1
|
Karagüzel Ö, Kahraman MU, Alp Ş. Enhancing genetic diversity in Pelargonium: insights from crossbreeding in the gene pool. PeerJ 2024; 12:e17993. [PMID: 39247544 PMCID: PMC11378759 DOI: 10.7717/peerj.17993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024] Open
Abstract
This study aimed to enrich the Pelargonium gene pool through crosses and assess genetic variation among 56 genotypes from five Pelargonium species. Seventeen morphological descriptors were used, and NTSYS-pc software was employed to define genetic relationships, and a UPGMA-generated dendrogram reflected these relationships. Moreover, principal component analysis (PCA) was performed to determine which parameter was more effective in explaining variation. Results showed wide variation in genetic similarity rates, with the most similar genotypes being P. zonale 'c1' and a hybrid of P. zonale 'c1' x P. zonale 'c2' (90% similarity). According to the dendrogram results, it was observed that the genotypes were distributed in six clusters. In contrast, the most distant genotypes were P. zonale 'c11' and a hybrid of P. zonale 'c10' x P. zonale 'c11' (0.04% similarity). Hybrids from the female parent P. x hortorum 'c1' exhibited unique placement in the dendrogram. In the crossing combinations with this genotype, the individuals obtained in terms of flower type, flower color, flower size, bud size, early flowering, and leaf size characters showed different characteristics from the parents. Surprising outcomes in flower types, colors, and shapes contributed to gene pool enrichment, promising increased breeding variation success. The study holds practical implications for commercial breeding and serves as a valuable guide for future research endeavors.
Collapse
Affiliation(s)
- Özgül Karagüzel
- Department of Horticulture, Faculty of Agriculture, Recep Tayyip Erdogan University, Rize, Turkey
| | - M Uğur Kahraman
- Department of Vegetables and Ornamental Plants, Batı Akdeniz Agricultural Research Institute, Antalya, Turkey
| | - Şevket Alp
- Department of Landscape Architecture, Faculty of Architecture and Design, Van Yüzüncü Yıl University, Van, Turkey
| |
Collapse
|
2
|
Celi D, Quiroz E, Beltrán-Noboa A, Machado A, Tejera E, Fernandez-Soto P. A chemical analysis of the Pelargonium species: P. odoratissimum, P. graveolens, and P. zonale identifies secondary metabolites with activity against gram-positive bacteria with multidrug-resistance. PLoS One 2024; 19:e0306637. [PMID: 38985712 PMCID: PMC11236107 DOI: 10.1371/journal.pone.0306637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024] Open
Abstract
The Pelargonium genus encompasses around 280 species, most of which are used for medicinal purposes. While P. graveolens, P. odoratissimum, and P. zonale are known to exhibit antimicrobial activity, there is an evident absence of studies evaluating all three species to understand their chemical differences and biological effects. Through the analysis of the hydroalcoholic extracts of P. graveolens, P. odoratissimum, and P. zonale, using HPLC-DAD-MS/MS, quercetin and kaempferol derivatives were identified in these three species. Conversely, gallotannins and anthocyanins were uniquely detected in P. zonale. P. graveolens stood out due to the various types of myricetin derivatives that were not detected in P. odoratissimum and P. zonale extracts. Evaluation of their biological activities revealed that P. zonale displayed superior antibacterial and antibiofilm activities in comparison to the other two species. The antibacterial efficacy of P. zonale was observed towards the clinically relevant strains of Staphylococcus aureus ATCC 25923, Methicillin-resistant Staphylococcus aureus (MRSA) 333, Enterococcus faecalis ATCC 29212, and the Vancomycin-resistant E. faecalis INSPI 032. Fractionation analysis of P. zonale suggested that the antibacterial activity attributed to this plant is due to the presence of quercetin derivatives and kaempferol and its derivatives, alongside their synergistic interaction with gallotannins and anthocyanins. Lastly, the three Pelargonium species exhibited notable antioxidant activity, which may be attributed to their high content of total phenolic compounds.
Collapse
Affiliation(s)
- Diana Celi
- Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas (UDLA), Quito, Ecuador
| | - Evelyn Quiroz
- Laboratorios de Investigación, Universidad de Las Américas (UDLA), Quito, Ecuador
| | - Andrea Beltrán-Noboa
- Grupo de Bioquimioinformática, Universidad de Las Américas (UDLA), Quito, Ecuador
- Departamento de Química Analítica, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Bilbao, Spain
| | - António Machado
- Laboratorio de Bacteriología, Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Eduardo Tejera
- Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas (UDLA), Quito, Ecuador
- Grupo de Bioquimioinformática, Universidad de Las Américas (UDLA), Quito, Ecuador
| | - Paulina Fernandez-Soto
- Grupo de Bioquimioinformática, Universidad de Las Américas (UDLA), Quito, Ecuador
- Facultad de Ciencias de la Salud, Universidad de Las Américas (UDLA), Quito, Ecuador
| |
Collapse
|
3
|
Kumar A, Patekar S, Mohapatra S, Patel DK, Kiran NR, Jaiswal P, Nagegowda DA, Shasany AK. Isoprenyl diphosphate synthases of terpenoid biosynthesis in rose-scented geranium (Pelargonium graveolens). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108590. [PMID: 38574692 DOI: 10.1016/j.plaphy.2024.108590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/25/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Abstract
The essential oil of Pelargonium graveolens (rose-scented geranium), an important aromatic plant, comprising mainly mono- and sesqui-terpenes, has applications in food and cosmetic industries. This study reports the characterization of isoprenyl disphosphate synthases (IDSs) involved in P. graveolens terpene biosynthesis. The six identified PgIDSs belonged to different classes of IDSs, comprising homomeric geranyl diphosphate synthases (GPPSs; PgGPPS1 and PgGPPS2), the large subunit of heteromeric GPPS or geranylgeranyl diphosphate synthases (GGPPSs; PgGGPPS), the small subunit of heteromeric GPPS (PgGPPS.SSUI and PgGPPS.SSUII), and farnesyl diphosphate synthases (FPPS; PgFPPS).All IDSs exhibited maximal expression in glandular trichomes (GTs), the site of aroma formation, and their expression except PgGPPS.SSUII was induced upon treatment with MeJA. Functional characterization of recombinant proteins revealed that PgGPPS1, PgGGPPS and PgFPPS were active enzymes producing GPP, GGPP/GPP, and FPP respectively, whereas both PgGPPS.SSUs and PgGPPS2 were inactive. Co-expression of PgGGPPS (that exhibited bifunctional G(G)PPS activity) with PgGPPS.SSUs in bacterial expression system showed lack of interaction between the two proteins, however, PgGGPPS interacted with a phylogenetically distant Antirrhinum majus GPPS.SSU. Further, transient expression of AmGPPS.SSU in P. graveolens leaf led to a significant increase in monoterpene levels. These findings provide insight into the types of IDSs and their role in providing precursors for different terpenoid components of P. graveolens essential oil.
Collapse
Affiliation(s)
- Ajay Kumar
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Soumitra Patekar
- Molecular Plant Biology and Biotechnology Lab, CSIR-CIMAP Research Centre, Bengaluru, 560065, India
| | - Soumyajit Mohapatra
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Devendra Kumar Patel
- Regulatory Toxicology, CSIR-Indian Institute of Toxicology Research, Lucknow, 226015, India
| | - N R Kiran
- Molecular Plant Biology and Biotechnology Lab, CSIR-CIMAP Research Centre, Bengaluru, 560065, India
| | - Priyanka Jaiswal
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Dinesh A Nagegowda
- Molecular Plant Biology and Biotechnology Lab, CSIR-CIMAP Research Centre, Bengaluru, 560065, India.
| | - Ajit Kumar Shasany
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India; CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow, 226001, India.
| |
Collapse
|
4
|
Martinelli L, Bihanic C, Bony A, Gros F, Conart C, Fiorucci S, Casabianca H, Schiets F, Chietera G, Boachon B, Blerot B, Baudino S, Jullien F, Saint-Marcoux D. Citronellol biosynthesis in pelargonium is a multistep pathway involving progesterone 5β-reductase and/or iridoid synthase-like enzymes. PLANT PHYSIOLOGY 2024; 194:1006-1023. [PMID: 37831417 DOI: 10.1093/plphys/kiad550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023]
Abstract
Citronellol is a pleasant-smelling compound produced in rose (Rosa spp.) flowers and in the leaves of many aromatic plants, including pelargoniums (Pelargonium spp.). Although geraniol production has been well studied in several plants, citronellol biosynthesis has been documented only in crab-lipped spider orchid (Caladenia plicata) and its mechanism remains open to question in other species. We therefore profiled 10 pelargonium accessions using RNA sequencing and gas chromatography-MS analysis. Three enzymes from the progesterone 5β-reductase and/or iridoid synthase-like enzymes (PRISE) family were characterized in vitroand subsequently identified as citral reductases (named PhCIRs). Transgenic RNAi lines supported a role for PhCIRs in the biosynthesis of citronellol as well as in the production of mint-scented terpenes. Despite their high amino acid sequence identity, the 3 enzymes showed contrasting stereoselectivity, either producing mainly (S)-citronellal or a racemate of both (R)- and (S)-citronellal. Using site-directed mutagenesis, we identified a single amino acid substitution as being primarily responsible for the enzyme's enantioselectivity. Phylogenetic analysis of pelargonium PRISEs revealed 3 clades and 7 groups of orthologs. PRISEs from different groups exhibited differential affinities toward substrates (citral and progesterone) and cofactors (NADH/NADPH), but most were able to reduce both substrates, prompting hypotheses regarding the evolutionary history of PhCIRs. Our results demonstrate that pelargoniums evolved citronellol biosynthesis independently through a 3-step pathway involving PRISE homologs and both citral and citronellal as intermediates. In addition, these enzymes control the enantiomeric ratio of citronellol thanks to small alterations of the catalytic site.
Collapse
Affiliation(s)
- Laure Martinelli
- Laboratoire BVpam-UMR 5079, Université Jean Monnet Saint-Étienne, CNRS, Saint-Étienne 42023, France
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena 07455, Germany
| | - Camille Bihanic
- Laboratoire BVpam-UMR 5079, Université Jean Monnet Saint-Étienne, CNRS, Saint-Étienne 42023, France
| | - Aurélie Bony
- Laboratoire BVpam-UMR 5079, Université Jean Monnet Saint-Étienne, CNRS, Saint-Étienne 42023, France
| | - Florence Gros
- Laboratoire BVpam-UMR 5079, Université Jean Monnet Saint-Étienne, CNRS, Saint-Étienne 42023, France
| | - Corentin Conart
- Laboratoire BVpam-UMR 5079, Université Jean Monnet Saint-Étienne, CNRS, Saint-Étienne 42023, France
| | - Sébastien Fiorucci
- Institut de Chimie de Nice-UMR 7272, Université Côte d'Azur, CNRS, Nice 06108, France
| | - Hervé Casabianca
- Institut des Sciences Analytiques-UMR 5280, Université de Lyon, CNRS, Villeurbanne 69100, France
| | - Frédéric Schiets
- Institut des Sciences Analytiques-UMR 5280, Université de Lyon, CNRS, Villeurbanne 69100, France
| | | | - Benoît Boachon
- Laboratoire BVpam-UMR 5079, Université Jean Monnet Saint-Étienne, CNRS, Saint-Étienne 42023, France
| | | | - Sylvie Baudino
- Laboratoire BVpam-UMR 5079, Université Jean Monnet Saint-Étienne, CNRS, Saint-Étienne 42023, France
| | - Frédéric Jullien
- Laboratoire BVpam-UMR 5079, Université Jean Monnet Saint-Étienne, CNRS, Saint-Étienne 42023, France
| | - Denis Saint-Marcoux
- Laboratoire BVpam-UMR 5079, Université Jean Monnet Saint-Étienne, CNRS, Saint-Étienne 42023, France
| |
Collapse
|
5
|
Leggatt E, Griffiths A, Budge S, Stead AD, Gange AC, Devlin PF. Addition of Arbuscular Mycorrhizal Fungi Enhances Terpene Synthase Expression in Salvia rosmarinus Cultivars. Life (Basel) 2023; 13:life13020315. [PMID: 36836672 PMCID: PMC9959559 DOI: 10.3390/life13020315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Culinary herbs are commercially cultivated for their wide range of volatile compounds that give characteristic aromas and tastes. Rosemary (Salvia rosmarinus Spenn.) is an excellent model for assessment of methods improvement of volatile production as cultivars offer a wide variety of aromatic profiles due to the large family of terpene synthase genes. Arbuscular mycorrhizal fungi (AMF) associations have been shown to improve essential oil production in aromatic plants and offer one approach to enhance aroma in commercial herb production. Changes in the expression of seven different terpene synthases were compared in six rosemary cultivars in response to addition of AMF to a peat substrate. Addition of AMF profoundly influenced terpene synthase expression in all cultivars and did so without impacting the optimised plant size and uniformity achieved in these conditions. In addition, two methods for AMF application, developed with the horticultural industry in mind, were tested in this study. Uniform incorporation of AMF mixed into the growing substrate prior to planting of a root plug produced the most consistent root colonisation. Overall, our findings demonstrate the potential for the use of AMF in the improvement of aroma in culinary herbs within a commercial setting but show that outcomes are likely to greatly vary depending on variety.
Collapse
Affiliation(s)
- Emily Leggatt
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | | | | | - Anthony D. Stead
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Alan C. Gange
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Paul F. Devlin
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
- Correspondence:
| |
Collapse
|
6
|
Zhan X, Qian Y, Mao B. Metabolic Profiling of Terpene Diversity and the Response of Prenylsynthase-Terpene Synthase Genes during Biotic and Abiotic Stresses in Dendrobium catenatum. Int J Mol Sci 2022; 23:ijms23126398. [PMID: 35742843 PMCID: PMC9223610 DOI: 10.3390/ijms23126398] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 12/07/2022] Open
Abstract
Dendrobium catenatum is a widely cultivated Chinese orchid herb rich in abundant secondary metabolites, such as terpenes. However, terpene distribution and characterization of terpene biosynthesis-related genes remain unknown in D. catenatum. In this study, metabolic profiling was performed to analyze terpene distribution in the root, stem, leaf, and flower of D. catenatum. A total of 74 terpene compounds were identified and classified. Clustering analysis revealed that terpene compounds exhibited a tissue-specific accumulation, including monoterpenes in the flowers, sesquiterpenes in the stems, and triterpenes in the roots. Transcriptome analysis revealed that the ‘terpenoid backbone biosynthesis’ pathway was only significantly enriched in root vs. flower. The expression of terpene biosynthesis-related genes was spatiotemporal in the flowers. Prenylsynthase-terpene synthases (PS-TPSs) are the largest and core enzymes for generating terpene diversity. By systematic sequence analysis of six species, 318 PS-TPSs were classified into 10 groups and 51 DcaPS-TPSs were found in eight of them. Eighteen DcaPS-TPSs were regulated by circadian rhythm under drought stress. Most of the DcaPS-TPSs were influenced by cold stress and fungi infection. The cis-element of the majority of the DcaPS-TPS promoters was related to abiotic stress and plant development. Methyl jasmonate levels were significantly associated with DcaTPSs expression and terpene biosynthesis. These results provide insight into further functional investigation of DcaPS-TPSs and the regulation of terpene biosynthesis in Dendrobium.
Collapse
Affiliation(s)
- Xinqiao Zhan
- Institute of Biopharmaceuticals, Taizhou University, Taizhou 318000, China
- Institute of Biotechnology, Zhejiang University, Hangzhou 310000, China;
- Correspondence: (X.Z.); (B.M.)
| | - Yichun Qian
- Institute of Biotechnology, Zhejiang University, Hangzhou 310000, China;
| | - Bizeng Mao
- Institute of Biotechnology, Zhejiang University, Hangzhou 310000, China;
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Hangzhou 310000, China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Hangzhou 310000, China
- Correspondence: (X.Z.); (B.M.)
| |
Collapse
|
7
|
El-Shafey NM, Marzouk MA, Yasser MM, Shaban SA, Beemster GT, AbdElgawad H. Harnessing Endophytic Fungi for Enhancing Growth, Tolerance and Quality of Rose-Scented Geranium ( Pelargonium graveolens (L'Hér) Thunb.) Plants under Cadmium Stress: A Biochemical Study. J Fungi (Basel) 2021; 7:1039. [PMID: 34947021 PMCID: PMC8705862 DOI: 10.3390/jof7121039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 01/24/2023] Open
Abstract
Heavy metal contamination in soil is increasing rapidly due to increasing anthropogenic activities. Despite the importance of rose-scented geranium as a medicinal plant, little attention was paid to enhancing its productivity in heavy metal-polluted soil. In this regard, endophytes improve plant resistance to heavy metal toxicity and enhance its tissue quality. Here, the impact of the three endophytic fungi Talaromyces versatilis (E6651), Emericella nidulans (E6658), and Aspergillus niger (E6657) on geranium growth, tolerance, and tissue quality under cadmium (Cd) stress was investigated. In contrast to E. nidulans, T. versatilis and A. niger enhanced geranium growth and the stimulatory effect was more pronounced under Cd-stress. The three endophytes significantly alleviated Cd accumulation and increased mineral content in geranium leaves. In addition, endophytic fungi successfully alleviated Cd-induced membrane damage and reinforced the antioxidant defenses in geranium leaves. Inoculation with endophytes stimulated all the antioxidant enzymes under Cd-stress, and the response was more obvious in the case of T. versatilis and A. niger. To reduce the toxicity of tissue-Cd levels, T. versatilis and A. niger upregulated the detoxification mechanisms; glutathione-S-transferase, phytochelatin, and metallothionein levels. Moreover, endophytic fungi improved the medicinal value and quality of geranium by increasing total antioxidant capacity (TAC), phenolic compound biosynthesis (phenylalanine ammonia-lyase), and vitamin content as well as the quantity and quality of essential oil, particularly under Cd-stress conditions. The variation in the mechanisms modulated by the different endophytic fungi was supported by Principal Component Analysis (PCA). Overall, this study provided fundamental insights into endophytes' impact as a feasible strategy to mitigate the phytotoxicity hazards of Cd-stress in geranium and enhance its quality, based on the growth and biochemical investigations.
Collapse
Affiliation(s)
- Nadia Mohamed El-Shafey
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt; (M.A.M.); (M.M.Y.); (S.A.S.); (H.A.)
| | - Marym A. Marzouk
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt; (M.A.M.); (M.M.Y.); (S.A.S.); (H.A.)
| | - Manal M. Yasser
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt; (M.A.M.); (M.M.Y.); (S.A.S.); (H.A.)
| | - Salwa A. Shaban
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt; (M.A.M.); (M.M.Y.); (S.A.S.); (H.A.)
| | - Gerrit T.S. Beemster
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, 2020 Antwerp, Belgium;
| | - Hamada AbdElgawad
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt; (M.A.M.); (M.M.Y.); (S.A.S.); (H.A.)
| |
Collapse
|
8
|
Bergman ME, Bhardwaj M, Phillips MA. Cytosolic geraniol and citronellol biosynthesis require a Nudix hydrolase in rose-scented geranium (Pelargonium graveolens). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:493-510. [PMID: 33949016 DOI: 10.1111/tpj.15304] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/12/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Geraniol, citronellol and their esters are high-value acyclic monoterpenes used in food technology, perfumery and cosmetics. A major source of these compounds is the essential oil of rose-scented geraniums of the genus Pelargonium. We provide evidence that their biosynthesis mainly takes place in the cytosol of glandular trichomes via geranyl monophosphate (GP) through the action of a Nudix hydrolase. Protein preparations could convert geranyl diphosphate (GDP) to geraniol in in vitro assays, a process which could be blocked by inorganic phosphatase inhibitors, suggesting a two-step conversion of GDP to geraniol. Pelargonium graveolens chemotypes enriched in either geraniol or (-)-citronellol accumulate GP or citronellyl monophosphate (CP), respectively, the presumed precursors to their monoterpenoid end products. Geranyl monophosphate was highly enriched in isolated glandular trichomes of lines producing high amounts of geraniol. In contrast, (-)-isomenthone-rich lines are depleted in these prenyl monophosphates and monoterpene alcohols and instead feature high levels of GDP, the precursor to plastidic p-menthane biosynthesis. A Nudix hydrolase cDNA from Pelargonium glandular trichomes, dubbed PgNdx1, encoded a cytosolic protein capable of hydrolyzing GDP to GP with a KM of about 750 nm but is only weakly active towards farnesyl diphosphate. In citronellol-rich lines, GDP, GP and CP were detected in nearly equimolar amounts, while citronellyl diphosphate was absent, suggesting that citronellol biosynthesis may proceed by reduction of GP to CP in this species. These findings highlight the cytosol as a compartment that supports monoterpene biosynthesis and expands the roles of Nudix hydrolases in the biosynthesis of plant volatiles.
Collapse
Affiliation(s)
- Matthew E Bergman
- Department of Cellular and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Mridula Bhardwaj
- Department of Biology, University of Toronto-Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Michael A Phillips
- Department of Cellular and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
- Department of Biology, University of Toronto-Mississauga, Mississauga, ON, L5L 1C6, Canada
| |
Collapse
|
9
|
Schulz D, Linde M, Debener T. Detection of Reproducible Major Effect QTL for Petal Traits in Garden Roses. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10050897. [PMID: 33946713 PMCID: PMC8145204 DOI: 10.3390/plants10050897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
The detection of QTL by association genetics depends on the genetic architecture of the trait under study, the size and structure of the investigated population and the availability of phenotypic and marker data of sufficient quality and quantity. In roses, we previously demonstrated that major QTL could already be detected in small association panels. In this study, we analyzed petal number, petal size and fragrance in a small panel of 95 mostly tetraploid garden rose genotypes. After genotyping the panel with the 68 K Axiom WagRhSNP chip we detected major QTL for all three traits. Each trait was significantly influenced by several genomic regions. Some of the QTL span genomic regions that comprise several candidate genes. Selected markers from some of these regions were converted into KASP markers and were validated in independent populations of up to 282 garden rose genotypes. These markers demonstrate the robustness of the detected effects independent of the set of genotypes analyzed. Furthermore, the markers can serve as tools for marker-assisted breeding in garden roses. Over an extended timeframe, they may be used as a starting point for the isolation of the genes underlying the QTL.
Collapse
|
10
|
Bergman ME, Chávez Á, Ferrer A, Phillips MA. Distinct metabolic pathways drive monoterpenoid biosynthesis in a natural population of Pelargonium graveolens. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:258-271. [PMID: 31504760 PMCID: PMC6913739 DOI: 10.1093/jxb/erz397] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/22/2019] [Indexed: 05/30/2023]
Abstract
Pelargonium graveolens is a wild predecessor to rose-scented geranium hybrids prized for their essential oils used as fragrances and flavorings. However, little is known about their biosynthesis. Here we present metabolic evidence that at least two distinct monoterpene biosynthetic pathways contribute to their volatile profiles, namely, cyclic p-menthanes such as (-)-isomenthone and acyclic monoterpene alcohols such as geraniol and (-)-citronellol and their derivatives (referred to here as citronelloid monoterpenes). We established their common origin via the 2C-methyl-d-erythritol-4-phosphate pathway but found no indication these pathways share common intermediates beyond geranyl diphosphate. Untargeted volatile profiling of 22 seed-grown P. graveolens lines demonstrated distinct chemotypes that preferentially accumulate (-)-isomenthone, geraniol, or (-)-citronellol along with approximately 85 minor volatile products. Whole plant 13CO2 isotopic labeling performed under physiological conditions permitted us to measure the in vivo rates of monoterpenoid accumulation in these lines and quantify differences in metabolic modes between chemotypes. We further determined that p-menthane monoterpenoids in Pelargonium are likely synthesized from (+)-limonene via (+)-piperitone rather than (+)-pulegone. Exploitation of this natural population enabled a detailed dissection of the relative rates of competing p-menthane and citronelloid pathways in this species, providing real time rates of monoterpene accumulation in glandular trichomes.
Collapse
Affiliation(s)
- Matthew E Bergman
- Department of Cellular and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Ángel Chávez
- Plant Metabolism and Metabolic Engineering Program, Center for Research in Agricultural Genomics, (CRAG) (CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
| | - Albert Ferrer
- Plant Metabolism and Metabolic Engineering Program, Center for Research in Agricultural Genomics, (CRAG) (CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Michael A Phillips
- Department of Cellular and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Biology, University of Toronto – Mississauga, Mississauga, Ontario, Canada
| |
Collapse
|
11
|
Li Z, Howell K, Fang Z, Zhang P. Sesquiterpenes in grapes and wines: Occurrence, biosynthesis, functionality, and influence of winemaking processes. Compr Rev Food Sci Food Saf 2019; 19:247-281. [PMID: 33319521 DOI: 10.1111/1541-4337.12516] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 12/17/2022]
Abstract
Grapes are an important global horticultural product, and are mainly used for winemaking. Typically, grapes and wines are rich in various phytochemicals, including phenolics, terpenes, pyrazines, and benzenoids, with different compounds responsible for different nutritional and sensory properties. Among these compounds, sesquiterpenes, a subcategory of the terpenes, are attracting increasing interest as they affect aroma and have potential health benefits. The characteristics of sesquiterpenes in grapes and wines in terms of classification, biosynthesis pathway, and active functions have not been extensively reviewed. This paper summarizes 97 different sesquiterpenes reported in grapes and wines and reviews their biosynthesis pathways and relevant bio-regulation mechanisms. This review further discusses the functionalities of these sesquiterpenes including their aroma contribution to grapes and wines and potential health benefits, as well as how winemaking processes affect sesquiterpene concentrations.
Collapse
Affiliation(s)
- Zizhan Li
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Kate Howell
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Zhongxiang Fang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
12
|
Du F, Wang T, Fan JM, Liu ZZ, Zong JX, Fan WX, Han YH, Grierson D. Volatile composition and classification of Lilium flower aroma types and identification, polymorphisms, and alternative splicing of their monoterpene synthase genes. HORTICULTURE RESEARCH 2019; 6:110. [PMID: 31645964 PMCID: PMC6804824 DOI: 10.1038/s41438-019-0192-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/03/2019] [Accepted: 07/24/2019] [Indexed: 05/12/2023]
Abstract
Lily is a well-known ornamental plant with a diversity of fragrant types. Basic information on lily floral scent compounds has been obtained for only a few accessions, and little is known about Lilium aroma types, the terpene synthase genes that may play roles in the production of key volatiles, or the range of monoterpenes that these genes produce. In this study, 41 cultivars were analyzed for volatile emissions, and a total of 46 individual volatile compounds were identified, 16 for the first time in lilies. Lily accessions were classified into six groups according to the composition of major scent components: faint-scented, cool, fruity, musky, fruity-honey, and lily. Monoterpenes were one of the main groups of volatiles identified, and attention was focused on terpene synthase (TPS) genes, which encode enzymes that catalyze the last steps in monoterpene synthesis. Thirty-two candidate monoterpene synthase cDNAs were obtained from 66 lily cultivars, and 64 SNPs were identified. Two InDels were also shown to result from variable splicing, and sequence analysis suggested that different transcripts arose from the same gene. All identified nucleotide substitution sites were highly correlated with the amounts of myrcene emitted, and InDel site 230 was highly correlated with the emission of all major monoterpenoid components, especially (E)-β-ocimene. Heterologous expression of five cDNAs cloned from faint-scented and strong-scented lilies showed that their corresponding enzymes could convert geranyl diphosphate to (E)-β-ocimene, α-pinene, and limonene. The findings from this study provide a major resource for the assessment of lily scent volatiles and will be helpful in breeding of improved volatile components.
Collapse
Affiliation(s)
- Fang Du
- College of Horticulture, Shanxi Agricultural University, 030801 Taigu, Shanxi China
| | - Ting Wang
- College of Horticulture, Shanxi Agricultural University, 030801 Taigu, Shanxi China
| | - Jun-miao Fan
- College of Horticulture, Shanxi Agricultural University, 030801 Taigu, Shanxi China
- College of Horticulture, Nanjing Agricultural University, 210095 Nangjing, Jiangsu China
| | - Zhi-zhi Liu
- College of Horticulture, Shanxi Agricultural University, 030801 Taigu, Shanxi China
| | - Jia-xin Zong
- College of Horticulture, Shanxi Agricultural University, 030801 Taigu, Shanxi China
| | - Wei-xin Fan
- Experimental Teaching Center, Shanxi Agricultural University, 030801 Taigu, Shanxi China
| | - Yuan-huai Han
- College of Agriculture, Shanxi Agricultural University, 030801 Taigu, Shanxi China
| | - Donald Grierson
- Plant & Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
- Department of Horticulture, College of Agriculture & Biotechnology, Zhejiang University, 310058 Hangzhou, China
| |
Collapse
|