1
|
Kavroumatzi CK, Matziarli P, Chatzidimopoulos M, Boutsika A, Tsitsigiannis DI, Paplomatas E, Zambounis A. Control of Peach Leaf Curl with Foliar Applications of Plant Immunity Inducers and Insights in Elicitation of Defense Responses against Taphrina deformans. J Fungi (Basel) 2024; 10:325. [PMID: 38786680 PMCID: PMC11122495 DOI: 10.3390/jof10050325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Taphrina deformans is the causal agent of leaf curl, a serious peach disease which causes significant losses in peach production worldwide. Nowadays, in order to control plant diseases, it is necessary to adopt novel and low-cost alternatives to conventional chemical fungicides. These promising strategies are targeted at eliciting host defense mechanisms via priming the host through the consecutive application of plant immunity inducers prior to pathogen challenge. In this study, we investigated whether chitosan or yeast cell wall extracts could provide enhanced tolerance against leaf curl in two-season field trials. Furthermore, we addressed the possible molecular mechanisms involved beyond the priming of immune responses by monitoring the induction of key defense-related genes. The efficacy of spraying treatments against peach leaf curl with both inducers was significantly higher compared to the untreated control, showing efficacy in reducing disease severity of up to 62.6% and 73.9% for chitosan and yeast cell wall extracts, respectively. The application of chitosan in combination with copper hydroxide was more efficient in reducing disease incidence and severity, showing efficacy values in the range of 79.5-93.18%. Peach plantlets were also spray-treated with immunity inducers three times prior to leaf inoculation with T. deformans blastospores in their yeast phase. The relative expression levels of nine key defense and priming genes, including those encoding members of pathogenesis-related (PR) proteins and hub genes associated with hormone biosynthesis, were monitored by RT-qPCR across three days after inoculation (dai). The results indicate that pre-treatments with these plant immunity inducers activated the induction of genes involved in salicylic acid (SA) and jasmonate (JA) defense signaling pathways that may offer systemic resistance, coupled with the upregulation of genes conferring direct antimicrobial effects. Our experiments suggest that these two plant immunity inducers could constitute useful components towards the effective control of T. deformans in peach crops.
Collapse
Affiliation(s)
- Charikleia K. Kavroumatzi
- Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), Institute of Plant Breeding and Genetic Resources, 57001 Thessaloniki, Greece
- Laboratory of Plant Pathology, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece; (D.I.T.)
| | - Paschalina Matziarli
- Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), Institute of Plant Breeding and Genetic Resources, 57001 Thessaloniki, Greece
| | | | - Anastasia Boutsika
- Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), Institute of Plant Breeding and Genetic Resources, 57001 Thessaloniki, Greece
| | - Dimitrios I. Tsitsigiannis
- Laboratory of Plant Pathology, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece; (D.I.T.)
| | - Epaminondas Paplomatas
- Laboratory of Plant Pathology, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece; (D.I.T.)
| | - Antonios Zambounis
- Hellenic Agricultural Organization-DIMITRA (ELGO-DIMITRA), Institute of Plant Breeding and Genetic Resources, 57001 Thessaloniki, Greece
| |
Collapse
|
2
|
Zhang S, Huang Z, Xu H, Liu Q, Jiang Z, Yin C, Han G, Zhang W, Zhang Y. Biological control of wheat powdery mildew disease by the termite-associated fungus Aspergillus chevalieri BYST01 and potential role of secondary metabolites. PEST MANAGEMENT SCIENCE 2024; 80:2011-2020. [PMID: 38105413 DOI: 10.1002/ps.7938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/16/2023] [Accepted: 12/18/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Wheat powdery mildew, caused by the biotrophic pathogen Blumeria graminis f. sp. tritici (Bgt) is a serious fungal disease. Natural metabolites produced by microorganisms are beneficial biological control agents to inhibit Bgt. In the present study, we investigated the effects of Aspergillus chevalieri BYST01 on wheat powdery mildew. RESULTS A strain isolated from the termite was identified as A. chevalieri BYST01 by morphological characteristics and phylogenetic analysis. The fermentation broth of BYST01 showed good biocontrol effect on the Bgt in vivo with the control efficiencies of 81.59% and 71.34% under the protective and therapeutic tests, respectively. Four known metabolites, including the main compound physcion (30 mg/L), were isolated from the fermentation broth of BYST01 extracted with ethyl acetate. Importantly, under a concentration of 0.1 mM, physcion repressed conidial germination of Bgt with an inhibition rate of 77.04% in vitro and showed important control efficiencies of 80.36% and 74.64% in vivo under the protective and therapeutic tests, respectively. Hence, the BYST01 showed important potential as a microbial cell factory for the high yield of the green natural fungicide physcion. Finally, the biosynthetic gene clusters responsible for physicon production in BYST01 was predicted by analyzing a chromosome-scale genome obtained using a combination of Illumina, PacBio, and Hi-C sequencing technologies. CONCLUSION Aspergillus chevalieri BYST01 and its main metabolite physcion had a significant control effect on wheat powdery mildew. The biosynthesis pathway of physcion in BYST01 was predicted. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuxiang Zhang
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Zhongdi Huang
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Huanhuan Xu
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Qihua Liu
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Zhou Jiang
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Caiping Yin
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Guomin Han
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Wei Zhang
- Anhui Province Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yinglao Zhang
- Anhui Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
3
|
Pulavarty A, Singh A, Young K, Horgan K, Kakouli-Duarte T. Investigating the Effects of Alltech Crop Science (ACS) Products on Plant Defence against Root-Knot Nematode Infestation. Microorganisms 2023; 11:1700. [PMID: 37512873 PMCID: PMC10383655 DOI: 10.3390/microorganisms11071700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Two formulations of Alltech Crop Science products (ACS), a proprietary blend of fermentation products and plant extracts with micronutrients (ACS5075), and a microbial based product (ACS3048), were tested to understand (1) their impact on the tomato plant immune response and (2) whether they are priming a resistance response in plants against root knot nematodes (RKN). Research findings reported previously indicate that tomato plants pre-treated with ACS5075 and ACS3048 were found less sensitive to Meloidogyne javanica infection. In the current study, the expression of six defence-related genes (PR-1, PR-3, PR-5T, ACO, CAT and JERF 3), relative to a housekeeping gene, were monitored via RT-PCR. Results suggest that the treatment with ACS5075 enhanced ACO and PR-1 gene expression levels, both post- treatment and post-infection with M. javanica. Reduced M. javanica infestation that was reported in the previous study could be attributed to the increased expression of these genes in the ACS5075-treated plants. Tomato plants treated with ACS3048, but without RKN infection, also demonstrated higher levels of ACO and PR-1 gene expression. Subsequently, 2D-gel electrophoresis was performed to study the differential protein expression in leaf tissues of treated tomato plants in an effort to elucidate a possible mechanism of action for these products. Protein spot 1 was identified as 'disease resistance protein RPP13-like', protein spot 2 as 'phosphatidylinositol 4-phosphate 5-kinase 2', spot 3 as 'protein SABRE like' and protein spot 4 as 'uncharacterized protein'. Overall research findings indicate that the ACS products could be used as plant immunity-boosting agents, as they play a significant role in the expression of certain genes and proteins associated with plant defence.
Collapse
Affiliation(s)
- Anusha Pulavarty
- Molecular Ecology and Nematode Research Group, Department of Applied Science, enviroCORE, Kilkenny Road Campus, South East Technological University (SETU), R93 V960 Carlow, Ireland
| | - Ankit Singh
- Molecular Ecology and Nematode Research Group, Department of Applied Science, enviroCORE, Kilkenny Road Campus, South East Technological University (SETU), R93 V960 Carlow, Ireland
| | - Kira Young
- Molecular Ecology and Nematode Research Group, Department of Applied Science, enviroCORE, Kilkenny Road Campus, South East Technological University (SETU), R93 V960 Carlow, Ireland
| | - Karina Horgan
- Alltech Bioscience Centre, A86 X006 Dunboyne, Ireland
| | - Thomais Kakouli-Duarte
- Molecular Ecology and Nematode Research Group, Department of Applied Science, enviroCORE, Kilkenny Road Campus, South East Technological University (SETU), R93 V960 Carlow, Ireland
| |
Collapse
|
4
|
Schulman P, Ribeiro THC, Fokar M, Chalfun-Junior A, Lally RD, Paré PW, de Medeiros FHV. A Microbial Fermentation Product Induces Defense-Related Transcriptional Changes and the Accumulation of Phenolic Compounds in Glycine max. PHYTOPATHOLOGY 2022; 112:862-871. [PMID: 34622696 DOI: 10.1094/phyto-06-21-0227-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the progressive loss of fungicide efficacy against Phakopsora pachyrhizi, the causal agent of Asian soybean rust (ASR), alternative methods to protect soybean crops are needed. Resistance induction is a low impact alternative and/or supplement to fungicide applications that fortifies innate plant defenses against pathogens. Here, we show that a microbial fermentation product (MFP) induces plant defenses in soybean, and transcriptional induction is enhanced with the introduction of ASR. MFP-treated plants exhibited 1,011 and 1,877 differentially expressed genes (DEGs) 12 and 60 h after treatment, respectively, compared with water controls. MFP plants exposed to the pathogen 48 h after application and sampled 12 h later (for a total of 60 h) had 2,401 DEGs compared with control. The plant defense genes PR1, PR2, IPER, PAL, and CHS were induced with MFP application, and induction was enhanced with ASR. Enriched pathways associated with pathogen defense included plant-pathogen interactions, MAPK signaling pathways, phenylpropanoid biosynthesis, glutathione metabolism, flavonoid metabolism, and isoflavonoid metabolism. In field conditions, elevated antioxidant peroxidase activities and phenolic accumulation were measured with MFP treatment; however, improved ASR control or enhanced crop yield were not observed. MFP elicitation differences between field and laboratory grown plants necessitates further testing to identify best practices for effective disease management with MFP-treated soybean.
Collapse
Affiliation(s)
- Pablo Schulman
- Empresa de Assistência Técnica e Extensão Rural do Estado Minas Gerais, Belo Horizonte, Minas Gerais 30441-194, Brazil
| | - Thales H C Ribeiro
- Departamento de Biologia, Faculdade de Ciências Naturais, Universidade Federal de Lavras, Lavras, Minas Gerais 37200-900, Brazil
| | - Mohamed Fokar
- Center for Biotechnology & Genomics, Texas Tech University, Lubbock, TX 79409, U.S.A
| | - Antonio Chalfun-Junior
- Departamento de Biologia, Faculdade de Ciências Naturais, Universidade Federal de Lavras, Lavras, Minas Gerais 37200-900, Brazil
| | | | - Paul W Paré
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, U.S.A
| | - Flávio H V de Medeiros
- Departamento de Fitopatologia, Escola de Ciências Agrárias, Universidade Federal de Lavras, Lavras, Minas Gerais 37200-900, Brazil
| |
Collapse
|
5
|
Lally RD, Donaleshen K, Chirwa U, Eastridge K, Saintilnord W, Dickinson E, Murphy R, Borst S, Horgan K, Dawson K. Transcriptomic Response of Huanglongbing-Infected Citrus sinensis Following Field Application of a Microbial Fermentation Product. FRONTIERS IN PLANT SCIENCE 2021; 12:754391. [PMID: 34917102 PMCID: PMC8669595 DOI: 10.3389/fpls.2021.754391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/05/2021] [Indexed: 06/14/2023]
Abstract
Huanglongbing (HLB) is considered the most destructive disease in Citrus production and threatens the future of the industry. Microbial-derived defense elicitors have gained recognition for their role in plant defense priming. This work assessed a 5% (V/V) microbial fermentation application (MFA) and its role in the elicitation of defense responses in HLB-infected Citrus sinensis trees following a foliar application with a pump sprayer. Using a PCR detection method, HLB infection levels were monitored in healthy and infected trees for 20months. Nutrient analysis assessed N, P, K, Ca, Mg, Mn, Zn, Fe, B, and Cu concentrations in the trees. MFA significantly increased Cu concentrations in treated trees and resulted in the stabilization of disease index (DI) in infected trees. Initial real-time qPCR analysis of defense-associated genes showed a significant increase in pathogenesis-related protein 2 (PR2) and phenylalanine ammonia lyase (PAL) gene expression in healthy and HLB-infected trees in response to MFA. Gene expression of PR2 and PAL peaked 6h post-microbial fermentation application during an 8-h sampling period. A transcriptomic assessment using GeneChip microarray of the hour 6 samples revealed differential expression of 565 genes when MFA was applied to healthy trees and 909 genes when applied infected citrus trees when compared to their respective controls. There were 403 uniquely differentially expressed genes in response to MFA following an intersectional analysis of both healthy and infected citrus trees. The transcriptomic analysis revealed that several genes associated with plant development, growth, and defense were upregulated in response to MFA, including multiple PR genes, lignin formation genes, ROS-related genes, hormone synthases, and hormone regulators. This study provides further evidence that MFA may play an important role as a plant elicitor in an integrated pest management strategy in citrus and other agronomically important crops.
Collapse
Affiliation(s)
| | | | | | | | - Wesley Saintilnord
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | | | | | | | | | | |
Collapse
|
6
|
Pulavarty A, Egan A, Karpinska A, Horgan K, Kakouli-Duarte T. Plant Parasitic Nematodes: A Review on Their Behaviour, Host Interaction, Management Approaches and Their Occurrence in Two Sites in the Republic of Ireland. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112352. [PMID: 34834715 PMCID: PMC8624893 DOI: 10.3390/plants10112352] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/16/2021] [Accepted: 10/26/2021] [Indexed: 06/01/2023]
Abstract
Plant parasitic nematodes are a major problem for growers worldwide, causing severe crop losses. Several conventional strategies, such as chemical nematicides and biofumigation, have been employed in the past to manage their infection in plants and spread in soils. However, the search for the most sustainable and environmentally safe practices is still ongoing. This review summarises information on plant parasitic nematodes, their distribution, and their interaction with their host plants, along with various approaches to manage their infestations. It also focuses on the application of microbial and fermentation-based bionematicides that have not only been successful in controlling nematode infection but have also led to plant growth promotion and proven to be environmentally safe. Studies with new information on the relative abundance of plant parasitic nematodes in two agricultural sites in the Republic of Ireland are also reported. This review, with the information it provides, will help to generate an up-to-date knowledge base on plant parasitic nematodes and their management practices.
Collapse
Affiliation(s)
- Anusha Pulavarty
- Molecular Ecology and Nematode Research Group, enviroCORE, Department of Science and Health, Institute of Technology Carlow, Kilkenny Road, R93 V960 Carlow, Ireland; (A.P.); (A.E.); (A.K.)
| | - Aoife Egan
- Molecular Ecology and Nematode Research Group, enviroCORE, Department of Science and Health, Institute of Technology Carlow, Kilkenny Road, R93 V960 Carlow, Ireland; (A.P.); (A.E.); (A.K.)
| | - Anna Karpinska
- Molecular Ecology and Nematode Research Group, enviroCORE, Department of Science and Health, Institute of Technology Carlow, Kilkenny Road, R93 V960 Carlow, Ireland; (A.P.); (A.E.); (A.K.)
| | - Karina Horgan
- Alltech Bioscience Centre, A86 X006 Dunboyne, County Meath, Ireland;
| | - Thomais Kakouli-Duarte
- Molecular Ecology and Nematode Research Group, enviroCORE, Department of Science and Health, Institute of Technology Carlow, Kilkenny Road, R93 V960 Carlow, Ireland; (A.P.); (A.E.); (A.K.)
| |
Collapse
|
7
|
Ochoa-Meza LC, Quintana-Obregón EA, Vargas-Arispuro I, Falcón-Rodríguez AB, Aispuro-Hernández E, Virgen-Ortiz JJ, Martínez-Téllez MÁ. Oligosaccharins as Elicitors of Defense Responses in Wheat. Polymers (Basel) 2021; 13:3105. [PMID: 34578006 PMCID: PMC8470072 DOI: 10.3390/polym13183105] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 11/16/2022] Open
Abstract
Wheat is a highly relevant crop worldwide, and like other massive crops, it is susceptible to foliar diseases, which can cause devastating losses. The current strategies to counteract wheat diseases include global monitoring of pathogens, developing resistant genetic varieties, and agrochemical applications upon diseases' appearance. However, the suitability of these strategies is far from permanent, so other alternatives based on the stimulation of the plants' systemic responses are being explored. Plants' defense mechanisms can be elicited in response to the perception of molecules mimicking the signals triggered upon the attack of phytopathogens, such as the release of plant and fungal cell wall-derived oligomers, including pectin and chitin derivatives, respectively. Among the most studied cell wall-derived bioelicitors, oligogalacturonides and oligochitosans have received considerable attention in recent years due to their ability to trigger defense responses and enhance the synthesis of antipathogenic compounds in plants. Particularly, in wheat, the application of bioelicitors induces lignification and accumulation of polyphenolic compounds and increases the gene expression of pathogenesis-related proteins, which together reduce the severity of fungal infections. Therefore, exploring the use of cell wall-derived elicitors, known as oligosaccharins, stands as an attractive option for the management of crop diseases by improving plant readiness for responding promptly to potential infections. This review explores the potential of plant- and fungal-derived oligosaccharins as a practical means to be implemented in wheat crops.
Collapse
Affiliation(s)
- Laura Celina Ochoa-Meza
- Coordination of Food Technology of Vegetal Origin, Research Center for Food and Development (CIAD), Ave. Gustavo E. Astiazarán #46, Hermosillo 83304, Sonora, Mexico; (L.C.O.-M.); (E.A.-H.)
| | - Eber Addí Quintana-Obregón
- CONACYT—Research Center for Food and Development (CIAD), Hermosillo 83304, Sonora, Mexico; (E.A.Q.-O.); (J.J.V.-O.)
| | - Irasema Vargas-Arispuro
- Coordination of Food Sciences, Research Center for Food and Development (CIAD), Hermosillo 83304, Sonora, Mexico;
| | | | - Emmanuel Aispuro-Hernández
- Coordination of Food Technology of Vegetal Origin, Research Center for Food and Development (CIAD), Ave. Gustavo E. Astiazarán #46, Hermosillo 83304, Sonora, Mexico; (L.C.O.-M.); (E.A.-H.)
| | - José J. Virgen-Ortiz
- CONACYT—Research Center for Food and Development (CIAD), Hermosillo 83304, Sonora, Mexico; (E.A.Q.-O.); (J.J.V.-O.)
- Center of Innovation and Agroalimentary Development of Michoacán (CIDAM), Morelia 58341, Michoacán, Mexico
| | - Miguel Ángel Martínez-Téllez
- Coordination of Food Technology of Vegetal Origin, Research Center for Food and Development (CIAD), Ave. Gustavo E. Astiazarán #46, Hermosillo 83304, Sonora, Mexico; (L.C.O.-M.); (E.A.-H.)
| |
Collapse
|
8
|
Ma P, Wu L, Xu Y, Xu H, Zhang X, Wang W, Liu C, Wang B. Bulked Segregant RNA-Seq Provides Distinctive Expression Profile Against Powdery Mildew in the Wheat Genotype YD588. FRONTIERS IN PLANT SCIENCE 2021; 12:764978. [PMID: 34925412 PMCID: PMC8677838 DOI: 10.3389/fpls.2021.764978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/03/2021] [Indexed: 05/07/2023]
Abstract
Wheat powdery mildew, caused by the fungal pathogen Blumeria graminis f. sp. tritici (Bgt), is a destructive disease leading to huge yield losses in production. Host resistance can greatly contribute to the control of the disease. To explore potential genes related to the powdery mildew (Pm) resistance, in this study, we used a resistant genotype YD588 to investigate the potential resistance components and profiled its expression in response to powdery mildew infection. Genetic analysis showed that a single dominant gene, tentatively designated PmYD588, conferred resistance to powdery mildew in YD588. Using bulked segregant RNA-Seq (BSR-Seq) and single nucleotide polymorphism (SNP) association analysis, two high-confidence candidate regions were detected in the chromosome arm 2B, spanning 453,752,054-506,356,791 and 584,117,809-664,221,850 bp, respectively. To confirm the candidate region, molecular markers were developed using the BSR-Seq data and mapped PmYD588 to an interval of 4.2 cM by using the markers YTU588-004 and YTU588-008. The physical position was subsequently locked into the interval of 647.1-656.0 Mb, which was different from those of Pm6, Pm33, Pm51, Pm52, Pm63, Pm64, PmQ, PmKN0816, MlZec1, and MlAB10 on the same chromosome arm in its position, suggesting that it is most likely a new Pm gene. To explore the potential regulatory genes of the R gene, 2,973 differentially expressed genes (DEGs) between the parents and bulks were analyzed using gene ontology (GO), clusters of orthologous group (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Based on the data, we selected 23 potential regulated genes in the enriched pathway of plant-pathogen interaction and detected their temporal expression patterns using an additional set of wheat samples and time-course analysis postinoculation with Bgt. As a result, six disease-related genes showed distinctive expression profiles after Bgt invasion and can serve as key candidates for the dissection of resistance mechanisms and improvement of durable resistance to wheat powdery mildew.
Collapse
Affiliation(s)
- Pengtao Ma
- School of Life Sciences, Yantai University, Yantai, China
- *Correspondence: Pengtao Ma,
| | - Liru Wu
- School of Life Sciences, Yantai University, Yantai, China
| | - Yufei Xu
- School of Life Sciences, Yantai University, Yantai, China
| | - Hongxing Xu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Xu Zhang
- School of Life Sciences, Yantai University, Yantai, China
- School of Life Sciences, Henan University, Kaifeng, China
| | - Wenrui Wang
- School of Life Sciences, Yantai University, Yantai, China
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Cheng Liu,
| | - Bo Wang
- School of Life Sciences, Yantai University, Yantai, China
- Bo Wang,
| |
Collapse
|
9
|
A Post-Haustorial Defense Mechanism is Mediated by the Powdery Mildew Resistance Gene, PmG3M, Derived from Wild Emmer Wheat. Pathogens 2020; 9:pathogens9060418. [PMID: 32481482 PMCID: PMC7350345 DOI: 10.3390/pathogens9060418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 11/30/2022] Open
Abstract
The destructive wheat powdery mildew disease is caused by the fungal pathogen Blumeria graminis f. sp. tritici (Bgt). PmG3M, derived from wild emmer wheat Triticum dicoccoides accession G305-3M, is a major gene providing a wide-spectrum resistance against Bgt. PmG3M was previously mapped to wheat chromosome 6B using an F6 recombinant inbred line (RIL) mapping population generated by crossing G305-3M with the susceptible T. durum wheat cultivar Langdon (LDN). In the current study, we aimed to explore the defense mechanisms conferred by PmG3M against Bgt. Histopathology of fungal development was characterized in artificially inoculated leaves of G305-3M, LDN, and homozygous RILs using fluorescence and light microscopy. G305-3M exhibited H2O2 accumulation typical of a hypersensitive response, which resulted in programmed cell death (PCD) in Bgt-penetrated epidermal cells, while LDN showed well-developed colonies without PCD. In addition, we observed a post-haustorial resistance mechanism that arrested the development of fungal feeding structures and pathogen growth in both G305-3M and resistant RIL, while LDN and a susceptible RIL displayed fully developed digitated haustoria and massive accumulation of fungal biomass. In contrast, both G305-3M and LDN exhibited callose deposition in attempt to prevent fungal invasion, supporting this as a mechanism of a basal defense response not associated with PmG3M resistance mechanism per se. The presented results shed light on the resistance mechanisms conferred by PmG3M against wheat powdery mildew.
Collapse
|
10
|
Kong L, Liu Y, Wang X, Chang C. Insight into the Role of Epigenetic Processes in Abiotic and Biotic Stress Response in Wheat and Barley. Int J Mol Sci 2020; 21:ijms21041480. [PMID: 32098241 PMCID: PMC7073019 DOI: 10.3390/ijms21041480] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
Environmental stresses such as salinity, drought, heat, freezing, heavy metal and even pathogen infections seriously threaten the growth and yield of important cereal crops including wheat and barley. There is growing evidence indicating that plants employ sophisticated epigenetic mechanisms to fine-tune their responses to environmental stresses. Here, we provide an overview of recent developments in understanding the epigenetic processes and elements—such as DNA methylation, histone modification, chromatin remodeling, and non-coding RNAs—involved in plant responses to abiotic and biotic stresses in wheat and barley. Potentials of exploiting epigenetic variation for the improvement of wheat and barley are discussed.
Collapse
Affiliation(s)
- Lingyao Kong
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (L.K.); (Y.L.); (X.W.)
| | - Yanna Liu
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (L.K.); (Y.L.); (X.W.)
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoyu Wang
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (L.K.); (Y.L.); (X.W.)
| | - Cheng Chang
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (L.K.); (Y.L.); (X.W.)
- Correspondence: ; Tel.: +86-532-85953227
| |
Collapse
|