genes involved in special metabolic pathways and gene-associated simple sequence repeats (SSRs) and single-nucleotide polymorphism (SNP). A total of 129,097 unigenes, with a mean length of 667 bp and an N50 length of 1,062 bp, were assembled. Among these genes, 56,887 (44.07%) unigenes were successfully annotated using at least one database. Furthermore, 47 and 46 candidate genes were identified in terpenoid biosynthesis and fatty acid biosynthesis, respectively. A total of 22 candidate genes participated in at least one abiotic stress response of C. chago. Additionally, a total of 25,654 SSRs and 640 SNPs were also identified. Based on these potential loci, 55 novel expressed sequence tag (EST)-SSR primers were successfully developed. This work provides comprehensive transcriptomic data that can be used to establish a valuable information platform for gene prediction, signaling pathway investigation, and molecular marker development for C. chago and other related species. Such a platform can facilitate further studies on germplasm conservation and utilization of Lauraceae species.
Collapse
Affiliation(s)
| | | | | | - Shi-Kang Shen
- School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|