1
|
Liu DH, Liu QR, Tojibaev KS, Sukhorukov AP, Wariss HM, Zhao Y, Yang L, Li WJ. Phylogenomics provides new insight into the phylogeny and diversification of Asian Lappula (Boraginaceae). Mol Phylogenet Evol 2025; 208:108361. [PMID: 40287026 DOI: 10.1016/j.ympev.2025.108361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/26/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
The application of omics data serves as a powerful tool for investigating the roles of incomplete lineage sorting (ILS) and hybridization in shaping genomic diversity, offering deeper insights into complex evolutionary processes. In this study, we utilized deep genome sequencing data from 76 individuals of Lappula and its closely allied genera, collected from China and Central Asia. By employing the HybPiper and Easy353 pipelines, we recovered 262-279 single-copy nuclear genes (SCNs) and 352-353 Angiosperms353 genes, respectively. We analyzed multiple datasets, including complete chloroplast genomes and a filtered set of 475 SCNs, to conduct phylogenetic analyses using both concatenated and coalescent-based methods. Furthermore, we employed Quartet Sampling (QS), coalescent simulations, MSCquartets, HyDe, and reticulate network analyses to investigate the sources of phylogenetic discordance. Our results confirm that Lappula is polyphyletic, with L. mogoltavica clustering with Pseudolappula sinaica and forming a sister relationship with other taxa included in this study. Additionally, three Lepechiniella taxa nested within distinct clades of Lappula. Significant gene tree discordance was observed at several nodes within Lappula. Coalescent simulations and hybrid detection analyses suggest that both ILS and hybridization contribute to these discrepancies. Flow cytometry (FCM) analyses confirmed the presence of both diploid and tetraploid taxa within Lappula. Phylogenetic network analyses further revealed that Clades IV and VII likely originated through hybridization, with the tetraploids in Clade IV arising from two independent hybridization events. Additionally, the "ghost lineage" identified as sister to Lappula redowskii serves as one of the donors in allopolyploidization. In conclusion, our study provides new insights into the deep phylogenetic relationships of Asian Lappula and its closely allied genera, contributing to a more comprehensive understanding of the evolution and diversification of Lappula.
Collapse
Affiliation(s)
- Dan-Hui Liu
- State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; China-Tajikistan Belt and Road Joint Laboratory on Biodiversity Conservation and Sustainable Use, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Quan-Ru Liu
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Komiljon Sh Tojibaev
- Institute of Botany, Uzbekistan Academy of Sciences, Tashkent 100125, Uzbekistan
| | - Alexander P Sukhorukov
- Department of Higher Plants, Biological Faculty, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Hafiz Muhammad Wariss
- State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Department of Botany, University of Sargodha, Sargodha, 40100, Pakistan
| | - Yue Zhao
- State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Lei Yang
- State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Jun Li
- State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; China-Tajikistan Belt and Road Joint Laboratory on Biodiversity Conservation and Sustainable Use, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Rose JP, Li B, Sporck-Koehler MJ, Stacy EA, Wood KR, Lemmon EM, Lemmon AR, Ané C, Sytsma KJ, Givnish TJ. Phylogenomics of the tetraploid Hawaiian lobeliads: Implications for their origin, dispersal history, and adaptive radiation. Proc Natl Acad Sci U S A 2025; 122:e2421004122. [PMID: 40324077 DOI: 10.1073/pnas.2421004122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/26/2025] [Indexed: 05/07/2025] Open
Abstract
Hawaiian lobeliads exhibit extensive adaptive radiations and are considered the largest plant clade (143 species) endemic to any oceanic archipelago. Rapid insular radiations are prone to reticulate evolution, yet detecting hybridization is often limited by inadequate sampling of taxa or independent loci. We analyzed 633 nuclear loci (including tetraploid duplications) and whole plastomes for 89% of extant species to derive phylogenies for the Hawaiian lobeliads. Nuclear data provide strong support for nine major clades in both likelihood and ASTRAL analyses. All genera/sections are monophyletic except Clermontia and Cyanea. Nuclear and plastome phylogenies conflict on short, deep branches; the nuclear tree resolves a fleshy-fruited clade of Hawaiian Clermontia/Cyanea-Brighamia/Delissea, sister to Polynesian Sclerotheca, with both sister to a capsular-fruited Hawaiian clade. Incomplete lineage sorting in a rapid radiation starting 8.5-11.3 Ma is sufficient to explain uncertainty and cytonuclear discordance along the backbone. Sequence data support reticulation within Clermontia and especially Cyanea. Nuclear data identify 42 interisland dispersal events: 89% accord with the strict progression rule, involving movement to the next younger island in the hotspot chain, consistent with theory. Plastid data overestimate such events by 17%. Cyanea and Clermontia have undergone parallel adaptive radiations in elevational distribution and flower length on all major islands, with multiple founders and some interisland differences. Hawaiian lobeliad diversification was driven by an early intergeneric divergence in habitat, followed by parallel adaptive radiation and ecological speciation within Clermontia/Cyanea, combined with widespread single-island endemism, frequent interisland dispersal, and occasional hybridization.
Collapse
Affiliation(s)
- Jeffrey P Rose
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706
| | - Bing Li
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706
| | | | - Elizabeth A Stacy
- School of Life Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154
| | | | | | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, FL 32306
| | - Cécile Ané
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706
- Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706
| | - Kenneth J Sytsma
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706
| | - Thomas J Givnish
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
3
|
Wood KR, Lorence DH, Wagner WL, Appelhans MS. Melicopeiolensis (Rutaceae), a new tree species from Kaua'i, Hawaiian Islands. PHYTOKEYS 2024; 250:237-249. [PMID: 39781263 PMCID: PMC11707518 DOI: 10.3897/phytokeys.250.128963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/03/2024] [Indexed: 01/12/2025]
Abstract
A newly-discovered endemic tree species of Melicope from Kaua'i, Hawaiian Islands, is described and illustrated with notes on its distribution, ecology, conservation status and phylogenetic placement. A modification to the existing key to Hawaiian Melicope is also provided. Melicopeiolensis sp. nov. is a member of Stone's Megacarpa group having carpels connate at base, capsules 4-lobed and leaves usually opposite. The new species differs from its Hawaiian congeners by its unique combination of abaxially glabrate to pilose-pubescent leaves with petioles up to 70 mm long, ramiflorous and axillary inflorescences, sepals on staminate flowers 0.3-0.5 mm long, capsules with green and purple streaking, 10-14 mm wide and seeds 3-3.5 mm long. Since its discovery in 2021, 15 individuals have been documented within a single remote windward hanging valley below the Kawaikini Summit of Kaua'i. Melicopeiolensis represents a new Critically Endangered (CR) single island endemic species in need of conservation.
Collapse
Affiliation(s)
- Kenneth R. Wood
- National Tropical Botanical Garden, 3530 Papalina Road, Kalāheo, HI 96741, USANational Tropical Botanical GardenKalāheoUnited States of America
| | - David H. Lorence
- National Tropical Botanical Garden, 3530 Papalina Road, Kalāheo, HI 96741, USANational Tropical Botanical GardenKalāheoUnited States of America
| | - Warren L. Wagner
- National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC 20013-7012, USANational Museum of Natural History, Smithsonian InstitutionWashingtonUnited States of America
| | - Marc S. Appelhans
- National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC 20013-7012, USANational Museum of Natural History, Smithsonian InstitutionWashingtonUnited States of America
- Department of Systematic Botany, Albrecht-von-Haller Institute of Plant Sciences, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, GermanyUniversity of GöttingenGöttingenGermany
| |
Collapse
|
4
|
Islam S, Peart C, Kehlmaier C, Sun YH, Lei F, Dahl A, Klemroth S, Alexopoulou D, Del Mar Delgado M, Laiolo P, Carlos Illera J, Dirren S, Hille S, Lkhagvasuren D, Töpfer T, Kaiser M, Gebauer A, Martens J, Paetzold C, Päckert M. Museomics help resolving the phylogeny of snowfinches (Aves, Passeridae, Montifringilla and allies). Mol Phylogenet Evol 2024; 198:108135. [PMID: 38925425 DOI: 10.1016/j.ympev.2024.108135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 03/25/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Abstract
Historical specimens from museum collections provide a valuable source of material also from remote areas or regions of conflict that are not easily accessible to scientists today. With this study, we are providing a taxon-complete phylogeny of snowfinches using historical DNA from whole skins of an endemic species from Afghanistan, the Afghan snowfinch, Pyrgilauda theresae. To resolve the strong conflict between previous phylogenetic hypotheses, we generated novel mitogenome sequences for selected taxa and genome-wide SNP data using ddRAD sequencing for all extant snowfinch species endemic to the Qinghai-Tibet Plateau (QTP) and for an extended intraspecific sampling of the sole Central and Western Palearctic snowfinch species (Montifringilla nivalis). Our phylogenetic reconstructions unanimously refuted the previously suggested paraphyly of genus Pyrgilauda. Misplacement of one species-level taxon (Onychostruthus tazcanowskii) in previous snowfinch phylogenies was undoubtedly inferred from chimeric mitogenomes that included heterospecific sequence information. Furthermore, comparison of novel and previously generated sequence data showed that the presumed sister-group relationship between M. nivalis and the QTP endemic M. henrici was suggested based on flawed taxonomy. Our phylogenetic reconstructions based on genome-wide SNP data and on mitogenomes were largely congruent and supported reciprocal monophyly of genera Montifringilla and Pyrgilauda with monotypic Onychostruthus being sister to the latter. The Afghan endemic P. theresae likely originated from a rather ancient Pliocene out-of-Tibet dispersal probably from a common ancestor with P. ruficollis. Our extended trans-Palearctic sampling for the white-winged snowfinch, M. nivalis, confirmed strong lineage divergence between an Asian and a European clade dated to 1.5 - 2.7 million years ago (mya). Genome-wide SNP data suggested subtle divergence among European samples from the Alps and from the Cantabrian mountains.
Collapse
Affiliation(s)
- Safiqul Islam
- Senckenberg Natural History Collections, Museum of Zoology, Königsbrücker Landstraße 159, 01109 Dresden, Germany; Max Planck-Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Köln, Germany; Division of Systematic Zoology, Faculty of Biology, LMU Munich, Biocenter, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Claire Peart
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Biocenter, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Christian Kehlmaier
- Senckenberg Natural History Collections, Museum of Zoology, Königsbrücker Landstraße 159, 01109 Dresden, Germany
| | - Yue-Hua Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Andreas Dahl
- Dresden-Concept Genome Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 1307 Dresden, Germany
| | - Sylvia Klemroth
- Dresden-Concept Genome Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 1307 Dresden, Germany
| | - Dimitra Alexopoulou
- Dresden-Concept Genome Center, c/o Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Fetscherstraße 105, 1307 Dresden, Germany
| | - Maria Del Mar Delgado
- Biodiversity Research Institute (IMIB, Universidad de Oviedo, CSIC, Principality of Asturias) - Campus de Mieres, Edificio de Investigación - 5ª planta, C. Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Spain
| | - Paola Laiolo
- Biodiversity Research Institute (IMIB, Universidad de Oviedo, CSIC, Principality of Asturias) - Campus de Mieres, Edificio de Investigación - 5ª planta, C. Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Spain
| | - Juan Carlos Illera
- Biodiversity Research Institute (IMIB, Universidad de Oviedo, CSIC, Principality of Asturias) - Campus de Mieres, Edificio de Investigación - 5ª planta, C. Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Spain
| | | | - Sabine Hille
- University of Natural Resources and Life Sciences, Vienna, Gregor Mendel-Strasse 33, 1180 Vienna, Austria
| | - Davaa Lkhagvasuren
- Department of Biology, School of Arts and Sciences, National University of Mongolia, P.O.Box 46A-546, Ulaanbaatar 210646, Mongolia
| | - Till Töpfer
- Leibniz Institute for the Analysis of Biodiversity Change, Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee, Bonn, Germany
| | | | | | - Jochen Martens
- Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg University, 55099 Mainz, Germany
| | - Claudia Paetzold
- Senckenberg Natural History Collections, Museum of Zoology, Königsbrücker Landstraße 159, 01109 Dresden, Germany
| | - Martin Päckert
- Senckenberg Natural History Collections, Museum of Zoology, Königsbrücker Landstraße 159, 01109 Dresden, Germany.
| |
Collapse
|
5
|
Wang X, Liao S, Zhang Z, Zhang J, Mei L, Li H. Hybridization, polyploidization, and morphological convergence make dozens of taxa into one chaotic genetic pool: a phylogenomic case of the Ficus erecta species complex (Moraceae). FRONTIERS IN PLANT SCIENCE 2024; 15:1354812. [PMID: 38595762 PMCID: PMC11002808 DOI: 10.3389/fpls.2024.1354812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/08/2024] [Indexed: 04/11/2024]
Abstract
The Ficus erecta complex, characterized by its morphological diversity and frequent interspecific overlap, shares pollinating fig wasps among several species. This attribute, coupled with its intricate phylogenetic relationships, establishes it as an exemplary model for studying speciation and evolutionary patterns. Extensive researches involving RADseq (Restriction-site associated DNA sequencing), complete chloroplast genome data, and flow cytometry methods were conducted, focusing on phylogenomic analysis, genetic structure, and ploidy detection within the complex. Significantly, the findings exposed a pronounced nuclear-cytoplasmic conflict. This evidence, together with genetic structure analysis, confirmed that hybridization within the complex is a frequent occurrence. The ploidy detection revealed widespread polyploidy, with certain species exhibiting multiple ploidy levels, including 2×, 3×, and 4×. Of particular note, only five species (F. abelii, F. erecta, F. formosana, F. tannoensis and F. vaccinioides) in the complex were proved to be monophyletic. Species such as F. gasparriniana, F. pandurata, and F. stenophylla were found to encompass multiple phylogenetically distinct lineages. This discovery, along with morphological comparisons, suggests a significant underestimation of species diversity within the complex. This study also identified F. tannoensis as an allopolyploid species originating from F. vaccinioide and F. erecta. Considering the integration of morphological, molecular systematics, and cytological evidences, it is proposed that the scope of the F. erecta complex should be expanded to the entire subsect. Frutescentiae. This would redefine the complex as a continuously evolving group comprising at least 33 taxa, characterized by blurred species boundaries, frequent hybridization and polyploidization, and ambiguous genetic differentiation.
Collapse
Affiliation(s)
- Xiaomei Wang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Shuai Liao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
| | - Zhen Zhang
- College of Architecture and Urban Planning, Tongji University, Shanghai, China
| | - Jianhang Zhang
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, China
| | - Li Mei
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Hongqing Li
- School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
6
|
Meesakul P, Shea T, Fenstemacher R, Wong SX, Kuroki Y, Wada A, Cao S. Phytochemistry and Biological Studies of Endemic Hawaiian Plants. Int J Mol Sci 2023; 24:16323. [PMID: 38003513 PMCID: PMC10670932 DOI: 10.3390/ijms242216323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
The Hawaiian Islands are renowned for their exceptional biodiversity and are host to a plethora of endemic plant species, which have been utilized in traditional Hawaiian medicine. This scientific review provides an in-depth analysis of the phytochemistry and biological studies of selected endemic Hawaiian plants, highlighting their medicinal properties and therapeutic potential. A literature search was conducted, utilizing major academic databases such as SciFinder, Scopus, Web of Science, PubMed, Google Scholar, Science Direct, and the Scientific Information Database. The primary objective of this search was to identify relevant scholarly articles pertaining to the topic of the review, which focused on the phytochemistry and biological studies of endemic Hawaiian plants. Utilizing these databases, a comprehensive range of literature was obtained, facilitating a comprehensive examination of the subject matter. This review emphasizes the rich phytochemical diversity and biological activities found in Endemic Hawaiian plants, showcasing their potential as sources of novel therapeutic agents. Given the unique biodiversity of Hawaii and the cultural significance of these plants, continued scientific exploration, conservation, and sustainable utilization of these valuable resources is necessary to unlock the full potential of these plant species in drug discovery and natural product-based therapeutics.
Collapse
Affiliation(s)
- Pornphimon Meesakul
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, 200 W. Kawili St., Hilo, HI 96720, USA
| | - Tyler Shea
- Chemistry Department, University of Hawai'i at Hilo, 200 W. Kawili St., Hilo, HI 96720, USA
| | - Roland Fenstemacher
- Chemistry Laboratory, Board of Water Supply, City and County of Honolulu, 630 South Beretania Street, Honolulu, HI 96843, USA
| | - Shi Xuan Wong
- Delightex Pte. Ltd., 230 Victoria Street, #15-01/08 Bugis Junction Towers, Singapore 188024, Singapore
| | - Yutaka Kuroki
- Delightex Pte. Ltd., 230 Victoria Street, #15-01/08 Bugis Junction Towers, Singapore 188024, Singapore
| | - Aya Wada
- Delightex Pte. Ltd., 230 Victoria Street, #15-01/08 Bugis Junction Towers, Singapore 188024, Singapore
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, 200 W. Kawili St., Hilo, HI 96720, USA
| |
Collapse
|
7
|
De Luca D, Del Guacchio E, Cennamo P, Paino L, Caputo P. Genotyping-by-sequencing provides new genetic and taxonomic insights in the critical group of Centaurea tenorei. FRONTIERS IN PLANT SCIENCE 2023; 14:1130889. [PMID: 37260938 PMCID: PMC10228698 DOI: 10.3389/fpls.2023.1130889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/18/2023] [Indexed: 06/02/2023]
Abstract
Centaurea L. is one of the most widespread, differentiated, and critical genera of Asteraceae in the Euro-Mediterranean area, with more than 100 currently recognized species inhabiting the region. The controversial C. tenorei group, narrowly endemic to the Peninsula of Sorrento (Campania region, southern Italy), includes three weakly differentiated microspecies: C. tenorei Guss. ex Lacaita, C. montaltensis (Fiori) Peruzzi and C. lacaitae Peruzzi. However, their taxonomic distinctiveness and relationships with close or sympatric species are still unclear. In particular, the existence in several localities of individuals with intermediate morphology suggests inadequate taxonomic assessment within the group or hybridization and introgression with other species. In this study we aimed at defining population structure in this complex. With this objective, we sampled the three currently accepted species from their loci classici (i.e., the localities in which the taxa were originally described) and from other localities throughout the range, including populations of difficult identification occurring where the ranges of different taxa overlap. We employed a panel of SNPs obtained via genotyping-by-sequencing for investigations on genetic structure, admixture and ploidy inference, the latter also compared with chromosome counts. Our results showed that Centaurea tenorei s.l. is consistently tetraploid, contradicting the current taxonomy that was also based on ploidy level. Population structure analyses indicated the presence of four to seven clusters, most of which with clear evidence of admixture. Furthermore, contrarily to what previously supposed, we demonstrated a remarkable contribution of C. deusta, more that of C. cineraria in the genetic make-up of C. tenorei. However, we found a population of C. cineraria outside its ecological range, probably driven by climate change, which could be responsible in the future of further hybridization phenomena.
Collapse
Affiliation(s)
- Daniele De Luca
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Emanuele Del Guacchio
- Department of Biology, University of Naples Federico II, Naples, Italy
- Botanical Garden of Naples, University of Naples Federico II, Naples, Italy
| | - Paola Cennamo
- Department of Humanities, University Suor Orsola Benincasa, Naples, Italy
| | - Luca Paino
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Paolo Caputo
- Department of Biology, University of Naples Federico II, Naples, Italy
- Botanical Garden of Naples, University of Naples Federico II, Naples, Italy
| |
Collapse
|
8
|
Jose MS, Doorenweerd C, Rubinoff D. Genomics reveals widespread hybridization across insects with ramifications for species boundaries and invasive species. CURRENT OPINION IN INSECT SCIENCE 2023:101052. [PMID: 37150509 DOI: 10.1016/j.cois.2023.101052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
As the amount of genomic data for non-model taxa grows, it is increasingly clear that gene flow across species barriers in insects is much more common than previously thought. In recent years, the decreased cost and increased accuracy of long-read sequencing has enabled the assembly of high-quality, reference genomes and chromosome maps for non-model insects. With this long-read data we can now not only compare variation across the genome among homologous genes between species, which has been the basis of phylogenetics for more than thirty years, but also tease apart evidence of ancient and recent hybridization and gene flow. The implications of hybridization for species adaptation may be more positive than previously considered, explaining its prevalence across many groups of insects. Unfortunately, due to anthropogenic actions, some pest species appear to be benefitting from hybridization and gene flow, facilitating future invasions.
Collapse
Affiliation(s)
- Michael San Jose
- University of Hawai'i at Mānoa, Plant and Environmental Protection Sciences, Entomology Section.
| | - Camiel Doorenweerd
- University of Hawai'i at Mānoa, Plant and Environmental Protection Sciences, Entomology Section.
| | - Daniel Rubinoff
- University of Hawai'i at Mānoa, Plant and Environmental Protection Sciences, Entomology Section.
| |
Collapse
|
9
|
Geometric Morphometric Versus Genomic Patterns in a Large Polyploid Plant Species Complex. BIOLOGY 2023; 12:biology12030418. [PMID: 36979110 PMCID: PMC10045763 DOI: 10.3390/biology12030418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Plant species complexes represent a particularly interesting example of taxonomically complex groups (TCGs), linking hybridization, apomixis, and polyploidy with complex morphological patterns. In such TCGs, mosaic-like character combinations and conflicts of morphological data with molecular phylogenies present a major problem for species classification. Here, we used the large polyploid apomictic European Ranunculus auricomus complex to study relationships among five diploid sexual progenitor species and 75 polyploid apomictic derivate taxa, based on geometric morphometrics using 11,690 landmarked objects (basal and stem leaves, receptacles), genomic data (97,312 RAD-Seq loci, 48 phased target enrichment genes, 71 plastid regions) from 220 populations. We showed that (1) observed genomic clusters correspond to morphological groupings based on basal leaves and concatenated traits, and morphological groups were best resolved with RAD-Seq data; (2) described apomictic taxa usually overlap within trait morphospace except for those taxa at the space edges; (3) apomictic phenotypes are highly influenced by parental subgenome composition and to a lesser extent by climatic factors; and (4) allopolyploid apomictic taxa, compared to their sexual progenitor, resemble a mosaic of ecological and morphological intermediate to transgressive biotypes. The joint evaluation of phylogenomic, phenotypic, reproductive, and ecological data supports a revision of purely descriptive, subjective traditional morphological classifications.
Collapse
|
10
|
Otero A, Barcenas-Peña A, Lumbsch HT, Grewe F. Reference-Based RADseq Unravels the Evolutionary History of Polar Species in 'the Crux Lichenologorum' Genus Usnea (Parmeliaceae, Ascomycota). J Fungi (Basel) 2023; 9:99. [PMID: 36675920 PMCID: PMC9865703 DOI: 10.3390/jof9010099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/03/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Nearly 90% of fungal diversity, one of the most speciose branches in the tree of life, remains undescribed. Lichenized fungi as symbiotic associations are still a challenge for species delimitation, and current species diversity is vastly underestimated. The ongoing democratization of Next-Generation Sequencing is turning the tables. Particularly, reference-based RADseq allows for metagenomic filtering of the symbiont sequence and yields robust phylogenomic trees of closely related species. We implemented reference-based RADseq to disentangle the evolution of neuropogonoid lichens, which inhabit harsh environments and belong to Usnea (Parmeliaceae, Ascomycota), one of the most taxonomically intriguing genera within lichenized fungi. Full taxon coverage of neuropogonoid lichens was sampled for the first time, coupled with phenotype characterizations. More than 20,000 loci of 126 specimens were analyzed through concatenated and coalescent-based methods, including time calibrations. Our analysis addressed the major taxonomic discussions over recent decades. Subsequently, two species are newly described, namely U. aymondiana and U. fibriloides, and three species names are resurrected. The late Miocene and Pliocene-Pleistocene boundary is inferred as the timeframe for neuropogonoid lichen diversification. Ultimately, this study helped fill the gap of fungal diversity by setting a solid backbone phylogeny which raises new questions about which factors may trigger complex evolutionary scenarios.
Collapse
Affiliation(s)
- Ana Otero
- The Grainger Bioinformatics Center & Negaunee Integrative Research Center, Science & Education, The Field Museum, Chicago, IL 60605, USA
| | | | | | | |
Collapse
|
11
|
Secci-Petretto G, Englmaier GK, Weiss SJ, Antonov A, Persat H, Denys GPJ, Schenekar T, Romanov VI, Taylor EB, Froufe E. Evaluating a species phylogeny using ddRAD SNPs: Cyto-nuclear discordance and introgression in the salmonid genus Thymallus (Salmonidae). Mol Phylogenet Evol 2023; 178:107654. [PMID: 36336233 DOI: 10.1016/j.ympev.2022.107654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/05/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Hybridization and introgression are very common among freshwater fishes due to the dynamic nature of hydrological landscapes. Cyclic patterns of allopatry and secondary contact provide numerous opportunities for interspecific gene flow, which can lead to discordant paths of evolution for mitochondrial and nuclear genomes. Here, we used double digest restriction-site associated DNA sequencing (ddRADseq) to obtain a genome-wide single nucleotide polymorphism (SNP) dataset comprehensive for allThymallus (Salmonidae)species to infer phylogenetic relationships and evaluate potential recent and historical gene flow among species. The newly obtained nuclear phylogeny was largely concordant with a previously published mitogenome-based topology but revealed a few cyto-nuclear discordances. These incongruencies primarily involved the placement of internal nodes rather than the resolution of species, except for one European species where anthropogenic stock transfers are thought to be responsible for the observed pattern. The analysis of four contact zones where multiple species are found revealed a few cases of mitochondrial capture and limited signals of nuclear introgression. Interestingly, the mechanisms restricting interspecific gene flow might be distinct; while in zones of secondary contact, small-scale physical habitat separation appeared as a limiting factor, biologically based reinforcement mechanisms are presumed to be operative in areas where species presumably evolved in sympatry. Signals of historical introgression were largely congruent with the routes of species dispersal previously inferred from mitogenome data. Overall, the ddRADseq dataset provided a robust phylogenetic reconstruction of the genus Thymallus including new insights into historical hybridization and introgression, opening up new questions concerning their evolutionary history.
Collapse
Affiliation(s)
- Giulia Secci-Petretto
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; Department of Biology, Faculty of Sciences, U. Porto - University of Porto, Portugal
| | - Gernot K Englmaier
- University of Graz, Institute of Biology, Universitätsplatz 2, 8010 Graz, Austria
| | - Steven J Weiss
- University of Graz, Institute of Biology, Universitätsplatz 2, 8010 Graz, Austria.
| | - Alexander Antonov
- Institute of Water and Ecological Problems, Far East Branch, Russian Academy of Sciences, ul. Kim Yu Chena 65, Khabarovsk, 680063 Russia
| | - Henri Persat
- Société Française d'Ichthyologie, Muséum National d'Histoire Naturelle Paris, France, 57 rue Cuvier CP26, 75005 Paris, France
| | - Gael P J Denys
- Unité Patrimoine Naturel - Centre d'expertise et de données (2006 OFB - CNRS - MNHN), Muséum national d'Histoire naturelle, 36 rue Geoffroy Saint-Hilaire CP 41, 75005 Paris, France; Biologie des organismes et écosystèmes aquatiques (BOREA 8067), MNHN, CNRS, IRD, SU, UCN, UA, 57 rue Cuvier CP26, 75005 Paris, France
| | - Tamara Schenekar
- University of Graz, Institute of Biology, Universitätsplatz 2, 8010 Graz, Austria
| | | | - Eric B Taylor
- Department of Zoology, Biodiversity Research Centre and Beaty Biodiversity Museum, University of British Columbia, 6270 University Blvd, Vancouver, BC V6T 1Z, Canada
| | - Elsa Froufe
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
12
|
Palombo NE, Carrizo García C. Geographical Patterns of Genetic Variation in Locoto Chile ( Capsicum pubescens) in the Americas Inferred by Genome-Wide Data Analysis. PLANTS (BASEL, SWITZERLAND) 2022; 11:2911. [PMID: 36365364 PMCID: PMC9656212 DOI: 10.3390/plants11212911] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
The locoto chile (Capsicum pubescens) is a regionally important food crop grown and marketed throughout the mid-highlands of South andCentral America, but little is known about its evolution and the diversity it harbours. An initial scan of genetic diversity and structure across its cultivation range was conducted, the first one using a genomic approach. The RAD-sequencing methodology was applied to a sampling of C. pubescens germplasm consisting of 67 accessions from different American countries, covering its range of distribution/cultivation on the continent. The RAD-seq SNP data obtained clustered the accessions into three major groups, with a high degree of admixture/reticulation among them. Moderate but significant differentiation and geographic structuration were found, depicting a south-north pattern in the distribution of genetic variation. The highest levels of diversity were found among central-western Bolivian individuals, while the lowest was found across Central America-Mexican germplasm. This study provides new genome-wide supported insights into the diversity and differentiation of C. pubescens, as well as a starting point for more efficient use of its genetic variation and germplasm conservation efforts. The findings also contribute to understanding the evolutionary history of C. pubescens, but further investigation is needed to disentangle its origin and diversification under domestication.
Collapse
Affiliation(s)
- Nahuel E. Palombo
- Instituto Multidisciplinario de Biología Vegetal, Universidad Nacional de Córdoba, CONICET, Córdoba 5000, Argentina
| | - Carolina Carrizo García
- Instituto Multidisciplinario de Biología Vegetal, Universidad Nacional de Córdoba, CONICET, Córdoba 5000, Argentina
- Department of Botany and Biodiversity Research, University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
13
|
Laczkó L, Jordán S, Sramkó G. The
RadOrgMiner
pipeline: Automated genotyping of organellar loci from
RADseq
data. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Levente Laczkó
- MTA‐DE “Lendület” Evolutionary Phylogenomics Research Group, Egyetem tér 1 H‐4032 Debrecen Hungary
- Department of Botany University of Debrecen Egyetem tér 1, Debrecen, H‐4032 Hungary
- ELKH‐ DE Conservation Biology Research Group, Egyetem tér 1, Debrecen, H‐4032 Hungary
- Department of Metagenomics University of Debrecen Nagyerdei körút 98., Debrecen, H‐4032 Hungary
| | - Sándor Jordán
- Department of Botany University of Debrecen Egyetem tér 1, Debrecen, H‐4032 Hungary
- Juhász‐Nagy Pál Doctoral School University of Debrecen Egyetem tér 1, Debrecen, H‐4032 Hungary
| | - Gábor Sramkó
- MTA‐DE “Lendület” Evolutionary Phylogenomics Research Group, Egyetem tér 1 H‐4032 Debrecen Hungary
- Department of Botany University of Debrecen Egyetem tér 1, Debrecen, H‐4032 Hungary
- ELKH‐ DE Conservation Biology Research Group, Egyetem tér 1, Debrecen, H‐4032 Hungary
| |
Collapse
|
14
|
Dong Y, Wei X, Qiang T, Liu J, Che P, Qi Y, Zhang B, Liu H. RAD-Seq and Ecological Niche Reveal Genetic Diversity, Phylogeny, and Geographic Distribution of Kadsura interior and Its Closely Related Species. FRONTIERS IN PLANT SCIENCE 2022; 13:857016. [PMID: 35557741 PMCID: PMC9087809 DOI: 10.3389/fpls.2022.857016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
Most plants of Kadsura have economic value and medicinal application. Among them, K. interior and its closely related species have been demonstrated to have definite efficacy. However, the taxonomy and phylogenetic relationship of Kadsura in terms of morphology and commonly used gene regions remain controversial, which adversely affects its rational application. In this study, a total of 107 individuals of K. interior, K. heteroclita, K. longipedunculata, K. oblongifolia, and K. coccinea were studied from the perspectives of genetic diversity, phylogeny, and ecology via single nucleotide polymorphisms (SNPs) developed through restriction site-associated DNA sequencing (RAD-seq). Based on these SNPs, the genetic diversity, phylogenetic reconstruction, and population genetic structure were analyzed. Subsequently, divergence time estimation and differentiation scenario simulation were performed. Meanwhile, according to the species distribution records and bioclimatic variables, the Last Glacial Maximum and current potential distributions of five species were constructed, and the main ecological factors affecting the distribution of different species were extracted. The F ST calculated showed that there was a moderate degree of differentiation among K. heteroclita, K. longipedunculata, and K. oblongifolia, and there was a high degree of genetic differentiation between K. interior and the above species. The phylogenetic tree indicated that each of the species was monophyletic. The results of population genetic structure and divergence scenario simulation and D-statistics showed that there were admixture and gene flow among K. heteroclita, K. longipedunculata, and K. oblongifolia. The results of ecological niche modeling indicated that the distribution areas and the bioclimatic variables affecting the distribution of K. interior and its related species were different. This study explored the differences in the genetic divergence and geographical distribution patterns of K. interior and its related species, clarifying the uniqueness of K. interior compared to its relatives and providing a reference for their rational application in the future.
Collapse
Affiliation(s)
- Yuqing Dong
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xueping Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Tingyan Qiang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jiushi Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Peng Che
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yaodong Qi
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Bengang Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Haitao Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Vernygora OV, Campbell EO, Grishin NV, Sperling FA, Dupuis JR. Gauging ages of tiger swallowtail butterflies using alternate SNP analyses. Mol Phylogenet Evol 2022; 171:107465. [DOI: 10.1016/j.ympev.2022.107465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/26/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
|
16
|
de Lima Ferreira P, Batista R, Andermann T, Groppo M, Bacon CD, Antonelli A. Target sequence capture of Barnadesioideae (Compositae) demonstrates the utility of low coverage loci in phylogenomic analyses. Mol Phylogenet Evol 2022; 169:107432. [DOI: 10.1016/j.ympev.2022.107432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/21/2021] [Accepted: 01/14/2022] [Indexed: 11/26/2022]
|
17
|
Larson DA, Vargas OM, Vicentini A, Dick CW. Admixture may be extensive among hyperdominant Amazon rainforest tree species. THE NEW PHYTOLOGIST 2021; 232:2520-2534. [PMID: 34389989 PMCID: PMC9292926 DOI: 10.1111/nph.17675] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/04/2021] [Indexed: 05/25/2023]
Abstract
Admixture is a mechanism by which species of long-lived plants may acquire novel alleles. However, the potential role of admixture in the origin and maintenance of tropical plant diversity is unclear. We ask whether admixture occurs in an ecologically important clade of Eschweilera (Parvifolia clade, Lecythidaceae), which includes some of the most widespread and abundant tree species in Amazonian forests. Using target capture sequencing, we conducted a detailed phylogenomic investigation of 33 species in the Parvifolia clade and investigated specific hypotheses of admixture within a robust phylogenetic framework. We found strong evidence of admixture among three ecologically dominant species, E. coriacea, E. wachenheimii and E. parviflora, but a lack of evidence for admixture among other lineages. Accepted species were largely distinguishable from one another, as was geographic structure within species. We show that hybridization may play a role in the evolution of the most widespread and ecologically variable Amazonian tree species. While admixture occurs among some species of Eschweilera, it has not led to widespread erosion of most species' genetic or morphological identities. Therefore, current morphological based species circumscriptions appear to provide a useful characterization of the clade's lineage diversity.
Collapse
Affiliation(s)
- Drew A. Larson
- Department of Ecology & Evolutionary BiologyUniversity of MichiganAnn ArborMI48109USA
| | - Oscar M. Vargas
- Department of Biological SciencesHumboldt State UniversityArcataCA95521USA
| | - Alberto Vicentini
- Instituto Nacional de Pesquisas da Amazônia (INPA)ManausAMCEP 69067‐375Brazil
| | - Christopher W. Dick
- Department of Ecology & Evolutionary BiologyUniversity of MichiganAnn ArborMI48109USA
- Smithsonian Tropical Research InstitutePanama CityRepublic of Panama
| |
Collapse
|
18
|
How challenging RADseq data turned out to favor coalescent-based species tree inference. A case study in Aichryson (Crassulaceae). Mol Phylogenet Evol 2021; 167:107342. [PMID: 34785384 DOI: 10.1016/j.ympev.2021.107342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/05/2021] [Accepted: 10/29/2021] [Indexed: 12/24/2022]
Abstract
Analysing multiple genomic regions while incorporating detection and qualification of discordance among regions has become standard for understanding phylogenetic relationships. In plants, which usually have comparatively large genomes, this is feasible by the combination of reduced-representation library (RRL) methods and high-throughput sequencing enabling the cost effective acquisition of genomic data for thousands of loci from hundreds of samples. One popular RRL method is RADseq. A major disadvantage of established RADseq approaches is the rather short fragment and sequencing range, leading to loci of little individual phylogenetic information. This issue hampers the application of coalescent-based species tree inference. The modified RADseq protocol presented here targets ca. 5,000 loci of 300-600nt length, sequenced with the latest short-read-sequencing (SRS) technology, has the potential to overcome this drawback. To illustrate the advantages of this approach we use the study group Aichryson Webb & Berthelott (Crassulaceae), a plant genus that diversified on the Canary Islands. The data analysis approach used here aims at a careful quality control of the long loci dataset. It involves an informed selection of thresholds for accurate clustering, a thorough exploration of locus properties, such as locus length, coverage and variability, to identify potential biased data and a comparative phylogenetic inference of filtered datasets, accompanied by an evaluation of resulting BS support, gene and site concordance factor values, to improve overall resolution of the resulting phylogenetic trees. The final dataset contains variable loci with an average length of 373nt and facilitates species tree estimation using a coalescent-based summary approach. Additional improvements brought by the approach are critically discussed.
Collapse
|
19
|
Uckele KA, Jahner JP, Tepe EJ, Richards LA, Dyer LA, Ochsenrider KM, Philbin CS, Kato MJ, Yamaguchi LF, Forister ML, Smilanich AM, Dodson CD, Jeffrey CS, Parchman TL. Phytochemistry reflects different evolutionary history in traditional classes versus specialized structural motifs. Sci Rep 2021; 11:17247. [PMID: 34446754 PMCID: PMC8390663 DOI: 10.1038/s41598-021-96431-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Foundational hypotheses addressing plant-insect codiversification and plant defense theory typically assume a macroevolutionary pattern whereby closely related plants have similar chemical profiles. However, numerous studies have documented variation in the degree of phytochemical trait lability, raising the possibility that phytochemical evolution is more nuanced than initially assumed. We utilize proton nuclear magnetic resonance (1H NMR) data, chemical classification, and double digest restriction-site associated DNA sequencing (ddRADseq) to resolve evolutionary relationships and characterize the evolution of secondary chemistry in the Neotropical plant clade Radula (Piper; Piperaceae). Sequencing data substantially improved phylogenetic resolution relative to past studies, and spectroscopic characterization revealed the presence of 35 metabolite classes. Metabolite classes displayed phylogenetic signal, whereas the crude 1H NMR spectra featured little evidence of phylogenetic signal in multivariate tests of chemical resonances. Evolutionary correlations were detected in two pairs of compound classes (flavonoids with chalcones; p-alkenyl phenols with kavalactones), where the gain or loss of a class was dependent on the other's state. Overall, the evolution of secondary chemistry in Radula is characterized by strong phylogenetic signal of traditional compound classes and weak phylogenetic signal of specialized chemical motifs, consistent with both classic evolutionary hypotheses and recent examinations of phytochemical evolution in young lineages.
Collapse
Affiliation(s)
- Kathryn A Uckele
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, 89557, USA
- Department of Biology, University of Nevada, Reno, NV, 89557, USA
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, NV, 89557, USA
| | - Joshua P Jahner
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, 89557, USA.
- Department of Biology, University of Nevada, Reno, NV, 89557, USA.
| | - Eric J Tepe
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Lora A Richards
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, 89557, USA
- Department of Biology, University of Nevada, Reno, NV, 89557, USA
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, NV, 89557, USA
| | - Lee A Dyer
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, 89557, USA
- Department of Biology, University of Nevada, Reno, NV, 89557, USA
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, NV, 89557, USA
- Sección Invertebrados, Museo Ecuatoriano de Ciencias Naturales, Quito, Ecuador
| | | | - Casey S Philbin
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, NV, 89557, USA
| | - Massuo J Kato
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Lydia F Yamaguchi
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Matthew L Forister
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, 89557, USA
- Department of Biology, University of Nevada, Reno, NV, 89557, USA
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, NV, 89557, USA
| | - Angela M Smilanich
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, 89557, USA
- Department of Biology, University of Nevada, Reno, NV, 89557, USA
| | - Craig D Dodson
- Department of Chemistry, University of Nevada, Reno, NV, 89557, USA
| | - Christopher S Jeffrey
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, 89557, USA
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, NV, 89557, USA
- Department of Chemistry, University of Nevada, Reno, NV, 89557, USA
| | - Thomas L Parchman
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, 89557, USA
- Department of Biology, University of Nevada, Reno, NV, 89557, USA
| |
Collapse
|
20
|
Sharples MT, Bentz PC, Manzitto-Tripp EA. Evolution of apetaly in the cosmopolitan genus Stellaria. AMERICAN JOURNAL OF BOTANY 2021; 108:869-882. [PMID: 33982285 DOI: 10.1002/ajb2.1650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/29/2020] [Indexed: 05/22/2023]
Abstract
PREMISE Apetaly is widespread across distantly related lineages of flowering plants and is associated with abiotic (or self-) pollination. It is particularly prevalent in the carnation family, and the cosmopolitan genus Stellaria contains many lineages that are hypothesized to have lost petals from showy petalous ancestors. But the pollination biology of apetalous species of Stellaria remains unclear. METHODS Using a substantial species-level sampling (~92% of known taxonomic diversity), we describe the pattern of petal evolution within Stellaria using ancestral character state reconstructions. To help shed light on the reproductive biology of apetalous Stellaria, we conducted a field experiment at an alpine tundra site in the southern Rocky Mountains to test whether an apetalous species (S. irrigua) exhibits higher levels of selfing than a sympatric, showy petalous congener (S. longipes). RESULTS Analyses indicated that the ancestor of Stellaria was likely showy petalous and that repeated, parallel reductions of petals occurred in clades across much of the world, with uncommon reversal back to showy petals. Field experiments supported high rates of selfing in the apetalous species and high rates of outcrossing in the petalous species. CONCLUSIONS Petal loss is rampant across major clades of Stellaria and is potentially linked with self-pollination worldwide. Self-pollination occurs within the buds in S. irrigua, and high propensities for this and other forms of selfing known in many other taxa of arctic-alpine habitats may reflect erratic availability of pollinators.
Collapse
Affiliation(s)
- Mathew T Sharples
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309, USA
| | - Philip C Bentz
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309, USA
- Department of Plant Biology, University of Georgia, Athens, Georgia, 30602, USA
| | - Erin A Manzitto-Tripp
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309, USA
- Museum of Natural History, COLO Herbarium, University of Colorado, Boulder, Colorado, 80309, USA
| |
Collapse
|
21
|
Le KT, Bandolik JJ, Kassack MU, Wood KR, Paetzold C, Appelhans MS, Passreiter CM. New Acetophenones and Chromenes from the Leaves of Melicope barbigera A. Gray. Molecules 2021; 26:molecules26030688. [PMID: 33525713 PMCID: PMC7865373 DOI: 10.3390/molecules26030688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 11/16/2022] Open
Abstract
The dichloromethane extract from leaves of Melicope barbigera (Rutaceae), endemic to the Hawaiian island of Kaua'i, yielded four new and three previously known acetophenones and 2H-chromenes, all found for the first time in M. barbigera. The structures of the new compounds obtained from the dichloromethane extract after purification by chromatographic methods were unambiguously elucidated by spectroscopic analyses including 1D/2D NMR spectroscopy and HRESIMS. The absolute configuration was determined by modified Mosher's method. Compounds 2, 4 and the mixture of 6 and 7 exhibited moderate cytotoxic activities against the human ovarian cancer cell line A2780 with IC50 values of 30.0 and 75.7 µM for 2 and 4, respectively, in a nuclear shrinkage cytotoxicity assay.
Collapse
Affiliation(s)
- Kim-Thao Le
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Jan J. Bandolik
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany; (J.J.B.); (M.U.K.)
| | - Matthias U. Kassack
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany; (J.J.B.); (M.U.K.)
| | - Kenneth R. Wood
- National Tropical Botanical Garden, 3530 Papalina Road, Kalaheo, HI 96741, USA;
| | - Claudia Paetzold
- Institute of Systematics, Biodiversity and Evolution of Plants, Georg-August-University Goettingen, 37073 Goettingen, Germany; (C.P.); (M.S.A.)
- Division Botany and Molecular Evolution, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Marc S. Appelhans
- Institute of Systematics, Biodiversity and Evolution of Plants, Georg-August-University Goettingen, 37073 Goettingen, Germany; (C.P.); (M.S.A.)
| | - Claus M. Passreiter
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany;
- Correspondence: ; Tel.: +49-211-81-14472
| |
Collapse
|
22
|
Karbstein K, Rahmsdorf E, Tomasello S, Hodač L, Hörandl E. Breeding system of diploid sexuals within the Ranunculus auricomus complex and its role in a geographical parthenogenesis scenario. Ecol Evol 2020; 10:14435-14450. [PMID: 33391726 PMCID: PMC7771175 DOI: 10.1002/ece3.7073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/26/2022] Open
Abstract
The larger distribution area of asexuals compared with their sexual relatives in geographical parthenogenesis (GP) scenarios has been widely attributed to the advantages of uniparental reproduction and polyploidy. However, potential disadvantages of sexuals due to their breeding system have received little attention so far. Here, we study the breeding system of five narrowly distributed sexual lineages of Ranunculus notabilis s.l. (R. auricomus complex) and its effects on outcrossing, inbreeding, female fitness, and heterozygosity. We performed selfing and intra- and interlineage crossings by bagging 481 flowers (59 garden individuals) followed by germination experiments. We compared seed set and germination rates, and related them to genetic distance and genome-wide heterozygosity (thousands of RADseq loci). Selfings (2.5%) unveiled a significantly lower seed set compared with intra- (69.0%) and interlineage crossings (69.5%). Seed set of intra- (65%) compared to interpopulation crossings (78%) was significantly lower. In contrast, all treatments showed comparable germination rates (32%-43%). Generalized linear regressions between seed set and genetic distance revealed positive relationships in general and between lineages, and a negative one within lineages. Seed set was the main decisive factor for female fitness. Germination rates were not related to genetic distance at any level, but were positively associated with heterozygosity in interlineage crossings. Experiments confirmed full crossability and predominant outcrossing among sexual R. notabilis s.l. lineages. However, up to 5% (outliers 15%-31%) of seeds were formed by selfing, probably due to semi-self-compatibility in a multi-locus gametophytic SI system. Less seed set in intrapopulation crossings, and higher seed set and germination rates from crossings of genetically more distant and heterozygous lineages (interlineage) indicate negative inbreeding and positive outbreeding effects. In GP scenarios, sexual species with small and/or isolated populations can suffer from decreased female fitness due to their breeding system. This factor, among others, probably limits range expansion of sexuals.
Collapse
Affiliation(s)
- Kevin Karbstein
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium)Institute for Plant SciencesUniversity of GöttingenGöttingenGermany
- Georg‐August University School of Science (GAUSS)University of GöttingenGöttingenGermany
| | - Elisabeth Rahmsdorf
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium)Institute for Plant SciencesUniversity of GöttingenGöttingenGermany
- Institute of BiologyLeipzig UniversityLeipzigGermany
| | - Salvatore Tomasello
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium)Institute for Plant SciencesUniversity of GöttingenGöttingenGermany
| | - Ladislav Hodač
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium)Institute for Plant SciencesUniversity of GöttingenGöttingenGermany
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium)Institute for Plant SciencesUniversity of GöttingenGöttingenGermany
| |
Collapse
|
23
|
Uckele KA, Adams RP, Schwarzbach AE, Parchman TL. Genome-wide RAD sequencing resolves the evolutionary history of serrate leaf Juniperus and reveals discordance with chloroplast phylogeny. Mol Phylogenet Evol 2020; 156:107022. [PMID: 33242585 DOI: 10.1016/j.ympev.2020.107022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 10/06/2020] [Accepted: 11/17/2020] [Indexed: 12/22/2022]
Abstract
Juniper (Juniperus) is an ecologically important conifer genus of the Northern Hemisphere, the members of which are often foundational tree species of arid regions. The serrate leaf margin clade is native to topologically variable regions in North America, where hybridization has likely played a prominent role in their diversification. Here we use a reduced-representation sequencing approach (ddRADseq) to generate a phylogenomic data set for 68 accessions representing all 22 species in the serrate leaf margin clade, as well as a number of close and distant relatives, to improve understanding of diversification in this group. Phylogenetic analyses using three methods (SVDquartets, maximum likelihood, and Bayesian) yielded highly congruent and well-resolved topologies. These phylogenies provided improved resolution relative to past analyses based on Sanger sequencing of nuclear and chloroplast DNA, and were largely consistent with taxonomic expectations based on geography and morphology. Calibration of a Bayesian phylogeny with fossil evidence produced divergence time estimates for the clade consistent with a late Oligocene origin in North America, followed by a period of elevated diversification between 12 and 5 Mya. Comparison of the ddRADseq phylogenies with a phylogeny based on Sanger-sequenced chloroplast DNA revealed five instances of pronounced discordance, illustrating the potential for chloroplast introgression, chloroplast transfer, or incomplete lineage sorting to influence organellar phylogeny. Our results improve understanding of the pattern and tempo of diversification in Juniperus, and highlight the utility of reduced-representation sequencing for resolving phylogenetic relationships in non-model organisms with reticulation and recent divergence.
Collapse
Affiliation(s)
- Kathryn A Uckele
- Department of Biology, MS 314, University of Nevada, Reno, Max Fleischmann Agriculture Building, 1664 N Virginia St., Reno, NV 89557, USA.
| | - Robert P Adams
- Baylor University, Utah Lab, 201 N 5500 W, Hurricane, UT 84790, USA.
| | - Andrea E Schwarzbach
- Department of Health and Biomedical Sciences, University of Texas - Rio Grande Valley, 1 W University Drive, Brownsville, TX 78520, USA.
| | - Thomas L Parchman
- Department of Biology, MS 314, University of Nevada, Reno, Max Fleischmann Agriculture Building, 1664 N Virginia St., Reno, NV 89557, USA.
| |
Collapse
|
24
|
Guo C, Ma PF, Yang GQ, Ye XY, Guo Y, Liu JX, Liu YL, Eaton DAR, Guo ZH, Li DZ. Parallel ddRAD and Genome Skimming Analyses Reveal a Radiative and Reticulate Evolutionary History of the Temperate Bamboos. Syst Biol 2020; 70:756-773. [PMID: 33057686 PMCID: PMC8208805 DOI: 10.1093/sysbio/syaa076] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/20/2020] [Accepted: 09/25/2020] [Indexed: 11/13/2022] Open
Abstract
Rapid evolutionary radiations are among the most challenging phylogenetic problems, wherein different types of data (e.g., morphology and molecular) or genetic markers (e.g., nuclear and organelle) often yield inconsistent results. The tribe Arundinarieae, that is, the temperate bamboos, is a clade of tetraploid originated 22 Ma and subsequently radiated in East Asia. Previous studies of Arundinarieae have found conflicting relationships and/or low support. Here, we obtain nuclear markers from ddRAD data for 213 Arundinarieae taxa and parallel sampling of chloroplast genomes from genome skimming for 147 taxa. We first assess the feasibility of using ddRAD-seq data for phylogenetic estimates of paleopolyploid and rapidly radiated lineages, optimize clustering thresholds, and analysis workflow for orthology identification. Reference-based ddRAD data assembly approaches perform well and yield strongly supported relationships that are generally concordant with morphology-based taxonomy. We recover five major lineages, two of which are notable (the pachymorph and leptomorph lineages), in that they correspond with distinct rhizome morphologies. By contrast, the phylogeny from chloroplast genomes differed significantly. Based on multiple lines of evidence, the ddRAD tree is favored as the best species tree estimation for temperate bamboos. Using a time-calibrated ddRAD tree, we find that Arundinarieae diversified rapidly around the mid-Miocene corresponding with intensification of the East Asian monsoon and the evolution of key innovations including the leptomorph rhizomes. Our results provide a highly resolved phylogeny of Arundinarieae, shed new light on the radiation and reticulate evolutionary history of this tribe, and provide an empirical example for the study of recalcitrant plant radiations. [Arundinarieae; ddRAD; paleopolyploid; genome skimming; rapid diversification; incongruence.]
Collapse
Affiliation(s)
- Cen Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Peng-Fei Ma
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Guo-Qian Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Xia-Ying Ye
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ying Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jing-Xia Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yun-Long Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Deren A R Eaton
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY 10027, USA
| | - Zhen-Hua Guo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|