1
|
Ali MA, Wieczorek K. Image-Based Lignin Detection in Nematode-Induced Feeding Sites in Arabidopsis Roots. Bio Protoc 2025; 15:e5301. [PMID: 40364986 PMCID: PMC12067305 DOI: 10.21769/bioprotoc.5301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 05/15/2025] Open
Abstract
Cyst and root-knot nematodes are sedentary biotrophic parasites that infect a wide range of plant species, causing significant annual yield and economic losses. Cyst nematodes (genera Heterodera and Globodera) induce specialized feeding structures called syncytia in host plant roots, while root-knot nematodes (Meloidogyne spp.) form galls containing feeding cells known as giant cells. This protocol describes the visualization of lignin in Arabidopsis roots infected by beet cyst nematode H. schachtii and root-knot nematode M. incognita using histochemical staining. We present two distinct approaches for lignin detection: direct staining of root segments containing syncytia and galls and histopathological detection in thin longitudinal sections of the feeding sites. Key features • First approach: Staining of intact roots visualizes lignin in nematode feeding sites and requires only simple specimen preparation and staining solution, with no sectioning needed. • Second approach: Staining of longitudinal sections of feeding sites visualizes cell-specific lignin localization and requires moderate tissue preparation and sectioning. • Both approaches enable specific detection and visualization of lignin in nematode-infected Arabidopsis tissues. Graphical overview.
Collapse
Affiliation(s)
- Muhammad Amjad Ali
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Krzysztof Wieczorek
- Institute of Plant Protection, Department of Agricultural Sciences, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
2
|
Stock SP, Campos-Herrera R, Shapiro-Ilan D. The first 100 years in the history of entomopathogenic nematodes. J Invertebr Pathol 2025; 211:108302. [PMID: 40081791 DOI: 10.1016/j.jip.2025.108302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/08/2025] [Accepted: 02/12/2025] [Indexed: 03/16/2025]
Abstract
The field of entomopathogenic nematology has grown exponentially since the discovery of the first species, Steinernema kraussei (=Aplecatna kraussei), in 1923. Initially, entomopathogenic nematodes (EPN) were solely viewed as a curiosity. The discovery of the nematode-bacteria association in 1965 and the incipient research for mass production motivated their recognition as biological control agents for agricultural pests. Subsequent studies were focused on the discovery of new species and/or populations, the early studies to understand the biotic and abiotic factors that contribute to their performance in the field and success in insect pest management. However, as we entered the 21st century, and with the advent of molecular biology, research on these organisms took a fascinating turn, unraveling a deeper understanding of the complex symbiotic relationship EPN has with their bacterial symbionts and the insect host. Furthermore, because of their experimental tractability, EPNs have proven to be model organisms that are used among various biological sciences to gain further insights into host-symbiont, host-pathogen interactions, population dynamics, and as resources for pharmaceutical bioprospecting. This special issue commemorates the first 100 years of research in entomopathogenic nematology and summarizes the contributions of ten symposia and presentations at the 100th Anniversary of the First EPN Discovery Congress in Logroño, Spain (https://www.icvv.es/english/epn). This specific article focuses on the historical review of EPN, their bacterial partners and the numerous and diverse applications in disciplines in basic such as phylogeny, biogeography, symbiosis, and soil biology and ecology, or more applied venues such as formulation and mass production, application technology, commercialization and regulation, from 1923 to the present time.
Collapse
Affiliation(s)
- S Patricia Stock
- Department of Horticulture, College of Agricultural Sciences, Oregon State University, 2750 SW Campus Way #407ALS, Corvallis, OR 97331, USA.
| | - Raquel Campos-Herrera
- Instituto de Ciencias de la Vid y del Vino (Consejo Superior de Investigaciones Científicas, Gobierno de La Rioja, Universidad de La Rioja). Finca La Granjera, Ctra. Burgos Km 6 Salida 13 Lo-20, Logroño 26007, Spain
| | - David Shapiro-Ilan
- USDA-ARS, Southeastern Fruit and Tree Nut Research Unit, 21 Dunbar Road. Byron, GA 31008, USA
| |
Collapse
|
3
|
Safi A. WOX11-mediated plant resilience: nematodes cut and adventitious lateral roots surge. PLANT PHYSIOLOGY 2024; 195:273-275. [PMID: 38319743 PMCID: PMC11060655 DOI: 10.1093/plphys/kiae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/08/2024]
Affiliation(s)
- Alaeddine Safi
- Assistant Features Editor, Plant Physiology, American Society of Plant Biologists
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
| |
Collapse
|
4
|
Chang Q, Yang Y, Hong B, Zhao Y, Zhao M, Han S, Zhang F, Peng H, Peng D, Li Y. A variant of the venom allergen-like protein, DdVAP2, is required for the migratory endoparasitic plant nematode Ditylenchus destructor parasitism of plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1322902. [PMID: 38152146 PMCID: PMC10751354 DOI: 10.3389/fpls.2023.1322902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023]
Abstract
The potato rot nematode, Ditylenchus destructor, poses a serious threat to numerous root and tuber crops, yet the functional characterization of effectors from this migratory endoparasitic plant nematode remains limited. Despite inhabiting distinct habitats, sedentary and migratory plant parasitic nematodes share the structurally conserved effectors, such as venom allergen-like proteins (VAPs). In this study, a variant of DdVAP2 was cloned from D. destructor. The transcription profile analysis revealed that DdVAP2 was higher expressed in D. destructor feeding on either potato or sweet potato compared to on fungus via qRT-PCR. And DdVAP2 was highly expressed at all life stages feeding on sweet potato, except for eggs. DdVAP2 was confirmed to be specifically expressed in the subventral esophageal glands of D. destructor through in situ hybridization assays. Combined with functional validation of the signal peptide of DdVAP2, it suggested that DdVAP2 could be secreted from nematode into host. Heterologous expression of DdVAP2 in Nicotiana benthamiana revealed that the protein localized in both cytosol and nuclei of plant cells. Knocking down DdVAP2 by RNAi in D. destructor resulted in infection and reproduction defects on plants. All the results suggest that DdVAP2 plays a crucial role in the interaction between D. destructor and plants by facilitating the nematode infection.
Collapse
Affiliation(s)
- Qing Chang
- Shaanxi Key Laboratory of Plant Nematology, Bio-Agriculture Institute of Shaanxi, Xi’an, China
| | - Yiwei Yang
- Shaanxi Key Laboratory of Plant Nematology, Bio-Agriculture Institute of Shaanxi, Xi’an, China
| | - Bo Hong
- Shaanxi Key Laboratory of Plant Nematology, Bio-Agriculture Institute of Shaanxi, Xi’an, China
| | - Yanqun Zhao
- Yulin Agricultural Technology Service Center, Yulin, China
| | - Mengxin Zhao
- Shaanxi Key Laboratory of Plant Nematology, Bio-Agriculture Institute of Shaanxi, Xi’an, China
| | - Shanshan Han
- Shaanxi Key Laboratory of Plant Nematology, Bio-Agriculture Institute of Shaanxi, Xi’an, China
| | - Feng Zhang
- Shaanxi Key Laboratory of Plant Nematology, Bio-Agriculture Institute of Shaanxi, Xi’an, China
| | - Huan Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingmei Li
- Shaanxi Key Laboratory of Plant Nematology, Bio-Agriculture Institute of Shaanxi, Xi’an, China
| |
Collapse
|
5
|
Guo W, Xing Y, Luo X, Li F, Ren M, Liang Y. Reactive Oxygen Species: A Crosslink between Plant and Human Eukaryotic Cell Systems. Int J Mol Sci 2023; 24:13052. [PMID: 37685857 PMCID: PMC10487619 DOI: 10.3390/ijms241713052] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Reactive oxygen species (ROS) are important regulating factors that play a dual role in plant and human cells. As the first messenger response in organisms, ROS coordinate signals in growth, development, and metabolic activity pathways. They also can act as an alarm mechanism, triggering cellular responses to harmful stimuli. However, excess ROS cause oxidative stress-related damage and oxidize organic substances, leading to cellular malfunctions. This review summarizes the current research status and mechanisms of ROS in plant and human eukaryotic cells, highlighting the differences and similarities between the two and elucidating their interactions with other reactive substances and ROS. Based on the similar regulatory and metabolic ROS pathways in the two kingdoms, this review proposes future developments that can provide opportunities to develop novel strategies for treating human diseases or creating greater agricultural value.
Collapse
Affiliation(s)
- Wei Guo
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.G.); (Y.X.); (F.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yadi Xing
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.G.); (Y.X.); (F.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiumei Luo
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China;
| | - Fuguang Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.G.); (Y.X.); (F.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572000, China
| | - Maozhi Ren
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.G.); (Y.X.); (F.L.)
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China;
- Hainan Yazhou Bay Seed Laboratory, Sanya 572000, China
| | - Yiming Liang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (W.G.); (Y.X.); (F.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
6
|
Dutta TK, Vashisth N, Ray S, Phani V, Chinnusamy V, Sirohi A. Functional analysis of a susceptibility gene (HIPP27) in the Arabidopsis thaliana-Meloidogyne incognita pathosystem by using a genome editing strategy. BMC PLANT BIOLOGY 2023; 23:390. [PMID: 37563544 PMCID: PMC10416466 DOI: 10.1186/s12870-023-04401-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Plant-parasitic root-knot nematodes cause immense yield declines in crop plants that ultimately obviate global food security. They maintain an intimate relationship with their host plants and hijack the host metabolic machinery to their own advantage. The existing resistance breeding strategies utilizing RNAi and resistance (R) genes might not be particularly effective. Alternatively, knocking out the susceptibility (S) genes in crop plants appears to be a feasible approach, as the induced mutations in S genes are likely to be long-lasting and may confer broad-spectrum resistance. This could be facilitated by the use of CRISPR/Cas9-based genome editing technology that precisely edits the gene of interest using customizable guide RNAs (gRNAs) and Cas9 endonuclease. RESULTS Initially, we characterized the nematode-responsive S gene HIPP27 from Arabidopsis thaliana by generating HIPP27 overexpression lines, which were inoculated with Meloidogyne incognita. Next, two gRNAs (corresponding to the HIPP27 gene) were artificially synthesized using laboratory protocols, sequentially cloned into a Cas9 editor plasmid, mobilized into Agrobacterium tumefaciens strain GV3101, and transformed into Arabidopsis plants using the floral dip method. Apart from 1-3 bp deletions and 1 bp insertions adjacent to the PAM site, a long deletion of approximately 161 bp was documented in the T0 generation. Phenotypic analysis of homozygous, 'transgene-free' T2 plants revealed reduced nematode infection compared to wild-type plants. Additionally, no growth impairment was observed in gene-edited plants. CONCLUSION Our results suggest that the loss of function of HIPP27 in A. thaliana by CRISPR/Cas9-induced mutagenesis can improve host resistance to M. incognita.
Collapse
Affiliation(s)
- Tushar K Dutta
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Neeraj Vashisth
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Soham Ray
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Victor Phani
- Department of Agricultural Entomology, College of Agriculture, Uttar Banga Krishi Viswavidyalaya, Dakshin Dinajpur, Balurghat, West Bengal, 733133, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Anil Sirohi
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
7
|
Jiang C, Li Z, Zheng L, Yu Y, Niu D. Small RNAs: Efficient and miraculous effectors that play key roles in plant-microbe interactions. MOLECULAR PLANT PATHOLOGY 2023; 24:999-1013. [PMID: 37026481 PMCID: PMC10346379 DOI: 10.1111/mpp.13329] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Plants' response to pathogens is highly complex and involves changes at different levels, such as activation or repression of a vast array of genes. Recently, many studies have demonstrated that many RNAs, especially small RNAs (sRNAs), are involved in genetic expression and reprogramming affecting plant-pathogen interactions. The sRNAs, including short interfering RNAs and microRNAs, are noncoding RNA with 18-30 nucleotides, and are recognized as key genetic and epigenetic regulators. In this review, we summarize the new findings about defence-related sRNAs in the response to pathogens and our current understanding of their effects on plant-pathogen interactions. The main content of this review article includes the roles of sRNAs in plant-pathogen interactions, cross-kingdom sRNA trafficking between host and pathogen, and the application of RNA-based fungicides for plant disease control.
Collapse
Affiliation(s)
- Chun‐Hao Jiang
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
- Engineering Center of Bioresource Pesticide in Jiangsu ProvinceNanjingChina
| | - Zi‐Jie Li
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
- Engineering Center of Bioresource Pesticide in Jiangsu ProvinceNanjingChina
| | - Li‐Yu Zheng
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
- Engineering Center of Bioresource Pesticide in Jiangsu ProvinceNanjingChina
| | - Yi‐Yang Yu
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
- Engineering Center of Bioresource Pesticide in Jiangsu ProvinceNanjingChina
| | - Dong‐Dong Niu
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
- Engineering Center of Bioresource Pesticide in Jiangsu ProvinceNanjingChina
| |
Collapse
|
8
|
Khan A, Chen S, Fatima S, Ahamad L, Siddiqui MA. Biotechnological Tools to Elucidate the Mechanism of Plant and Nematode Interactions. PLANTS (BASEL, SWITZERLAND) 2023; 12:2387. [PMID: 37376010 DOI: 10.3390/plants12122387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023]
Abstract
Plant-parasitic nematodes (PPNs) pose a threat to global food security in both the developed and developing worlds. PPNs cause crop losses worth a total of more than USD 150 billion worldwide. The sedentary root-knot nematodes (RKNs) also cause severe damage to various agricultural crops and establish compatible relationships with a broad range of host plants. This review aims to provide a broad overview of the strategies used to identify the morpho-physiological and molecular events that occur during RKN parasitism. It describes the most current developments in the transcriptomic, proteomic, and metabolomic strategies of nematodes, which are important for understanding compatible interactions of plants and nematodes, and several strategies for enhancing plant resistance against RKNs. We will highlight recent rapid advances in molecular strategies, such as gene-silencing technologies, RNA interference (RNAi), and small interfering RNA (siRNA) effector proteins, that are leading to considerable progress in understanding the mechanism of plant-nematode interactions. We also take into account genetic engineering strategies, such as targeted genome editing techniques, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) (CRISPR/Cas-9) system, and quantitative trait loci (QTL), to enhance the resistance of plants against nematodes.
Collapse
Affiliation(s)
- Arshad Khan
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Shaohua Chen
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Saba Fatima
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Lukman Ahamad
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | | |
Collapse
|
9
|
Macharia TN, Duong TA, Moleleki LN. In silico secretome analyses of the polyphagous root-knot nematode Meloidogyne javanica: a resource for studying M. javanica secreted proteins. BMC Genomics 2023; 24:296. [PMID: 37264326 DOI: 10.1186/s12864-023-09366-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/07/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Plant-parasitic nematodes (PPNs) that cause most damage include root-knot nematodes (RKNs) which are a major impediment to crop production. Root-knot nematodes, like other parasites, secrete proteins which are required for parasite proliferation and survival within the host during the infection process. RESULTS Here, we used various computational tools to predict and identify classically and non-classically secreted proteins encoded in the Meloidogyne javanica genome. Furthermore, functional annotation analysis was performed using various integrated bioinformatic tools to determine the biological significance of the predicted secretome. In total, 7,458 proteins were identified as secreted ones. A large percentage of this secretome is comprised of small proteins of ≤ 300 aa sequence length. Functional analyses showed that M. javanica secretome comprises cell wall degrading enzymes for facilitating nematode invasion, and migration by disintegrating the complex plant cell wall components. In addition, peptidases and peptidase inhibitors are an important category of M. javanica secretome involved in compatible host-nematode interactions. CONCLUSION This study identifies the putative secretome encoded in the M. javanica genome. Future experimental validation analyses can greatly benefit from this global analysis of M. javanica secretome. Equally, our analyses will advance knowledge of the interaction between plants and nematodes.
Collapse
Affiliation(s)
- Teresia Nyambura Macharia
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Tuan A Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Lucy Novungayo Moleleki
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
10
|
Lai CK, Lee YC, Ke HM, Lu MR, Liu WA, Lee HH, Liu YC, Yoshiga T, Kikuchi T, Chen PJ, Tsai IJ. The Aphelenchoides genomes reveal substantial horizontal gene transfers in the last common ancestor of free-living and major plant-parasitic nematodes. Mol Ecol Resour 2023; 23:905-919. [PMID: 36597348 DOI: 10.1111/1755-0998.13752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/08/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023]
Abstract
Aphelenchoides besseyi is a plant-parasitic nematode (PPN) in the family Aphelenchoididae capable of infecting more than 200 plant species. A. besseyi is also a species complex with strains exhibiting varying pathogenicity to plants. We present the genome and annotations of six Aphelenchoides species, four of which belonged to the A. besseyi species complex. Most Aphelenchoides genomes have a size of 44.7-47.4 Mb and are among the smallest in clade IV, with the exception of A. fujianensis, which has a size of 143.8 Mb and is one of the largest. Phylogenomic analysis successfully delimited the species complex into A. oryzae and A. pseudobesseyi and revealed a reduction of transposon elements in the last common ancestor of Aphelenchoides. Synteny analyses between reference genomes indicated that three chromosomes in A. besseyi were derived from fission and fusion events. A systematic identification of horizontal gene transfer (HGT) genes across 27 representative nematodes allowed us to identify two major episodes of acquisition corresponding to the last common ancestor of clade IV or major PPNs, respectively. These genes were mostly lost and differentially retained between clades or strains. Most HGT events were acquired from bacteria, followed by fungi, and also from plants; plant HGT was especially prevalent in Bursaphelenchus mucronatus. Our results comprehensively improve the understanding of HGT in nematodes.
Collapse
Affiliation(s)
- Cheng-Kuo Lai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Yi-Chien Lee
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.,Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan.,Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Huei-Mien Ke
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Min R Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Wei-An Liu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsin-Han Lee
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Ching Liu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Taisei Kikuchi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Peichen J Chen
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
| | - Isheng Jason Tsai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan.,Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan.,Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
11
|
Elarabi NI, Abdel-Rahman AA, Abdel-Haleem H, Abdel-Hakeem M. Silver and zinc oxide nanoparticles disrupt essential parasitism, neuropeptidergic, and expansion-like proteins genes in Meloidogyne incognita. Exp Parasitol 2022; 243:108402. [DOI: 10.1016/j.exppara.2022.108402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/14/2022] [Accepted: 10/02/2022] [Indexed: 11/04/2022]
|
12
|
Lopes-Caitar VS, Nomura RBG, Hishinuma-Silva SM, de Carvalho MCDCG, Abdelnoor RV, Dias WP, Marcelino-Guimarães FC. Time Course RNA-seq Reveals Soybean Responses against Root-Lesion Nematode and Resistance Players. PLANTS (BASEL, SWITZERLAND) 2022; 11:2983. [PMID: 36365436 PMCID: PMC9655969 DOI: 10.3390/plants11212983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Pratylenchus brachyurus causes serious damage to soybean production and other crops worldwide. Plant molecular responses to RLN infection remain largely unknown and no resistance genes have been identified in soybean. In this study, we analyzed molecular responses to RLN infection in moderately resistant BRSGO (Chapadões-BRS) and susceptible TMG115 RR (TMG) Glycine max genotypes. Differential expression analysis revealed two stages of response to RLN infection and a set of differentially expressed genes (DEGs) in the first stage suggested a pattern-triggered immunity (PTI) in both genotypes. The divergent time-point of DEGs between genotypes was observed four days post-infection, which included the activation of mitogen-activated protein kinase (MAPK) and plant-pathogen interaction genes in the BRS, suggesting the occurrence of an effector-triggered immunity response (ETI) in BRS. The co-expression analyses combined with single nucleotide polymorphism (SNP) uncovered a key element, a transcription factor phytochrome-interacting factor (PIF7) that is a potential regulator of moderate resistance to RLN infection. Two genes for resistance-related leucine-rich repeat (LRR) proteins were found as BRS-specific expressed genes. In addition, alternative splicing analysis revealed an intron retention in a myo-inositol oxygenase (MIOX) transcript, a gene related to susceptibility, may cause a loss of function in BRS.
Collapse
Affiliation(s)
- Valéria Stefania Lopes-Caitar
- Department of Biological Sciences, Universidade Estadual de Londrina (UEL), Londrina 86057-970, PR, Brazil
- Brazilian Agricultural Research Corporation-Embrapa Soja, Londrina 86001-970, PR, Brazil
| | - Rafael Bruno Guayato Nomura
- Brazilian Agricultural Research Corporation-Embrapa Soja, Londrina 86001-970, PR, Brazil
- Department Biochemistry and Biotechnology, Universidade Estadual de Londrina (UEL), Londrina 86057-970, PR, Brazil
| | - Suellen Mika Hishinuma-Silva
- Brazilian Agricultural Research Corporation-Embrapa Soja, Londrina 86001-970, PR, Brazil
- Department Biochemistry and Biotechnology, Universidade Estadual de Londrina (UEL), Londrina 86057-970, PR, Brazil
| | | | | | - Waldir Pereira Dias
- Brazilian Agricultural Research Corporation-Embrapa Soja, Londrina 86001-970, PR, Brazil
| | | |
Collapse
|
13
|
Siddique S, Coomer A, Baum T, Williamson VM. Recognition and Response in Plant-Nematode Interactions. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:143-162. [PMID: 35436424 DOI: 10.1146/annurev-phyto-020620-102355] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plant-parasitic nematodes spend much of their lives inside or in contact with host tissue, and molecular interactions constantly occur and shape the outcome of parasitism. Eggs of these parasites generally hatch in the soil, and the juveniles must locate and infect an appropriate host before their stored energy is exhausted. Components of host exudate are evaluated by the nematode and direct its migration to its infection site. Host plants recognize approaching nematodes before physical contact through molecules released by the nematodes and launch a defense response. In turn, nematodes deploy numerous mechanisms to counteract plant defenses. This review focuses on these early stages of the interaction between plants and nematodes. We discuss how nematodes perceive and find suitable hosts, how plants perceive and mount a defense response against the approaching parasites, and how nematodes fight back against host defenses.
Collapse
Affiliation(s)
- Shahid Siddique
- Department of Entomology and Nematology, University of California, Davis, California, USA;
| | - Alison Coomer
- Department of Plant Pathology, University of California, Davis, California, USA
| | - Thomas Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA
| | | |
Collapse
|
14
|
Dodueva IE, Lebedeva MA, Lutova LA. Phytopathogens and Molecular Mimicry. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422060035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
RNA-Seq of Cyst Nematode Infestation of Potato (Solanum tuberosum L.): A Comparative Transcriptome Analysis of Resistant and Susceptible Cultivars. PLANTS 2022; 11:plants11081008. [PMID: 35448735 PMCID: PMC9025382 DOI: 10.3390/plants11081008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 12/02/2022]
Abstract
Potato (Solanum tuberosum L.) is an important food crop worldwide, and potato cyst nematodes (PCNs) are among the most serious pests. The identification of disease resistance genes and molecular markers for PCN infestation can aid in crop improvement research programs against PCN infestation. In the present study, we used high-throughput RNA sequencing to investigate the comprehensive resistance mechanisms induced by PCN infestation in the resistant cultivar Kufri Swarna and the susceptible cultivar Kufri Jyoti. PCN infestation induced 791 differentially expressed genes in resistant cultivar Kufri Swarna, comprising 438 upregulated and 353 downregulated genes. In susceptible cultivar Kufri Jyoti, 2225 differentially expressed genes were induced, comprising 1247 upregulated and 978 downregulated genes. We identified several disease resistance genes (KIN) and transcription factors (WRKY, HMG, and MYB) that were upregulated in resistant Kufri Swarna. The differentially expressed genes from several enriched KEGG pathways, including MAPK signaling, contributed to the disease resistance in Kufri Swarna. Functional network analysis showed that several cell wall biogenesis genes were induced in Kufri Swarna in response to infestation. This is the first study to identify underlying resistance mechanisms against PCN and host interaction in Indian potato varieties.
Collapse
|
16
|
Samita, Utreja D, Dhillon NK. An Efficacious Protocol for the Reduction of Benzothiazole Using Mg/MeOH and Their Antinemic Activity against Meloidogyne incognita. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Pu W, Xiao K, Luo S, Zhu H, Yuan Z, Gao C, Hu J. Characterization of Five Meloidogyne incognita Effectors Associated with PsoRPM3. Int J Mol Sci 2022; 23:ijms23031498. [PMID: 35163425 PMCID: PMC8836280 DOI: 10.3390/ijms23031498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 12/04/2022] Open
Abstract
Root-knot nematodes (RKNs) are devastating parasites that invade thousands of plants. In this study, five RKN effectors, which might interact with Prunussogdiana resistance protein PsoRPM3, were screened and identified. In situ hybridisation results showed that MiCal, MiGST_N_4, MiEFh and MiACPS are expressed in the subventral oesophageal glands (SvG), and MiTSPc hybridization signals are found in the dorsal esophageal gland (DG) of Meloidogyne incognita in the pre-J2. RT-qPCR data indicated that the expression of MiCal, MiGST_N_4, MiEFh, and MiACPS genes are highly expressed in M. incognita of pra-J2 and J3/J4 stages. The expression of MiTSPc increased significantly in the female stage of M. incognita. Moreover, all effectors found in this study localize in the cytoplasm and nucleus when transiently expressed in plant cells. In addition, MiGST_N_4, MiEFh, MiACPS and MiTSPc can elicit the ROS burst and strong hypersensitive response (HR), as well as significant ion leakage. Our data suggest that MiGST_N_4, MiEFh, MiACPS and MiTSPc effectors may be involved in triggering the immune response of the host plant.
Collapse
|
18
|
Hawamda AIM, Reichert S, Ali MA, Nawaz MA, Austerlitz T, Schekahn P, Abbas A, Tenhaken R, Bohlmann H. Characterization of an Arabidopsis Defensin-like Gene Conferring Resistance against Nematodes. PLANTS (BASEL, SWITZERLAND) 2022; 11:280. [PMID: 35161268 PMCID: PMC8838067 DOI: 10.3390/plants11030280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 12/15/2022]
Abstract
Arabidopsis contains 317 genes for defensin-like (DEFL) peptides. DEFLs have been grouped into different families based mainly on cysteine motifs. The DEFL0770 group contains seven genes, of which four are strongly expressed in roots. We found that the expression of these genes is downregulated in syncytia induced by the beet cyst nematode Heterodera schachtii as revealed by RNAseq analysis. We have studied one gene of this group, At3g59930, in detail. A promoter::GUS line revealed that the gene is only expressed in roots but not in other plant organs. Infection of the GUS line with larvae of H. schachtii showed a strong downregulation of GUS expression in infection sites as early as 1 dpi, confirming the RNAseq data. The At3g59930 peptide had only weak antimicrobial activity against Botrytis cinerea. Overexpression lines had no enhanced resistance against this fungus but were more resistant to H. schachtii infection. Our data indicate that At3g59930 is involved in resistance to nematodes which is probably not due to direct nematicidal activity.
Collapse
Affiliation(s)
- Abdalmenem I. M. Hawamda
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
- Department of Agricultural Biotechnology, Faculty of Agricultural Science and Technology, Palestine Technical University-Kadoorie (PTUK), Tulkarm P.O. Box 7, Palestine
| | - Susanne Reichert
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
| | - Muhammad Amjad Ali
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
- Department of Plant Pathology, University of Agriculture, Faisalabad 38040, Pakistan
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Amjad Nawaz
- Siberian Federal Scientific Centre of Agrobiotechnology, Russian Academy of Sciences, 630501 Krasnoobsk, Russia;
- Laboratory of Supercritical Fluid Research and Application in Agrobiotechnology, The National Research Tomsk State University, 36, Lenin Avenue, 634050 Tomsk, Russia
| | - Tina Austerlitz
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
| | - Patricia Schekahn
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
| | - Amjad Abbas
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
- Department of Plant Pathology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Raimund Tenhaken
- Plant Physiology, University of Salzburg, 5020 Salzburg, Austria;
| | - Holger Bohlmann
- Institute of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, 1180 Vienna, Austria; (A.I.M.H.); (S.R.); (M.A.A.); (T.A.); (P.S.); (A.A.)
| |
Collapse
|
19
|
Tapia-Vázquez I, Montoya-Martínez AC, De Los Santos-Villalobos S, Ek-Ramos MJ, Montesinos-Matías R, Martínez-Anaya C. Root-knot nematodes (Meloidogyne spp.) a threat to agriculture in Mexico: biology, current control strategies, and perspectives. World J Microbiol Biotechnol 2022; 38:26. [PMID: 34989897 DOI: 10.1007/s11274-021-03211-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023]
Abstract
Root-knot nematodes (RKN) are sedentary parasites of the roots of plants and are considered some of the most damaging pests in agriculture. Since RKN target the root vascular system, they provoke host nutrient deprivation and defective water transport, causing above-ground symptoms of growth stunting, wilting, chlorosis, and reduced crop yields. In Mexico RKN infestations are primarily dealt with by treating with synthetic chemically based nematicides that are preferred by farmers over available bioproducts. However, due to environmental and human health concerns chemical control is increasingly restricted. Biological control of RKNs can help reduce the use of chemical nematicides as it is achieved with antagonistic organisms, mainly bacteria, fungi, other nematodes, or consortia of diverse microorganisms, which control nematodes directly by predation and parasitism at different stages: eggs, juveniles, or adults; or indirectly by the action of toxic diffusible inhibitory metabolites. The need to increase agricultural production and reduce negative environmental impact creates an opportunity for optimizing biological control agents to suppress nematode populations, but this endeavour remains challenging as researchers around the world try to understand diverse control mechanisms, nematode and microbe life cycles, ecology, metabolite production, predatory behaviours, molecular and biochemical interactions, in order to generate attractive products with the approval of local regulatory bodies. Here, we provide a brief review of the biology of the genus Meloidogyne, biological control strategies, and a comparison between chemical and bioproducts in the Mexican market, and guidelines emitted by national agencies to ensure safety and effectiveness of new developments.
Collapse
Affiliation(s)
- Irán Tapia-Vázquez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Amelia C Montoya-Martínez
- Instituto Tecnológico de Sonora (ITSON), 5 de Febrero 818 Sur, Centro, 85000, Ciudad Obregón, Sonora, Mexico
| | | | - María J Ek-Ramos
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba S/N, 66455, San Nicolás de los Garza, Nuevo León, Mexico
| | - Roberto Montesinos-Matías
- SENASICA, Centro Nacional de Referencia de Control Biológico, Km 1.5 Carretera Tecomán-Estación FFCC, Tepeyac, 28110, Tecomán, Colima, Mexico
| | - Claudia Martínez-Anaya
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Chamilpa, 62210, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
20
|
Jagdale S, Rao U, Giri AP. Effectors of Root-Knot Nematodes: An Arsenal for Successful Parasitism. FRONTIERS IN PLANT SCIENCE 2021; 12:800030. [PMID: 35003188 PMCID: PMC8727514 DOI: 10.3389/fpls.2021.800030] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/23/2021] [Indexed: 05/13/2023]
Abstract
Root-knot nematodes (RKNs) are notorious plant-parasitic nematodes first recorded in 1855 in cucumber plants. They are microscopic, obligate endoparasites that cause severe losses in agriculture and horticulture. They evade plant immunity, hijack the plant cell cycle, and metabolism to modify healthy cells into giant cells (GCs) - RKN feeding sites. RKNs secrete various effector molecules which suppress the plant defence and tamper with plant cellular and molecular biology. These effectors originate mainly from sub-ventral and dorsal oesophageal glands. Recently, a few non-oesophageal gland secreted effectors have been discovered. Effectors are essential for the entry of RKNs in plants, subsequently formation and maintenance of the GCs during the parasitism. In the past two decades, advanced genomic and post-genomic techniques identified many effectors, out of which only a few are well characterized. In this review, we provide molecular and functional details of RKN effectors secreted during parasitism. We list the known effectors and pinpoint their molecular functions. Moreover, we attempt to provide a comprehensive insight into RKN effectors concerning their implications on overall plant and nematode biology. Since effectors are the primary and prime molecular weapons of RKNs to invade the plant, it is imperative to understand their intriguing and complex functions to design counter-strategies against RKN infection.
Collapse
Affiliation(s)
- Shounak Jagdale
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Ashok P. Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
21
|
Khoei MA, Karimi M, Karamian R, Amini S, Soorni A. Identification of the Complex Interplay Between Nematode-Related lncRNAs and Their Target Genes in Glycine max L. FRONTIERS IN PLANT SCIENCE 2021; 12:779597. [PMID: 34956274 PMCID: PMC8705754 DOI: 10.3389/fpls.2021.779597] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/08/2021] [Indexed: 05/26/2023]
Abstract
Soybean (Glycine max) is a major plant protein source and oilseed crop. However, plant-parasitic nematodes (PPNs) affect its annual yield. In the current study, in order to better understand the regulation of defense mechanism against PPNs in soybean, we investigated the role of long non-coding RNAs (lncRNAs) in response to two nematode species, Heterodera glycines (SCN: soybean cyst nematode) and Rotylenchulus reniformis (reniform). To this end, two publicly available RNA-seq data sets (SCN data set and RAD: reniform-associated data set) were employed to discover the lncRNAome profile of soybean under SCN and reniform infection, respectively. Upon identification of unannotated transcripts in these data sets, a seven-step pipeline was utilized to sieve these transcripts, which ended up in 384 and 283 potential lncRNAs in SCN data set and RAD, respectively. These transcripts were then used to predict cis and trans nematode-related targets in soybean genome. Computational prediction of target genes function, some of which were also among differentially expressed genes, revealed the involvement of putative nematode-responsive genes as well as enrichment of multiple stress responses in both data sets. Finally, 15 and six lncRNAs were proposed to be involved in microRNA-mediated regulation of gene expression in soybean in response to SNC and reniform infection, respectively. Collectively, this study provides a novel insight into the signaling and regulatory network of soybean-pathogen interactions and opens a new window for further research.
Collapse
Affiliation(s)
| | | | - Roya Karamian
- Department of Biology, Faculty of Sciences, Bu-Ali Sina University, Hamedan, Iran
| | | | - Aboozar Soorni
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
22
|
Meloidogyne graminicola-A Threat to Rice Production: Review Update on Distribution, Biology, Identification, and Management. BIOLOGY 2021; 10:biology10111163. [PMID: 34827156 PMCID: PMC8614973 DOI: 10.3390/biology10111163] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/05/2022]
Abstract
Simple Summary New risks to plant health are constantly emerging. Such is the case of the rice root knot nematode Meloidogyne graminicola, adapted to flooded conditions and representing a risk to all types of rice agro-systems. It has been recently detected in Italy and added to the European and Mediterranean Plant Protection Organization (EPPO) Alert List. The presence of this nematode in Europe poses a threat to rice production, as there is a high probability to spread, due to trade activities and climate changes. In view of its importance, an extensive updated review was carried out. Abstract Rice (Oryza sativa L.) is one of the main cultivated crops worldwide and represents a staple food for more than half of the world population. Root-knot nematodes (RKNs), Meloidogyne spp., and particularly M. graminicola, are serious pests of rice, being, probably, the most economically important plant-parasitic nematode in this crop. M. graminicola is an obligate sedentary endoparasite adapted to flooded conditions. Until recently, M. graminicola was present mainly in irrigated rice fields in Asia, parts of the Americas, and South Africa. However, in July 2016, it was found in northern Italy in the Piedmont region and in May 2018 in the Lombardy region in the province of Pavia. Following the first detection in the EPPO region, this pest was included in the EPPO Alert List as its wide host range and ability to survive during long periods in environments with low oxygen content, represent a threat for rice production in the European Union. Considering the impact of this nematode on agriculture, a literature review focusing on M. graminicola distribution, biology, identification, and management was conducted.
Collapse
|
23
|
Dodueva I, Lebedeva M, Lutova L. Dialog between Kingdoms: Enemies, Allies and Peptide Phytohormones. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112243. [PMID: 34834606 PMCID: PMC8618561 DOI: 10.3390/plants10112243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 05/14/2023]
Abstract
Various plant hormones can integrate developmental and environmental responses, acting in a complex network, which allows plants to adjust their developmental processes to changing environments. In particular, plant peptide hormones regulate various aspects of plant growth and development as well as the response to environmental stress and the interaction of plants with their pathogens and symbionts. Various plant-interacting organisms, e.g., bacterial and fungal pathogens, plant-parasitic nematodes, as well as symbiotic and plant-beneficial bacteria and fungi, are able to manipulate phytohormonal level and/or signaling in the host plant in order to overcome plant immunity and to create the habitat and food source inside the plant body. The most striking example of such phytohormonal mimicry is the ability of certain plant pathogens and symbionts to produce peptide phytohormones of different classes. To date, in the genomes of plant-interacting bacteria, fungi, and nematodes, the genes encoding effectors which mimic seven classes of peptide phytohormones have been found. For some of these effectors, the interaction with plant receptors for peptide hormones and the effect on plant development and defense have been demonstrated. In this review, we focus on the currently described classes of peptide phytohormones found among the representatives of other kingdoms, as well as mechanisms of their action and possible evolutional origin.
Collapse
|
24
|
Vilela RMIF, Kuster VC, Magalhães TA, Moraes CA, de Paula Filho AC, de Oliveira DC. Impact of Meloidogyne incognita (nematode) infection on root tissues and cell wall composition of okra (Abelmoschus esculentus L. Moench, Malvaceae). PROTOPLASMA 2021; 258:979-990. [PMID: 33532872 DOI: 10.1007/s00709-021-01618-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Root-knot nematodes are endoparasites whose mature females lodge and grow inside the root of some cultivated plants, leading to losses in productivity. Herein, we investigated if the infection of okra, Abelmoschus esculentus (Malvaceae), promoted by the root-knot nematode Meloidogyne incognita (Meloidogynidae) changes some agronomic traits of the host plant, as well as the cell wall composition of the root tissues. The okra Santa Cruz 47® cultivar was infected with a suspension of 5000 M. incognita juveniles. The inoculated and non-inoculated okra plants were then submitted to morphological analysis at the end of experiment, as well as histological (at 4, 11, 18, 39, ad 66 days after inoculation) and immunocytochemical analysis (control and 66 days after inoculation). Root-knot nematode infection reduced the dry weight of the stem system but, unexpectedly, the number and weight of fruits increased. At 11 days after inoculation, we detected the presence of giant cells that increased in number and size until the end of the experiment, at 66 days after inoculation. These cells came from the xylem parenchyma and showed intense and moderate labeling for epitopes recognized by JIM5 and JIM7. The presence of homogalacturonans (HGs) with different degrees of methyl esterification seems to be related to the injuries caused by the nematode feeding activity and to the processes of giant cell hypertrophy. In addition, the presence of HGs with high methyl-esterified groups can increase the cell wall porosity and facilitate the flux of nutrients for the root-knot nematode.
Collapse
Affiliation(s)
| | - Vinícius Coelho Kuster
- Campus Cidade Universitária, Universidade Federal de Jataí (UFJ), Jataí, Goiás, CEP 75801-615, Brazil
| | - Thiago Alves Magalhães
- Departamento de Biologia, Lavras, Universidade Federal de Lavras (UFLA), Minas Gerais, CEP 37200-000, Brazil
| | - Camila Araújo Moraes
- Centro Universitário de Goiatuba (UniCerrado), Goiatuba, Goiás, CEP 75600-000, Brazil
| | | | - Denis Coelho de Oliveira
- Campus Umuarama, Universidade Federal de Uberlândia (UFU), Instituto de Biologia, Uberlândia, Minas Gerais, CEP 38402-020, Brazil.
| |
Collapse
|
25
|
Khanna K, Ohri P, Bhardwaj R. Genetic toolbox and regulatory circuits of plant-nematode associations. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 165:137-146. [PMID: 34038810 DOI: 10.1016/j.plaphy.2021.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
Plant-nematode associations are the most imperative area of study that forms the basis to understand their regulatory networks and coordinated functional aspects. Nematodes are highly parasitic organisms known so far, to cause relentless damage towards agricultural crops on a global scale. They pierce the roots of host plants and form neo-plastic feeding structures to extract out resources for their functional development. Moreover, they undergo re-differentiation within plant cells to form giant multi-nucleate feeding structures or syncytium. All these processes are facilitated by numerous transcriptomic, proteomic, metabolomic and epigenetic modifications, that regulate different biological attractions among plants and nematodes. Nevertheless, these mechanisms are quite remarkable and have been explored in the present review. Here, we have shed light on genomic as well as genetic approaches to acquire an effective understanding regarding plant-nematode associations. Transcriptomics have revealed an extensive network to unravel feeding mechanism of nematodes through gene-expression programming of target genes. Also, the regulatory circuits of epigenetic alterations through DNA-methylation, non-coding RNAs and histone modifications very well explain epigenetic profiling within plants. Since decades, research have observed many intricacies to elucidate the dynamic nature of epigenetic modulations in plant-nematode attractions. By this review, we have highlighted the functional aspects of small RNAs in inducing plant-nematode parasitism along with the putative role of miRNAs. These RNAs act as chief genetic elements to mediate the expressional changes in plants through post-transcriptional silencing of various effector proteins as well as transcriptional factors. A pragmatic role of miRNAs in modulating gene expression in nematode infection and feeding site development have also been reviewed. Hence, they have been considered master regulators for functional reprogramming the expression during establishment of feeding sites. We have also encapsulated the advancement of genome-broadened DNA-methylation and untangled the nematode mediated dynamic alterations within plant methylome along with assessing transcriptional activities of various genes and transposons. In particular, we have highlighted the role of effector proteins in stimulating epigenetic changes. Finally, we have emerged towards a molecular-based core understanding about plant-nematode associations.
Collapse
Affiliation(s)
- Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
26
|
Eves-van den Akker S, Stojilković B, Gheysen G. Recent applications of biotechnological approaches to elucidate the biology of plant-nematode interactions. Curr Opin Biotechnol 2021; 70:122-130. [PMID: 33932862 DOI: 10.1016/j.copbio.2021.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/25/2022]
Abstract
Plant-parasitic nematodes are a major threat to food security. The most economically important species have remarkable abilities to manipulate host physiology and immunity. This review highlights recent applications of biotechnological approaches to elucidate the underlying biology on both sides of the interaction. Their obligate biotrophic nature has hindered the development of simple nematode transformation protocols. Instead, transient or stable expression of the effector (native or tagged) in planta has been instrumental in elucidating the biology of plant-nematode interactions. Recent progress in the development of functional genetics tools 'in nematoda' promises further advances. Finally, we discuss how effector research has uncovered novel protein translocation routes in plant cells and may reveal additional unknown biological processes in the future.
Collapse
Affiliation(s)
| | - Boris Stojilković
- Department of Biotechnology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Godelieve Gheysen
- Department of Biotechnology, Ghent University, Coupure Links 653, Ghent 9000, Belgium.
| |
Collapse
|
27
|
Vo KTX, Rahman MM, Rahman MM, Trinh KTT, Kim ST, Jeon JS. Proteomics and Metabolomics Studies on the Biotic Stress Responses of Rice: an Update. RICE (NEW YORK, N.Y.) 2021; 14:30. [PMID: 33721115 PMCID: PMC7960847 DOI: 10.1186/s12284-021-00461-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/28/2021] [Indexed: 05/19/2023]
Abstract
Biotic stresses represent a serious threat to rice production to meet global food demand and thus pose a major challenge for scientists, who need to understand the intricate defense mechanisms. Proteomics and metabolomics studies have found global changes in proteins and metabolites during defense responses of rice exposed to biotic stressors, and also reported the production of specific secondary metabolites (SMs) in some cultivars that may vary depending on the type of biotic stress and the time at which the stress is imposed. The most common changes were seen in photosynthesis which is modified differently by rice plants to conserve energy, disrupt food supply for biotic stress agent, and initiate defense mechanisms or by biotic stressors to facilitate invasion and acquire nutrients, depending on their feeding style. Studies also provide evidence for the correlation between reactive oxygen species (ROS) and photorespiration and photosynthesis which can broaden our understanding on the balance of ROS production and scavenging in rice-pathogen interaction. Variation in the generation of phytohormones is also a key response exploited by rice and pathogens for their own benefit. Proteomics and metabolomics studies in resistant and susceptible rice cultivars upon pathogen attack have helped to identify the proteins and metabolites related to specific defense mechanisms, where choosing of an appropriate method to identify characterized or novel proteins and metabolites is essential, considering the outcomes of host-pathogen interactions. Despites the limitation in identifying the whole repertoire of responsive metabolites, some studies have shed light on functions of resistant-specific SMs. Lastly, we illustrate the potent metabolites responsible for resistance to different biotic stressors to provide valuable targets for further investigation and application.
Collapse
Affiliation(s)
- Kieu Thi Xuan Vo
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104 South Korea
| | - Md Mizanor Rahman
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104 South Korea
| | - Md Mustafizur Rahman
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104 South Korea
| | - Kieu Thi Thuy Trinh
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104 South Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang, 50463 South Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104 South Korea
| |
Collapse
|
28
|
Yang Y, Hu X, Liu P, Chen L, Peng H, Wang Q, Zhang Q. A new root-knot nematode, Meloidogyne vitis sp. nov. (Nematoda: Meloidogynidae), parasitizing grape in Yunnan. PLoS One 2021; 16:e0245201. [PMID: 33534787 PMCID: PMC7857618 DOI: 10.1371/journal.pone.0245201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/19/2020] [Indexed: 11/19/2022] Open
Abstract
An unknown root-knot nematode was found at high density on grape roots collected from Yunnan Province. Morphometric traits and measurements, isozyme phenotypes, and molecular analysis clearly differentiated this nematode from previously described root-knot nematodes. This new species is described, illustrated and named Meloidogyne vitis sp. nov. The new species can be distinguished from other Meloidogyne spp. by a unique combination of characters. Females display a prominent neck, an excretory pore is located on the ventral region between 23rd and 25th annule behind lips, an EP/ST ratio of approximately 2.5 (1.98-2.96), a perineal pattern with two large and prominent phasmids, and a labial disc fused with the medial lips to form a dumbbell-shaped structure. Males display an obvious head region, a labial disc fused with the medial lips to form a dumbbell-shaped structure, no lateral lips, a prominent slit-like opening between the labial disc and medial lips, a distinct sunken appearance of the middle of the medial lips, and four incisures in the lateral field. Second-stage juveniles are characterized by a head region with slightly wrinkled mark, a labial disc fused with the medial lips to form a dumbbell-shaped structure, a slightly sunken appearance of the middle of the medial lips, a slit-like amphidial openings between the labial disc and lateral lips, and four incisures in the lateral field. The new species has rare Mdh (N3d) and Est phenotypes (VF1). Phylogenetic analysis based on ITS1-5.8S-ITS2, D2D3 fragments of rDNA, and coxI and coxII fragments of mtDNA sequences clearly separated the new species from other root-knot nematodes, and the closest relative was Meloidogyne mali. Meloidogyne mali was collected for amplifying these sequences as mentioned above, which were compared with the corresponding sequences of new species, the result showed that all of these sequences with highly base divergence (48-210 base divergence). Moreover, sequence characterized amplified region (SCAR) primers for rapid identification of this new species were designed.
Collapse
Affiliation(s)
- Yanmei Yang
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan Province, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan Province, China
| | - Xianqi Hu
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan Province, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan Province, China
| | - Pei Liu
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan Province, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan Province, China
| | - Li Chen
- Wheat Research Institute, Shanxi Academy of Agricultural Sciences, Linfen, Shanxi Province, China
| | - Huan Peng
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Qiaomei Wang
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan Province, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan Province, China
| | - Qi Zhang
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan Province, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan Province, China
| |
Collapse
|
29
|
Jabbar A, Javed N, Munir A, Abbas H, Khan SA, Moosa A, Jabran M, Adams BJ, Ali MA. Occurrence and molecular characterization of Meloidogyne graminicola on rice in Central Punjab, Pakistan. J Nematol 2021; 52:e2020-123. [PMID: 33829165 PMCID: PMC8015280 DOI: 10.21307/jofnem-2020-123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Indexed: 11/11/2022] Open
Abstract
Meloidogyne graminicola threatens global rice production, yet is understudied for many areas where it is cultivated. To better understand the prevalence and incidence of M. graminicola in central Punjab, Pakistan, we carried out field surveys of rice fields in the districts of Faisalabad and Chiniot. M. graminicola isolates were recovered from soil and root samples and identified on the basis of perineal patterns and rDNA ITS-based sequencing. The severity of nematode attack on rice roots and infested fields at various locations was based on galling index, root-knot nematode juveniles per root system, juveniles per 100 ml of soil, and prevalence of stylet-bearing nematodes and non-stylet-bearing nematodes. Maximum prevalence (22.5 and 27.5%) and minimum prevalence (17.5 and 20%) of M. graminicola was observed in Chiniot and Faisalabad, respectively. Eleven alternate host-plant species were examined in this study revealing varying degrees of M. graminicola infestation. ITS sequencing and phylogenetic analysis indicated that isolates from this study form a well-resolved clade with others from Asia, while another isolate falls outside of this clade in an unresolved polytomy with those from Europe and South America. Though monophyletic with the other M. graminicola, the isolates from Pakistan are distinguished by their high genetic variability and long branch lengths relative to the other isolates of M. graminicola, suggesting Pakistan as a possible ancestral area. Our results indicate that rice is severely attacked by a genetically diverse and aggressive M. graminicola, necessitating the development of appropriate control measures for its management in rice and other graminaceous crops.
Collapse
Affiliation(s)
- Abdul Jabbar
- Department of Plant Pathology, University of Agriculture Faisalabad, P.O. Box 38040, Pakistan
| | - Nazir Javed
- Department of Plant Pathology, University of Agriculture Faisalabad, P.O. Box 38040, Pakistan
| | - Anjum Munir
- Crop Diseases Research Institute, NARC, Islamabad, Pakistan
| | - Huma Abbas
- Department of Plant Pathology, University of Agriculture Faisalabad, P.O. Box 38040, Pakistan
| | - Sajid A. Khan
- Department of Plant Pathology, University of Agriculture Faisalabad, P.O. Box 38040, Pakistan
| | - Anam Moosa
- Department of Plant Pathology, University of Agriculture Faisalabad, P.O. Box 38040, Pakistan
| | - Muhammad Jabran
- Department of Plant Pathology, University of Agriculture Faisalabad, P.O. Box 38040, Pakistan
| | - Byron J. Adams
- Department of Biology, Monte L. Bean Museum, and Evolutionary Ecology Laboratories, Brigham Young University, Provo, UT 84602
| | - Muhammad A. Ali
- Department of Plant Pathology, University of Agriculture Faisalabad, P.O. Box 38040, Pakistan
| |
Collapse
|
30
|
Zhang J, Cook J, Nearing JT, Zhang J, Raudonis R, Glick BR, Langille MGI, Cheng Z. Harnessing the plant microbiome to promote the growth of agricultural crops. Microbiol Res 2021; 245:126690. [PMID: 33460987 DOI: 10.1016/j.micres.2020.126690] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/11/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022]
Abstract
The rhizosphere microbiome is composed of diverse microbial organisms, including archaea, viruses, fungi, bacteria as well as eukaryotic microorganisms, which occupy a narrow region of soil directly associated with plant roots. The interactions between these microorganisms and the plant can be commensal, beneficial or pathogenic. These microorganisms can also interact with each other, either competitively or synergistically. Promoting plant growth by harnessing the soil microbiome holds tremendous potential for providing an environmentally friendly solution to the increasing food demands of the world's rapidly growing population, while also helping to alleviate the associated environmental and societal issues of large-scale food production. There recently have been many studies on the disease suppression and plant growth promoting abilities of the rhizosphere microbiome; however, these findings largely have not been translated into the field. Therefore, additional research into the dynamic interactions between crop plants, the rhizosphere microbiome and the environment are necessary to better guide the harnessing of the microbiome to increase crop yield and quality. This review explores the biotic and abiotic interactions that occur within the plant's rhizosphere as well as current agricultural practices, and how these biotic and abiotic factors, as well as human practices, impact the plant microbiome. Additionally, some limitations, safety considerations, and future directions to the study of the plant microbiome are discussed.
Collapse
Affiliation(s)
- Janie Zhang
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Jamie Cook
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Jacob T Nearing
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Junzeng Zhang
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, Halifax, NS, Canada
| | - Renee Raudonis
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Morgan G I Langille
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada; Department of Pharmacology, Dalhousie University, Halifax, NS, Canada; CGEB-Integrated Microbiome Resource (IMR), Dalhousie University, Halifax, NS, Canada
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
31
|
Gartner U, Hein I, Brown LH, Chen X, Mantelin S, Sharma SK, Dandurand LM, Kuhl JC, Jones JT, Bryan GJ, Blok VC. Resisting Potato Cyst Nematodes With Resistance. FRONTIERS IN PLANT SCIENCE 2021; 12:661194. [PMID: 33841485 PMCID: PMC8027921 DOI: 10.3389/fpls.2021.661194] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/03/2021] [Indexed: 05/17/2023]
Abstract
Potato cyst nematodes (PCN) are economically important pests with a worldwide distribution in all temperate regions where potatoes are grown. Because above ground symptoms are non-specific, and detection of cysts in the soil is determined by the intensity of sampling, infestations are frequently spread before they are recognised. PCN cysts are resilient and persistent; their cargo of eggs can remain viable for over two decades, and thus once introduced PCN are very difficult to eradicate. Various control methods have been proposed, with resistant varieties being a key environmentally friendly and effective component of an integrated management programme. Wild and landrace relatives of cultivated potato have provided a source of PCN resistance genes that have been used in breeding programmes with varying levels of success. Producing a PCN resistant variety requires concerted effort over many years before it reaches what can be the biggest hurdle-commercial acceptance. Recent advances in potato genomics have provided tools to rapidly map resistance genes and to develop molecular markers to aid selection during breeding. This review will focus on the translation of these opportunities into durably PCN resistant varieties.
Collapse
Affiliation(s)
- Ulrike Gartner
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Ingo Hein
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Lynn H. Brown
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Xinwei Chen
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Sophie Mantelin
- INRAE UMR Institut Sophia Agrobiotech, Sophia Antipolis, France
| | - Sanjeev K. Sharma
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Louise-Marie Dandurand
- Entomology, Plant Pathology and Nematology Department, University of Idaho, Moscow, ID, United States
| | - Joseph C. Kuhl
- Department of Plant Sciences, University of Idaho, Moscow, ID, United States
| | - John T. Jones
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- School of Biology, University of St Andrews, St Andrews, United Kingdom
| | - Glenn J. Bryan
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Vivian C. Blok
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- *Correspondence: Vivian C. Blok,
| |
Collapse
|
32
|
Zheng Q, Putker V, Goverse A. Molecular and Cellular Mechanisms Involved in Host-Specific Resistance to Cyst Nematodes in Crops. FRONTIERS IN PLANT SCIENCE 2021; 12:641582. [PMID: 33767723 PMCID: PMC7986850 DOI: 10.3389/fpls.2021.641582] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/16/2021] [Indexed: 05/17/2023]
Abstract
Cyst nematodes are able to infect a wide range of crop species and are regarded as a major threat in crop production. In response to invasion of cyst nematodes, plants activate their innate immune system to defend themselves by conferring basal and host-specific defense responses depending on the plant genotype. Basal defense is dependent on the detection of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs), while host-specific defense mainly relies on the activation of canonical and non-canonical resistance (R) genes or quantitative trait loci (QTL). Currently, application of R genes and QTLs in crop species is a major approach to control cyst nematode in crop cultivation. However, emerging virulent cyst nematode field populations are threatening crop production due to host genetic selection by the application of a limited set of resistance genes in current crop cultivars. To counteract this problem, increased knowledge about the mechanisms involved in host-specific resistance mediated by R genes and QTLs to cyst nematodes is indispensable to improve their efficient and sustainable use in field crops. Despite the identification of an increasing number of resistance traits to cyst nematodes in various crops, the underlying genes and defense mechanisms are often unknown. In the last decade, indebt studies on the functioning of a number of cyst nematode R genes and QTLs have revealed novel insights in how plants respond to cyst nematode infection by the activation of host-specific defense responses. This review presents current knowledge of molecular and cellular mechanisms involved in the recognition of cyst nematodes, the activation of defense signaling and resistance response types mediated by R genes or QTLs. Finally, future directions for research are proposed to develop management strategies to better control cyst nematodes in crop cultivation.
Collapse
Affiliation(s)
- Qi Zheng
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | - Vera Putker
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| | - Aska Goverse
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
33
|
Kooliyottil R, Rao Gadhachanda K, Solo N, Dandurand LM. ATP-Binding Cassette (ABC) Transporter Genes in Plant-Parasitic Nematodes: An Opinion for Development of Novel Control Strategy. FRONTIERS IN PLANT SCIENCE 2020; 11:582424. [PMID: 33329645 PMCID: PMC7715011 DOI: 10.3389/fpls.2020.582424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/05/2020] [Indexed: 05/18/2023]
Affiliation(s)
- Rinu Kooliyottil
- Citrus Budwood Registration Program, Division of Plant Industry, Florida Department of Agriculture and Consumer Services, La Crosse, FL, United States
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | | | - Nejra Solo
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Louise-Marie Dandurand
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| |
Collapse
|
34
|
Characterization of the Biogenic Volatile Organic Compounds (BVOCs) and Analysis of the PR1 Molecular Marker in Vitis vinifera L. Inoculated with the Nematode Xiphinema index. Int J Mol Sci 2020; 21:ijms21124485. [PMID: 32599763 PMCID: PMC7349963 DOI: 10.3390/ijms21124485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 01/11/2023] Open
Abstract
Upon pathogen attack, plants very quickly undergo rather complex physico-chemical changes, such as the production of new chemicals or alterations in membrane and cell wall properties, to reduce disease damages. An underestimated threat is represented by root parasitic nematodes. In Vitis vinifera L., the nematode Xiphinema index is the unique vector of Grapevine fanleaf virus, responsible for fanleaf degeneration, one of the most widespread and economically damaging diseases worldwide. The aim of this study was to investigate changes in the emission of biogenic volatile organic compounds (BVOCs) in grapevines attacked by X. index. BVOCs play a role in plant defensive mechanisms and are synthetized in response to biotic damages. In our study, the BVOC profile was altered by the nematode feeding process. We found a decrease in β-ocimene and limonene monoterpene emissions, as well as an increase in α-farnesene and α-bergamotene sesquiterpene emissions in nematode-treated plants. Moreover, we evaluated the PR1 gene expression. The transcript level of PR1 gene was higher in the nematode-wounded roots, while in the leaf tissues it showed a lower expression compared to control grapevines.
Collapse
|
35
|
Dodueva IE, Lebedeva MA, Kuznetsova KA, Gancheva MS, Paponova SS, Lutova LL. Plant tumors: a hundred years of study. PLANTA 2020; 251:82. [PMID: 32189080 DOI: 10.1007/s00425-020-03375-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/11/2020] [Indexed: 05/21/2023]
Abstract
The review provides information on the mechanisms underlying the development of spontaneous and pathogen-induced tumors in higher plants. The activation of meristem-specific regulators in plant tumors of various origins suggests the meristem-like nature of abnormal plant hyperplasia. Plant tumor formation has more than a century of research history. The study of this phenomenon has led to a number of important discoveries, including the development of the Agrobacterium-mediated transformation technique and the discovery of horizontal gene transfer from bacteria to plants. There are two main groups of plant tumors: pathogen-induced tumors (e.g., tumors induced by bacteria, viruses, fungi, insects, etc.), and spontaneous ones, which are formed in the absence of any pathogen in plants with certain genotypes (e.g., interspecific hybrids, inbred lines, and mutants). The causes of the transition of plant cells to tumor growth are different from those in animals, and they include the disturbance of phytohormonal balance and the acquisition of meristematic characteristics by differentiated cells. The aim of this review is to discuss the mechanisms underlying the development of most known examples of plant tumors.
Collapse
Affiliation(s)
- Irina E Dodueva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia.
| | - Maria A Lebedeva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Kseniya A Kuznetsova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Maria S Gancheva
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Svetlana S Paponova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Ludmila L Lutova
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| |
Collapse
|
36
|
Hu Y, You J, Li C, Pan F, Wang C. The Heterodera glycines effector Hg16B09 is required for nematode parasitism and suppresses plant defense response. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 289:110271. [PMID: 31623793 DOI: 10.1016/j.plantsci.2019.110271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
Soybean cyst nematode (Heterodera glycines Ichinohe) is a sedentary root endoparasite that causes serious yield losses on soybean (Glycine max) worldwide. H. glycines secrets effector proteins into host cells to facilitate the success of parasitism. Nowadays, a large number of candidate effectors were identified from the genome sequence of H. glycines. However, the precise functions of these effectors in the nematode-host plant interaction are unknown. Here, an effector gene of dorsal gland protein Hg16B09 from H. glycines was cloned and functionally characterized through generating the transgenic soybean hairy roots. In situ hybridization assay and qRT-PCR analysis indicated Hg16B09 is exclusively expressed in the dorsal esophageal cells and up-regulated in the parasitic-stage juveniles. The constitutive expression of Hg16B09 in soybean hairy roots caused an enhanced susceptibility to H. glycines. In contrast, in planta silencing of Hg16B09 exhibited that nematode reproduction in hairy roots was decreased compared to the empty vector control. In addition, Hg16B09 also suppressed the expression of soybean defense-related genes induced by the pathogen-associated molecular pattern flg22. These data indicate that the effector Hg16B09 might aid H. glycines parasitism through suppressing plant basal defenses in the early parasitic stages.
Collapse
Affiliation(s)
- Yanfeng Hu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, PR China
| | - Jia You
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, PR China; University of Chinese Academy of Science, Beijing, PR China
| | - Chunjie Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, PR China
| | - Fengjuan Pan
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, PR China
| | - Congli Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, PR China.
| |
Collapse
|
37
|
Kaloshian I, Teixeira M. Advances in Plant-Nematode Interactions with Emphasis on the Notorious Nematode Genus Meloidogyne. PHYTOPATHOLOGY 2019; 109:1988-1996. [PMID: 31613704 DOI: 10.1094/phyto-05-19-0163-ia] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plant infections by plant-parasitic nematodes (PPNs) continue to be one of the major limitations in agricultural systems. Root-knot nematodes (RKNs), belonging to the genus Meloidogyne, are one of the most important groups of PPNs worldwide. Their wide host range combined with ubiquitous presence, continues to provide challenges for their control and breeding for resistance. Although resistance to RKNs has been identified, incorporation of these resistances into crops and durability of the resistance remains challenging. In addition, progress in cloning of RKN resistance genes has been dismal. Recent identification of pattern-triggered immunity in roots against nematodes, an ascaroside as a nematode-associated molecular pattern (NAMP) and the discovery of a NAMP plant receptor, provide tools and opportunities to develop durable host resistance against nematodes including RKNs.
Collapse
Affiliation(s)
- Isgouhi Kaloshian
- Department of Nematology, University of California, Riverside, CA 92521
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92521
| | - Marcella Teixeira
- Department of Nematology, University of California, Riverside, CA 92521
| |
Collapse
|
38
|
Grossi-de-Sa M, Petitot AS, Xavier DA, Sá MEL, Mezzalira I, Beneventi MA, Martins NF, Baimey HK, Albuquerque EVS, Grossi-de-Sa MF, Fernandez D. Rice susceptibility to root-knot nematodes is enhanced by the Meloidogyne incognita MSP18 effector gene. PLANTA 2019; 250:1215-1227. [PMID: 31218413 DOI: 10.1007/s00425-019-03205-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/31/2019] [Indexed: 05/27/2023]
Abstract
MAIN CONCLUSION This study revealed novel insights into the function of MSP18 effector during root-knot nematode parasitism in rice roots. MSP18 may modulate host immunity and enhance plant susceptibility to Meloidogyne spp. Rice (Oryza sativa) production is seriously impacted by root-knot nematodes (RKN), including Meloidogyne graminicola, Meloidogyne incognita, and Meloidogyne javanica, in upland and irrigated culture systems. Successful plant infection by RKN is likely achieved by releasing into the host cells some effector proteins to suppress the activation of immune responses. Here, we conducted a series of functional analyses to assess the role of the Meloidogyne-secreted protein (MSP) 18 from M. incognita (Mi-MSP18) during rice infection by RKN. Developmental expression profiles of M. javanica and M. graminicola showed that the MSP18 gene is up-regulated throughout nematode parasitic stages in rice. Reproduction of M. javanica and M. graminicola is enhanced in rice plants overexpressing Mi-MSP18, indicating that the Mi-MSP18 protein facilitates RKN parasitism. Transient expression assays in onion cells suggested that Mi-MSP18 is localized to the cytoplasm of the host cells. In tobacco, Mi-MSP18 suppressed the cell death induced by the INF1 elicitin, suggesting that Mi-MSP18 can interfere with the plant defense pathways. The data obtained in this study highlight Mi-MSP18 as a novel RKN effector able to enhance plant susceptibility and modulate host immunity.
Collapse
Affiliation(s)
- Maíra Grossi-de-Sa
- IRD, Cirad, Univ Montpellier, IPME, 911, Avenue Agropolis, 34394, Montpellier Cedex 5, France.
| | - Anne-Sophie Petitot
- IRD, Cirad, Univ Montpellier, IPME, 911, Avenue Agropolis, 34394, Montpellier Cedex 5, France
| | - Deisy A Xavier
- IRD, Cirad, Univ Montpellier, IPME, 911, Avenue Agropolis, 34394, Montpellier Cedex 5, France
- Embrapa Genetic Resources and Biotechnology-PqEB, Final W5 N, Brasília, DF, 70770-917, Brazil
| | - Maria Eugênia L Sá
- IRD, Cirad, Univ Montpellier, IPME, 911, Avenue Agropolis, 34394, Montpellier Cedex 5, France
- Embrapa Genetic Resources and Biotechnology-PqEB, Final W5 N, Brasília, DF, 70770-917, Brazil
- Agricultural Research Company of Minas Gerais State, EPAMIG, Uberaba, MG, Brazil
| | - Itamara Mezzalira
- IRD, Cirad, Univ Montpellier, IPME, 911, Avenue Agropolis, 34394, Montpellier Cedex 5, France
- Embrapa Genetic Resources and Biotechnology-PqEB, Final W5 N, Brasília, DF, 70770-917, Brazil
| | - Magda A Beneventi
- IRD, Cirad, Univ Montpellier, IPME, 911, Avenue Agropolis, 34394, Montpellier Cedex 5, France
- Embrapa Genetic Resources and Biotechnology-PqEB, Final W5 N, Brasília, DF, 70770-917, Brazil
| | - Natalia F Martins
- Embrapa Genetic Resources and Biotechnology-PqEB, Final W5 N, Brasília, DF, 70770-917, Brazil
| | - Hugues K Baimey
- Université de Parakou/Ecole Nationale Supérieure des Sciences et Techniques Agronomiques de Djougou, Parakou, Benin
| | - Erika V S Albuquerque
- Embrapa Genetic Resources and Biotechnology-PqEB, Final W5 N, Brasília, DF, 70770-917, Brazil
| | - Maria F Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology-PqEB, Final W5 N, Brasília, DF, 70770-917, Brazil
| | - Diana Fernandez
- IRD, Cirad, Univ Montpellier, IPME, 911, Avenue Agropolis, 34394, Montpellier Cedex 5, France.
- Embrapa Genetic Resources and Biotechnology-PqEB, Final W5 N, Brasília, DF, 70770-917, Brazil.
| |
Collapse
|
39
|
Huang X, Hu L, Wu X. Identification of a novel effector BxSapB3 that enhances the virulence of pine wood nematode Bursaphelenchus xylophilus. Acta Biochim Biophys Sin (Shanghai) 2019; 51:1071-1078. [PMID: 31559428 DOI: 10.1093/abbs/gmz100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Indexed: 12/12/2022] Open
Abstract
Pine wilt disease, caused by the pine wood nematode Bursaphelenchus xylophilus, leads to severe damage to pine forests in China. In our previous study, effectors secreted by this pathogen were shown to play roles in the different infection stages of pine wilt disease, and a series of candidate effectors were predicted by transcriptome sequencing. This study identified and characterized a novel effector, BxSapB3, which was among these candidate effectors. Agrobacterium-mediated transient expression was used to identify BxSapB3. BxSapB3 was secreted by B. xylophilus and found to be capable of inducing cell death in Nicotiana benthamiana. Quantitative real-time PCR (qRT-PCR) analysis revealed that BxSapB3 was upregulated in a highly virulent strain of B. xylophilus and expressed at lower levels in a weakly virulent strain at the early stages of infection. When BxSapB3 was silenced in B. xylophilus, the process of infection was delayed. These results indicate that BxSapB3 acts as an effector and contributes to virulence at the early stages of B. xylophilus infection.
Collapse
Affiliation(s)
- Xin Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Longjiao Hu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Xiaoqin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
40
|
Mejias J, Truong NM, Abad P, Favery B, Quentin M. Plant Proteins and Processes Targeted by Parasitic Nematode Effectors. FRONTIERS IN PLANT SCIENCE 2019; 10:970. [PMID: 31417587 PMCID: PMC6682612 DOI: 10.3389/fpls.2019.00970] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/11/2019] [Indexed: 05/17/2023]
Abstract
Sedentary endoparasitic nematodes, such as root-knot nematodes (RKN; Meloidogyne spp.) and cyst nematodes (CN; Heterodera spp. and Globodera spp.) cause considerable damage to agricultural crops. RKN and CN spend most of their life cycle in plant roots, in which they induce the formation of multinucleate hypertrophied feeding cells, called "giant cells" and "syncytia," respectively. The giant cells result from nuclear divisions of vascular cells without cytokinesis. They are surrounded by small dividing cells and they form a new organ within the root known as a root knot or gall. CN infection leads to the fusion of several root cells into a unique syncytium. These dramatically modified host cells act as metabolic sinks from which the nematode withdraws nutrients throughout its life, and they are thus essential for nematode development. Both RKN and CN secrete effector proteins that are synthesized in the oesophageal glands and delivered to the appropriate cell in the host plant via a syringe-like stylet, triggering the ontogenesis of the feeding structures. Within the plant cell or in the apoplast, effectors associate with specific host proteins, enabling them to hijack important processes for cell morphogenesis and physiology or immunity. Here, we review recent findings on the identification and functional characterization of plant targets of RKN and CN effectors. A better understanding of the molecular determinants of these biotrophic relationships would enable us to improve the yields of crops infected with parasitic nematodes and to expand our comprehension of root development.
Collapse
Affiliation(s)
| | | | | | | | - Michaël Quentin
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut Sophia Agrobiotech, Université Côte d’Azur, Sophia Antipolis, France
| |
Collapse
|
41
|
Almaghrabi B, Ali MA, Zahoor A, Shah KH, Bohlmann H. Arabidopsis thionin-like genes are involved in resistance against the beet-cyst nematode (Heterodera schachtii). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 140:55-67. [PMID: 31082659 DOI: 10.1016/j.plaphy.2019.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/02/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
Plants express various antimicrobial peptides including thionins to protect themselves against pathogens. It was recently found that, in addition to four thionin genes, Arabidopsis contains 67 thionin-like (ThiL) genes including six pseudogenes. It is known that thionins have antimicrobial activity and are part of the plant defense system, however, nothing is known about ThiL genes. In this study, we present a bioinformatic analysis of the (ThiL) gene family in Arabidopsis. We identified 15 different motifs which positioned the ThiL peptides in four groups. A comparison of amino acid sequences showed that the ThiL peptides are actually more similar to the acidic domain of thionin proproteins than to the thionin domain. We selected 10 ThiL genes to study the expression and possible function in the Arabidopsis plant. RT-PCR and promoter:GUS fusions showed that most genes were expressed at a very low level but in several organs and at different developmental stages. Some genes were also expressed in syncytia induced by the beet cyst nematode Heterodera schachti in roots while others were downregulated in syncytia. Some overexpression lines supported lower number of nematodes that developed on the roots after inoculation. Two of the genes resulted in a strong hypersensitive response when infiltrated into leaves of Nicotiana benthamiana. These results indicate that ThiL genes might be involved in the response to biotic stress. ThiL genes have been expanded in the Brassicales and specifically the Brassicaceae. The most extreme example is the CRP2460 subfamily that contains 28 very closely related genes from Arabidopsis which are mostly the result of tandem duplications.
Collapse
Affiliation(s)
- Bachar Almaghrabi
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria.
| | - Muhammad Amjad Ali
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria; Department of Plant Pathology, University of Agriculture, 38040, Faisalabad, Pakistan; Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, 38040, Faisalabad, Pakistan.
| | - Adil Zahoor
- Department of Plant Pathology, University of Agriculture, 38040, Faisalabad, Pakistan.
| | - Kausar Hussain Shah
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria.
| | - Holger Bohlmann
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
42
|
Blyuss KB, Fatehi F, Tsygankova VA, Biliavska LO, Iutynska GO, Yemets AI, Blume YB. RNAi-Based Biocontrol of Wheat Nematodes Using Natural Poly-Component Biostimulants. FRONTIERS IN PLANT SCIENCE 2019; 10:483. [PMID: 31057585 PMCID: PMC6479188 DOI: 10.3389/fpls.2019.00483] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
With the growing global demands on sustainable food production, one of the biggest challenges to agriculture is associated with crop losses due to parasitic nematodes. While chemical pesticides have been quite successful in crop protection and mitigation of damage from parasites, their potential harm to humans and environment, as well as the emergence of nematode resistance, have necessitated the development of viable alternatives to chemical pesticides. One of the most promising and targeted approaches to biocontrol of parasitic nematodes in crops is that of RNA interference (RNAi). In this study we explore the possibility of using biostimulants obtained from metabolites of soil streptomycetes to protect wheat (Triticum aestivum L.) against the cereal cyst nematode Heterodera avenae by means of inducing RNAi in wheat plants. Theoretical models of uptake of organic compounds by plants, and within-plant RNAi dynamics, have provided us with useful insights regarding the choice of routes for delivery of RNAi-inducing biostimulants into plants. We then conducted in planta experiments with several streptomycete-derived biostimulants, which have demonstrated the efficiency of these biostimulants at improving plant growth and development, as well as in providing resistance against the cereal cyst nematode. Using dot blot hybridization we demonstrate that biostimulants trigger a significant increase of the production in plant cells of si/miRNA complementary with plant and nematode mRNA. Wheat germ cell-free experiments show that these si/miRNAs are indeed very effective at silencing the translation of nematode mRNA having complementary sequences, thus reducing the level of nematode infestation and improving plant resistance to nematodes. Thus, we conclude that natural biostimulants produced from metabolites of soil streptomycetes provide an effective tool for biocontrol of wheat nematode.
Collapse
Affiliation(s)
| | - Farzad Fatehi
- Department of Mathematics, University of Sussex, Brighton, United Kingdom
| | - Victoria A. Tsygankova
- Department of Chemistry of Bioactive Nitrogen-Containing Heterocyclic Compounds, Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Liudmyla O. Biliavska
- Department of General and Soil Microbiology, Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Galyna O. Iutynska
- Department of General and Soil Microbiology, Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Alla I. Yemets
- Department of Cell Biology and Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yaroslav B. Blume
- Department of Genomics and Molecular Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
43
|
Luo S, Liu S, Kong L, Peng H, Huang W, Jian H, Peng D. Two venom allergen-like proteins, HaVAP1 and HaVAP2, are involved in the parasitism of Heterodera avenae. MOLECULAR PLANT PATHOLOGY 2019; 20:471-484. [PMID: 30422356 PMCID: PMC6637866 DOI: 10.1111/mpp.12768] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Despite the fact that venom allergen-like proteins (VAPs) have been identified in many animal- and plant-parasitic nematodes, studies on VAPs in Heterodera avenae, which is an important phytonematode, are still in their infancy. Here, we isolated, cloned and characterized two VAPs, named HaVAP1 and HaVAP2, from H. avenae. The two encoded proteins, HaVAP1 and HaVAP2, harbour an SCP-like domain each, but share only 38% identity with each other. HaVAP1 and HaVAP2 are expressed in subventral and dorsal oesophageal glands, respectively. HaVAP1 is expressed mainly at the early stages, whereas HaVAP2 accumulates principally at the late stages. Both HaVAP1 and HaVAP2 are secreted when expressed in Nicotiana benthamiana leaves, but HaVAP1 is delivered into chloroplasts, whereas HaVAP2 is translocated to the nucleus without signal peptides. Knocking down HaVAP1 increased the virulence of H. avenae. In contrast, silencing of HaVAP2 hampered the parasitism of H. avenae. Both HaVAP1 and HaVAP2 suppressed the cell death induced by BAX in N. benthamiana leaves. Moreover, HaVAP2 physically interacted with a CYPRO4-like protein (HvCLP) of Hordeum vulgare in the nucleus of the plant. It is reasonable to speculate that the changes in the transcript of HvCLP are associated with HaVAP2 during the parasitism of H. avenae. All results obtained in this study show that both HaVAP1 and HaVAP2 are involved in the parasitism of H. avenae, but they possess different functions, broadening our understanding of the parasitic mechanism of H. avenae.
Collapse
Affiliation(s)
- Shujie Luo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
- Key Laboratory of Plant Pathology of Ministry of Agriculture, College of Plant ProtectionChina Agricultural UniversityBeijing100193China
| | - Shiming Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Lingan Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Huan Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Wenkun Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| | - Heng Jian
- Key Laboratory of Plant Pathology of Ministry of Agriculture, College of Plant ProtectionChina Agricultural UniversityBeijing100193China
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193China
| |
Collapse
|
44
|
Matuszkiewicz M, Koter MD, Filipecki M. Limited ventilation causes stress and changes in Arabidopsis morphological, physiological and molecular phenotype during in vitro growth. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:554-562. [PMID: 30459082 DOI: 10.1016/j.plaphy.2018.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/23/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
A huge number of experiments in plant biology are conducted in sterile, sealed containers, providing environmental stability and full control of factors influencing the plant system. With respect to roots the in vitro growth has another benefit - the ease of conducting visual observations when grown in transparent media. Moreover, straightforward measurements of in vitro grown root systems make them a sensitive and convenient sensor of multiple stresses which may occur during experiments. In order to optimize root nematode infection tests for Arabidopsis mutants with relatively mild phenotypes, two Petri dish sealing techniques were tested (permeable medical adhesive tape and a popular non-permeable plastic film). Using standard experimental settings applied for infection tests, the root architecture, nematode infections, ion leakage, efficiency of photosynthesis, ethylene (ET) production, and CO2 accumulation were monitored in Arabidopsis thaliana Ws-0 wild-type and lsd1 (lesion stimulating disease 1) plants, which is a conditional dependent programmed cell death mutant. All tested parameters gave statistically significant differences between the analyzed sealing tapes, indicating the importance of air exchange. This factor is quite obvious but often ignored in experiments performed in Petri dishes. The results clearly indicate that stress is greater in air-tight sealed plates. These observations were supported by the great expression variation of several marker genes associated with reactive oxygen species (ROS), ET, salicylic (SA), and jasmonic acid (JA) biosynthesis and signaling in two-week-old seedlings. These results are discussed in light of the observed changes in the ET and CO2 concentration. Our results clearly indicate the importance of culture parameters for monitoring of abiotic and biotic stress responses in laboratory conditions, including accurate mutant phenotyping.
Collapse
Affiliation(s)
- M Matuszkiewicz
- Department of Plant Genetics, Breeding, and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences - SGGW, Nowoursynowska Str. 159, Warszawa, 02-776, Poland
| | - M D Koter
- Department of Plant Genetics, Breeding, and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences - SGGW, Nowoursynowska Str. 159, Warszawa, 02-776, Poland
| | - M Filipecki
- Department of Plant Genetics, Breeding, and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences - SGGW, Nowoursynowska Str. 159, Warszawa, 02-776, Poland.
| |
Collapse
|
45
|
Ali MA, Shahzadi M, Zahoor A, Dababat AA, Toktay H, Bakhsh A, Nawaz MA, Li H. Resistance to Cereal Cyst Nematodes in Wheat and Barley: An Emphasis on Classical and Modern Approaches. Int J Mol Sci 2019; 20:E432. [PMID: 30669499 PMCID: PMC6359373 DOI: 10.3390/ijms20020432] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/08/2019] [Accepted: 01/15/2019] [Indexed: 11/21/2022] Open
Abstract
Cereal cyst nematodes (CCNs) are among the most important nematode pests that limit production of small grain cereals like wheat and barley. These nematodes alone are estimated to reduce production of crops by 10% globally. This necessitates a huge enhancement of nematode resistance in cereal crops against CCNs. Nematode resistance in wheat and barley in combination with higher grain yields has been a preferential research area for cereal nematologists. This usually involved the targeted genetic exploitations through natural means of classical selection breeding of resistant genotypes and finding quantitative trait luci (QTLs) associated with resistance genes. These improvements were based on available genetic diversity among the crop plants. Recently, genome-wide association studies have widely been exploited to associate nematode resistance or susceptibility with particular regions of the genome. Use of biotechnological tools through the application of various transgenic strategies for enhancement of nematode resistance in various crop plants including wheat and barley had also been an important area of research. These modern approaches primarily include the use of gene silencing, exploitation of nematode effector genes, proteinase inhibitors, chemodisruptive peptides and a combination of one or more of these approaches. Furthermore, the perspective genome editing technologies including CRISPR-Cas9 could also be helpful for improving CCN resistance in wheat and barley. The information provided in this review will be helpful to enhance resistance against CCNs and will attract the attention of the scientific community towards this neglected area.
Collapse
Affiliation(s)
- Muhammad Amjad Ali
- Department of Plant Pathology, Faculty of Agriculture, University of Agriculture, Faisalabad 38040, Pakistan.
| | - Mahpara Shahzadi
- Department of Plant Pathology, Faculty of Agriculture, University of Agriculture, Faisalabad 38040, Pakistan.
| | - Adil Zahoor
- Department of Plant Pathology, Faculty of Agriculture, University of Agriculture, Faisalabad 38040, Pakistan.
| | | | - Halil Toktay
- Department of Plant Production and Technologies, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde 51240, Turkey.
| | - Allah Bakhsh
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde 51240, Turkey.
| | | | - Hongjie Li
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
46
|
Shang Y, Wang K, Sun S, Zhou J, Yu JQ. COP9 Signalosome CSN4 and CSN5 Subunits Are Involved in Jasmonate-Dependent Defense Against Root-Knot Nematode in Tomato. FRONTIERS IN PLANT SCIENCE 2019; 10:1223. [PMID: 31649695 PMCID: PMC6794412 DOI: 10.3389/fpls.2019.01223] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 09/04/2019] [Indexed: 05/03/2023]
Abstract
COP9 signalosome (CSN) is an evolutionarily conserved regulatory component of the ubiquitin/proteasome system that plays crucial roles in plant growth and stress tolerance; however, the mechanism of COP9-mediated resistance to root-knot nematodes (RKNs, e.g. Meloidogyne incognita) is not fully understood in plants. In the present study, we found that RKN infection in the roots rapidly increases the transcript levels of CSN subunits 4 and 5 (CSN4 and CSN5) and their protein accumulation in tomato (Solanum lycopersicum) plants. Suppression of CSN4 or CSN5 expression resulted in significantly increased number of egg masses and aggravated RKN-induced lipid peroxidation of cellular membrane but inhibited RKN-induced accumulation of CSN4 or CSN5 protein in tomato roots. Importantly, the RKN-induced accumulation of jasmonic acid (JA) and JA-isoleucine (JA-Ile), as well as the transcript levels of JA-related biosynthetic and signaling genes were compromised by CSN4 or CSN5 gene silencing. Moreover, protein-protein interaction assays demonstrated that CSN4 and CSN5B interact with the jasmonate ZIM domain 2 (JAZ2), which is the signaling component of the JA pathway. Silencing of CSN4 or CSN5 also compromises RKN-induced JAZ2 expression. Together, our findings indicate that CSN4 and CSN5 play critical roles in JA-dependent basal defense against RKN.
Collapse
Affiliation(s)
- Yifen Shang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Kaixin Wang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Shuchang Sun
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Jie Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
- *Correspondence: Jie Zhou,
| | - Jing-Quan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development, and Quality Improvement, Agricultural Ministry of China, Hangzhou, China
| |
Collapse
|
47
|
Naalden D, Haegeman A, de Almeida‐Engler J, Birhane Eshetu F, Bauters L, Gheysen G. The Meloidogyne graminicola effector Mg16820 is secreted in the apoplast and cytoplasm to suppress plant host defense responses. MOLECULAR PLANT PATHOLOGY 2018; 19:2416-2430. [PMID: 30011122 PMCID: PMC6638014 DOI: 10.1111/mpp.12719] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 05/06/2023]
Abstract
On invasion of roots, plant-parasitic nematodes secrete effectors to manipulate the cellular regulation of the host to promote parasitism. The root-knot nematode Meloidogyne graminicola is one of the most damaging nematodes of rice. Here, we identified a novel effector of this nematode, named Mg16820, expressed in the nematode subventral glands. We localized the Mg16820 effector in the apoplast during the migration phase of the second-stage juvenile in rice roots. In addition, during early development of the feeding site, Mg16820 was localized in giant cells, where it accumulated in the cytoplasm and the nucleus. Using transient expression in Nicotiana benthamiana leaves, we demonstrated that Mg16820 directed to the apoplast was able to suppress flg22-induced reactive oxygen species production. In addition, expression of Mg16820 in the cytoplasm resulted in the suppression of the R2/Avr2- and Mi-1.2-induced hypersensitive response. A potential target protein of Mg16820 identified with the yeast two-hybrid system was the dehydration stress-inducible protein 1 (DIP1). Bimolecular fluorescence complementation resulted in a strong signal in the nucleus. DIP1 has been described as an abscisic acid (ABA)-responsive gene and ABA is involved in the biotic and abiotic stress response. Our results demonstrate that Mg16820 is able to act in two cellular compartments as an immune suppressor and targets a protein involved in the stress response, therefore indicating an important role for this effector in parasitism.
Collapse
Affiliation(s)
- Diana Naalden
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityCoupure links 6539000GhentBelgium
| | - Annelies Haegeman
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityCoupure links 6539000GhentBelgium
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences UnitCaritasstraat 399090MelleBelgium
| | | | - Firehiwot Birhane Eshetu
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityCoupure links 6539000GhentBelgium
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoria0002South Africa
| | - Lander Bauters
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityCoupure links 6539000GhentBelgium
| | - Godelieve Gheysen
- Department of Biotechnology, Faculty of Bioscience EngineeringGhent UniversityCoupure links 6539000GhentBelgium
| |
Collapse
|
48
|
Siddique S, Grundler FM. Parasitic nematodes manipulate plant development to establish feeding sites. Curr Opin Microbiol 2018; 46:102-108. [PMID: 30326406 DOI: 10.1016/j.mib.2018.09.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/23/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022]
Abstract
Cyst and root-knot nematodes, the two economically most important groups of plant parasitic nematodes, induce neoplastic feeding sites in the roots of their host plants. The formation of feeding sites is accompanied by large-scale transcriptomic, metabolomic, and structural changes in host plants. However, the mechanisms that lead to such remarkable changes have remained poorly understood until recently. Now, genomic and genetic analyses have greatly enhanced our understanding of all aspects of plant-nematode interaction. Here, we review some of the recent advances in understanding cyst and root-knot nematode parasitism. In particular, we highlight new findings on the role of plant hormones and small RNAs in nematode feeding site formation and function. Finally, we touch on our emerging understanding of the function of nematode-associated secretions.
Collapse
Affiliation(s)
- Shahid Siddique
- Molecular Phytomedicine, INRES, University of Bonn, Karlrobert-Kreiten-Straße 13, D-53115 Bonn, Germany
| | - Florian Mw Grundler
- Molecular Phytomedicine, INRES, University of Bonn, Karlrobert-Kreiten-Straße 13, D-53115 Bonn, Germany. grundler@uni.-bonn.de
| |
Collapse
|
49
|
Ali MA, Anjam MS, Nawaz MA, Lam HM, Chung G. Signal Transduction in Plant⁻Nematode Interactions. Int J Mol Sci 2018; 19:ijms19061648. [PMID: 29865232 PMCID: PMC6032140 DOI: 10.3390/ijms19061648] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/26/2018] [Accepted: 05/29/2018] [Indexed: 12/26/2022] Open
Abstract
To successfully invade and infect their host plants, plant parasitic nematodes (PPNs) need to evolve molecular mechanisms to overcome the defense responses from the plants. Nematode-associated molecular patterns (NAMPs), including ascarosides and certain proteins, while instrumental in enabling the infection, can be perceived by the host plants, which then initiate a signaling cascade leading to the induction of basal defense responses. To combat host resistance, some nematodes can inject effectors into the cells of susceptible hosts to reprogram the basal resistance signaling and also modulate the hosts’ gene expression patterns to facilitate the establishment of nematode feeding sites (NFSs). In this review, we summarized all the known signaling pathways involved in plant–nematode interactions. Specifically, we placed particular focus on the effector proteins from PPNs that mimic the signaling of the defense responses in host plants. Furthermore, we gave an updated overview of the regulation by PPNs of different host defense pathways such as salicylic acid (SA)/jasmonic acid (JA), auxin, and cytokinin and reactive oxygen species (ROS) signaling to facilitate their parasitic successes in plants. This review will enhance the understanding of the molecular signaling pathways involved in both compatible and incompatible plant–nematode interactions.
Collapse
Affiliation(s)
- Muhammad Amjad Ali
- Department of Plant Pathology, University of Agriculture, Faisalabad 38040, Pakistan.
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad 38040, Pakistan.
| | - Muhammad Shahzad Anjam
- Institute of Molecular Biology & Biotechnology, Bahauddin Zakariya University, Multan 66000, Pakistan.
| | | | - Hon-Ming Lam
- School of Life Sciences and Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Korea.
| |
Collapse
|
50
|
Islam W, Noman A, Qasim M, Wang L. Plant Responses to Pathogen Attack: Small RNAs in Focus. Int J Mol Sci 2018; 19:E515. [PMID: 29419801 PMCID: PMC5855737 DOI: 10.3390/ijms19020515] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/04/2018] [Accepted: 02/05/2018] [Indexed: 12/25/2022] Open
Abstract
Small RNAs (sRNA) are a significant group of gene expression regulators for multiple biological processes in eukaryotes. In plants, many sRNA silencing pathways produce extensive array of sRNAs with specialized roles. The evidence on record advocates for the functions of sRNAs during plant microbe interactions. Host sRNAs are reckoned as mandatory elements of plant defense. sRNAs involved in plant defense processes via different pathways include both short interfering RNA (siRNA) and microRNA (miRNA) that actively regulate immunity in response to pathogenic attack via tackling pathogen-associated molecular patterns (PAMPs) and other effectors. In response to pathogen attack, plants protect themselves with the help of sRNA-dependent immune systems. That sRNA-mediated plant defense responses play a role during infections is an established fact. However, the regulations of several sRNAs still need extensive research. In this review, we discussed the topical advancements and findings relevant to pathogen attack and plant defense mediated by sRNAs. We attempted to point out diverse sRNAs as key defenders in plant systems. It is hoped that sRNAs would be exploited as a mainstream player to achieve food security by tackling different plant diseases.
Collapse
Affiliation(s)
- Waqar Islam
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad 38040, Pakistan.
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Muhammad Qasim
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Liande Wang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|