1
|
Wang F, Lin J, Yang F, Chen X, Liu Y, Yan L, Chen J, Wang Z, Xie H, Zhang J, Xu H, Chen S. The OsMAPK5-OsWRKY72 module negatively regulates grain length and grain weight in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2648-2663. [PMID: 39474750 PMCID: PMC11622537 DOI: 10.1111/jipb.13786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 12/07/2024]
Abstract
Grain size and grain weight are important determinants for grain yield. In this study, we identify a novel OsMAPK5-OsWRKY72 module that negatively regulates grain length and grain weight in rice. We found that loss-of-function of OsMAPK5 leads to larger cell size of the rice spikelet hulls and a significant increase in both grain length and grain weight in an indica variety Minghui 86 (MH86). OsMAPK5 interacts with OsMAPKK3/4/5 and OsWRKY72 and phosphorylates OsWRKY72 at T86 and S88. Similar to the osmapk5 MH86 mutants, the oswrky72 knockout MH86 mutants exhibited larger size of spikelet hull cells and increased grain length and grain weight, whereas the OsWRKY72-overexpression MH86 plants showed opposite phenotypes. OsWRKY72 targets the W-box motifs in the promoter of OsARF6, an auxin response factor involved in auxin signaling. Dual-luciferase reporter assays demonstrated that OsWRKY72 activates OsARF6 expression. The activation effect of the phosphorylation-mimicking OsWRKY72T86D/S88D on OsARF6 expression was significantly enhanced, whereas the effects of the OsWRKY72 phosphorylation-null mutants were significantly reduced. In addition, auxin levels in young panicles of the osmapk5 and oswrky72 mutants were significantly higher than that in the wild-type MH86. Collectively, our study uncovered novel connections of the OsMAPKK3/4/5-OsMAPK5-mediated MAPK signaling, OsWRKY72-mediated transcription regulation, and OsARF6-mediated auxin signaling pathways in regulating grain length and grain weight in an indica-type rice, providing promising targets for molecular breeding of rice varieties with high yield and quality.
Collapse
Affiliation(s)
- Fuxiang Wang
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
- National Rice Engineering Laboratory of China, Rice Research InstituteFujian Academy of Agricultural SciencesFuzhou350003China
- College of AgricultureFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Jiexin Lin
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
| | - Fan Yang
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
- College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Xiaofeng Chen
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
| | - Yiyi Liu
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
| | - Lingnan Yan
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
| | - Jing Chen
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
- College of Life SciencesFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Zonghua Wang
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
| | - Huaan Xie
- National Rice Engineering Laboratory of China, Rice Research InstituteFujian Academy of Agricultural SciencesFuzhou350003China
| | - Jianfu Zhang
- National Rice Engineering Laboratory of China, Rice Research InstituteFujian Academy of Agricultural SciencesFuzhou350003China
| | - Huibin Xu
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
| | - Songbiao Chen
- Marine and Agricultural Biotechnology Laboratory, College of Geography and OceanographyMinjiang UniversityFuzhou350108China
| |
Collapse
|
2
|
Liang T, Lin J, Wu S, Ye R, Qu M, Xie R, Lin Y, Gao J, Wang Y, Ke Y, Li C, Guo J, Lu J, Tang W, Chen S, Li W. Integrative transcriptomic analysis reveals the molecular responses of tobacco to magnesium deficiency. FRONTIERS IN PLANT SCIENCE 2024; 15:1483217. [PMID: 39654958 PMCID: PMC11625586 DOI: 10.3389/fpls.2024.1483217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024]
Abstract
Introduction Magnesium (Mg) is a crucial macronutrient for plants. Understanding the molecular responses of plants to different levels of Mg supply is important for improving cultivation practices and breeding new varieties with efficient Mg utilization. Methods In this study, we conducted a comprehensive transcriptome analysis on tobacco (Nicotiana tabacum L.) seedling leaves to investigate changes in gene expression in response to different levels of Mg supply, including Mg-deficient, 1/4-normal Mg, normal Mg, and 4×-normal Mg, with a particular focus on Mg deficiency at 5, 15 and 25 days after treatment (DAT), respectively. Results A total of 11,267 differentially expressed genes (DEGs) were identified in the Mg-deficient, 1/4-normal Mg, and/or 4×-normal Mg seedlings compared to the normal Mg seedlings. The global gene expression profiles revealed potential mechanisms involved in the response to Mg deficiency in tobacco leaves, including down-regulation of genes-two DEGs encoding mitochondria-localized NtMGT7 and NtMGT9 homologs, and one DEG encoding a tonoplast-localized NtMHX1 homolog-associated with Mg trafficking from the cytosol to mitochondria and vacuoles, decreased expression of genes linked to photosynthesis and carbon fixation at later stages, and up-regulation of genes related to antioxidant defenses, such as NtPODs, NtPrxs, and NtGSTs. Discussion Our findings provide new insights into the molecular mechanisms underlying how tobacco responds to Mg deficiency.
Collapse
Affiliation(s)
- Tingmin Liang
- Institute of Tobacco Sciences, Fujian Provincial Tobacco Monopoly Bureau, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinbin Lin
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, China
| | - Shengxin Wu
- Institute of Tobacco Sciences, Fujian Provincial Tobacco Monopoly Bureau, Fuzhou, China
| | - Rongrong Ye
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, China
| | - Mengyu Qu
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rongrong Xie
- Institute of Tobacco Sciences, Fujian Provincial Tobacco Monopoly Bureau, Fuzhou, China
- International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yingfeng Lin
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, China
| | - Jingjuan Gao
- Institute of Tobacco Sciences, Fujian Provincial Tobacco Monopoly Bureau, Fuzhou, China
- International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuemin Wang
- Institute of Tobacco Sciences, Fujian Provincial Tobacco Monopoly Bureau, Fuzhou, China
| | - Yuqin Ke
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chunying Li
- Institute of Tobacco Sciences, Fujian Provincial Tobacco Monopoly Bureau, Fuzhou, China
| | - Jinping Guo
- Institute of Tobacco Sciences, Fujian Provincial Tobacco Monopoly Bureau, Fuzhou, China
| | - Jianjun Lu
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, China
| | - Weiqi Tang
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, China
| | - Songbiao Chen
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, China
| | - Wenqing Li
- Institute of Tobacco Sciences, Fujian Provincial Tobacco Monopoly Bureau, Fuzhou, China
| |
Collapse
|
3
|
Koenig AM, Liu B, Hu J. Visualizing the dynamics of plant energy organelles. Biochem Soc Trans 2023; 51:2029-2040. [PMID: 37975429 PMCID: PMC10754284 DOI: 10.1042/bst20221093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Plant organelles predominantly rely on the actin cytoskeleton and the myosin motors for long-distance trafficking, while using microtubules and the kinesin motors mostly for short-range movement. The distribution and motility of organelles in the plant cell are fundamentally important to robust plant growth and defense. Chloroplasts, mitochondria, and peroxisomes are essential organelles in plants that function independently and coordinately during energy metabolism and other key metabolic processes. In response to developmental and environmental stimuli, these energy organelles modulate their metabolism, morphology, abundance, distribution and motility in the cell to meet the need of the plant. Consistent with their metabolic links in processes like photorespiration and fatty acid mobilization is the frequently observed inter-organellar physical interaction, sometimes through organelle membranous protrusions. The development of various organelle-specific fluorescent protein tags has allowed the simultaneous visualization of organelle movement in living plant cells by confocal microscopy. These energy organelles display an array of morphology and movement patterns and redistribute within the cell in response to changes such as varying light conditions, temperature fluctuations, ROS-inducible treatments, and during pollen tube development and immune response, independently or in association with one another. Although there are more reports on the mechanism of chloroplast movement than that of peroxisomes and mitochondria, our knowledge of how and why these three energy organelles move and distribute in the plant cell is still scarce at the functional and mechanistic level. It is critical to identify factors that control organelle motility coupled with plant growth, development, and stress response.
Collapse
Affiliation(s)
- Amanda M. Koenig
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
| | - Bo Liu
- Department of Plant Biology, University of California, Davis, CA, U.S.A
| | - Jianping Hu
- Michigan State University-Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, U.S.A
| |
Collapse
|
4
|
Chen X, Pan S, Bai H, Fan J, Batool W, Shabbir A, Han Y, Zheng H, Lu G, Lin L, Tang W, Wang Z. A nonclassically secreted effector of Magnaporthe oryzae targets host nuclei and plays important roles in fungal growth and plant infection. MOLECULAR PLANT PATHOLOGY 2023; 24:1093-1106. [PMID: 37306516 PMCID: PMC10423324 DOI: 10.1111/mpp.13356] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/05/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023]
Abstract
Rice blast caused by Magnaporthe oryzae is one of the most destructive diseases and poses a growing threat to food security worldwide. Like many other filamentous pathogens, rice blast fungus releases multiple types of effector proteins to facilitate fungal infection and modulate host defence responses. However, most of the characterized effectors contain an N-terminal signal peptide. Here, we report the results of the functional characterization of a nonclassically secreted nuclear targeting effector in M. oryzae (MoNte1). MoNte1 has no signal peptide, but can be secreted and translocated into plant nuclei driven by a nuclear targeting peptide. It could also induce hypersensitive cell death when transiently expressed in Nicotiana benthamiana. Deletion of the MoNTE1 gene caused a significant reduction of fungal growth and conidiogenesis, partially impaired appressorium formation and host colonization, and also dramatically attenuated the pathogenicity. Taken together, these findings reveal a novel effector secretion pathway and deepen our understanding of rice-M. oryzae interactions.
Collapse
Affiliation(s)
- Xiaomin Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant Protection, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Su Pan
- Fujian University Key Laboratory for Plant Microbe InteractionCollege of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Huimin Bai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant Protection, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Jiaxin Fan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant Protection, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Wajjiha Batool
- Fujian University Key Laboratory for Plant Microbe InteractionCollege of Life Sciences, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Ammarah Shabbir
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant Protection, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Yijuan Han
- Institute of OceanographyMinjiang UniversityFuzhouChina
| | - Huakun Zheng
- National Engineering Research Center of JUNCAO TechnologyCollege of Life Science, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant Protection, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Lili Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant Protection, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Wei Tang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant Protection, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsCollege of Plant Protection, Fujian Agriculture and Forestry UniversityFuzhouChina
- Institute of OceanographyMinjiang UniversityFuzhouChina
| |
Collapse
|
5
|
Ivanov S, Daniels DA, Harrison MJ. A Medicago truncatula Cell Biology Resource: Transgenic Lines Expressing Fluorescent Protein-Based Markers of Membranes, Organelles, and Subcellular Compartments. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:256-259. [PMID: 36401845 DOI: 10.1094/mpmi-01-22-0023-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Affiliation(s)
- Sergey Ivanov
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, U.S.A
| | | | - Maria J Harrison
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, U.S.A
| |
Collapse
|
6
|
Cai Z, Wang G, Li J, Kong L, Tang W, Chen X, Qu X, Lin C, Peng Y, Liu Y, Deng Z, Ye Y, Wu W, Duan Y. Thermo-Sensitive Spikelet Defects 1 acclimatizes rice spikelet initiation and development to high temperature. PLANT PHYSIOLOGY 2023; 191:1684-1701. [PMID: 36517254 PMCID: PMC10022635 DOI: 10.1093/plphys/kiac576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/20/2022] [Indexed: 06/17/2023]
Abstract
Crop reproductive development is vulnerable to heat stress, and the genetic modulation of thermotolerance during the reproductive phase, especially the early stage, remains poorly understood. We isolated a Poaceae-specific FAR-RED ELONGATED HYPOCOTYLS3 (FHY3)/FAR-RED IMPAIRED RESPONSE1 (FAR1)family transcription factor, Thermo-sensitive Spikelet Defects 1 (TSD1), derived from transposase in rice (Oryza sativa) TSD1 was highly expressed in spikelets, induced by heat, and specifically enhanced the thermotolerance of spikelet morphogenesis. Disrupting TSD1 did not affect vegetative growth but markedly retarded spikelet initiation and development, as well as caused varying degrees of spikelet degeneration, depending on the temperature. Most tsd1 spikelets were normal at low temperature but gradually degenerated as temperature increased, and all disappeared at high temperature, leading to naked branches. TSD1 directly promoted the transcription of YABBY1 and YABBY3 and could physically interact with YABBY1 and three TOB proteins, YABBY5, YABBY4, and YABBY3. These YABBY proteins can form either homodimers or heterodimers and play an important role in spikelet morphogenesis, similar to TSD1. Notably, the knockout mutant yab5-ko and double mutant tsd1 yab5-ko resembled tsd1 in spikelet appearance and response to temperature, indicating that these genes likely participate in spikelet development through the cooperative TSD1-YABBY module. These findings reveal a distinctive function of FHY3/FAR1 family genes and a unique TSD1-YABBY complex to acclimate spikelet development to high temperature in rice, providing insight into the regulating pathway of enhancing thermotolerance in plant reproductive development.
Collapse
Affiliation(s)
- Zhengzheng Cai
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops and Fujian Provincial Key Laboratory of Breeding by Design of Plant, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Gang Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops and Fujian Provincial Key Laboratory of Breeding by Design of Plant, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Jieqiong Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops and Fujian Provincial Key Laboratory of Breeding by Design of Plant, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Lan Kong
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops and Fujian Provincial Key Laboratory of Breeding by Design of Plant, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Weiqi Tang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops and Fujian Provincial Key Laboratory of Breeding by Design of Plant, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Xuequn Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops and Fujian Provincial Key Laboratory of Breeding by Design of Plant, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Xiaojie Qu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops and Fujian Provincial Key Laboratory of Breeding by Design of Plant, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Chenchen Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops and Fujian Provincial Key Laboratory of Breeding by Design of Plant, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Yulin Peng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops and Fujian Provincial Key Laboratory of Breeding by Design of Plant, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Yang Liu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops and Fujian Provincial Key Laboratory of Breeding by Design of Plant, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Zhanlin Deng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops and Fujian Provincial Key Laboratory of Breeding by Design of Plant, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Yanfang Ye
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops and Fujian Provincial Key Laboratory of Breeding by Design of Plant, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Weiren Wu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops and Fujian Provincial Key Laboratory of Breeding by Design of Plant, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Yuanlin Duan
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops and Fujian Provincial Key Laboratory of Breeding by Design of Plant, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| |
Collapse
|
7
|
Gao J, Liu H, Zhang Z, Liang Z. Establishment, optimization, and application of genetic technology in Aspergillus spp. Front Microbiol 2023; 14:1141869. [PMID: 37025635 PMCID: PMC10071863 DOI: 10.3389/fmicb.2023.1141869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/27/2023] [Indexed: 04/08/2023] Open
Abstract
Aspergillus is widely distributed in nature and occupies a crucial ecological niche, which has complex and diverse metabolic pathways and can produce a variety of metabolites. With the deepening of genomics exploration, more Aspergillus genomic informations have been elucidated, which not only help us understand the basic mechanism of various life activities, but also further realize the ideal functional transformation. Available genetic engineering tools include homologous recombinant systems, specific nuclease based systems, and RNA techniques, combined with transformation methods, and screening based on selective labeling. Precise editing of target genes can not only prevent and control the production of mycotoxin pollutants, but also realize the construction of economical and efficient fungal cell factories. This paper reviewed the establishment and optimization process of genome technologies, hoping to provide the theoretical basis of experiments, and summarized the recent progress and application in genetic technology, analyzes the challenges and the possibility of future development with regard to Aspergillus.
Collapse
Affiliation(s)
- Jing Gao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Huiqing Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhenzhen Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhihong Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing, China
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- *Correspondence: Zhihong Liang,
| |
Collapse
|
8
|
Recent Advances in Antibiotic-Free Markers; Novel Technologies to Enhance Safe Human Food Production in the World. Mol Biotechnol 2022:10.1007/s12033-022-00609-7. [DOI: 10.1007/s12033-022-00609-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022]
|
9
|
Stellmach H, Hose R, Räde A, Marillonnet S, Hause B. A New Set of Golden-Gate-Based Organelle Marker Plasmids for Colocalization Studies in Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:2620. [PMID: 36235483 PMCID: PMC9572143 DOI: 10.3390/plants11192620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
In vivo localization of proteins using fluorescence-based approaches by fusion of the protein of interest (POI) to a fluorescent protein is a cost- and time-effective tool to gain insights into its physiological function in a plant cell. Determining the proper localization, however, requires the co-expression of defined organelle markers (OM). Several marker sets are available but, so far, the procedure requires successful co-transformation of POI and OM into the same cell and/or several cloning steps. We developed a set of vectors containing markers for basic cell organelles that enables the insertion of the gene of interest (GOI) by a single cloning step using the Golden Gate cloning approach and resulting in POI-GFP fusions. The set includes markers for plasma membrane, tonoplast, nucleus, endoplasmic reticulum, Golgi apparatus, peroxisomes, plastids, and mitochondria, all labelled with mCherry. Most of them were derived from well-established marker sets, but those localized in plasma membrane and tonoplast were improved by using different proteins. The final vectors are usable for localization studies in isolated protoplasts and for transient transformation of leaves of Nicotiana benthamiana. Their functionality is demonstrated using two enzymes involved in biosynthesis of jasmonic acid and located in either plastids or peroxisomes.
Collapse
|
10
|
Ma L, Jiang H, Ren YY, Yang JW, Han Y, Si HJ, Prusky D, Bi Y, Wang Y. Overexpression of StCDPK23 promotes wound healing of potato tubers by regulating StRbohs. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:279-289. [PMID: 35724622 DOI: 10.1016/j.plaphy.2022.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/21/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Calcium-dependent protein kinase (CDPK) is a Ca2+ sensor that can phosphorylate and regulate respiratory burst oxidase homolog (Rboh), inducing the production of O2-. However, little is known about how StCDPK23 affects ROS production in the deposition of suberin at potato tuber wounds by regulating StRbohs. In this study, we found that StCDPK23 was induced significantly by the wound in potato tubers, which contains a typical CDPK structure, and was highly homologous to AtCDPK13 in Arabidopsis. Subcellular localization of results showed that StCDPK23 was located in the nucleus and plasma membrane of N. benthamiana epidermis cells. StCDPK23-overexpressing plants and tubers were obtained via Agrobacterium transformation. The expression of StCDPK23 was significantly upregulated in the overexpressing tubers during healing and increased 2.3-fold at 5 d. The expression levels of StRbohs (A-E) were also upregulated in the overexpressing tubers. Among them, StrbohA showed significant expression in the early stage of healing, which was 16.3-fold higher than that of the wild-type tubers at 8 h of healing. Moreover, the overexpressing tubers produced more O2- and H2O2, which are 1.1-fold and 3.5-fold higher than that of the wild-type at 8 h, respectively. More SPP deposition was observed at the wounds of the overexpressing tubers. The thickness of SPP cell layers was 53.2% higher than that of the wild-type after 3 d of the wound. It is suggested that StCDPK23 may participate in the wound healing of potato tubers by regulating Strbohs, which mainly contributes to H2O2 production during healing.
Collapse
Affiliation(s)
- Li Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Hong Jiang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ying-Yue Ren
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jiang-Wei Yang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ye Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, China
| | - Huai-Jun Si
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Dov Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, China; Department of Postharvest Science, Agricultural Research Organization, Rishon LeZion, 7505101, Israel
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Yi Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
11
|
Meng F, Zhao Q, Zhao X, Yang C, Liu R, Pang J, Zhao W, Wang Q, Liu M, Zhang Z, Kong Z, Liu J. A rice protein modulates endoplasmic reticulum homeostasis and coordinates with a transcription factor to initiate blast disease resistance. Cell Rep 2022; 39:110941. [PMID: 35705042 DOI: 10.1016/j.celrep.2022.110941] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 02/26/2022] [Accepted: 05/19/2022] [Indexed: 11/03/2022] Open
Abstract
Endoplasmic reticulum (ER) homeostasis is essential for plants to manage responses under environmental stress. Plant immune activation requires the ER, but how ER homeostasis is associated with plant immune activation is largely unexplored. Here we find that transcription of an HVA22 family gene, OsHLP1 (HVA22-like protein 1), is induced by Magnaporthe oryzae infection. Overexpression of OsHLP1 significantly enhances blast disease resistance but impairs ER morphology in rice (Oryza sativa), resulting in enhanced sensitivity to ER stress. OsHLP1 interacts with the NAC (NAM, ATAF, and CUC) transcription factor OsNTL6 at the ER. OsNTL6 localizes to the ER and is relocated to the nucleus after cleavage of the transmembrane domain. OsHLP1 suppresses OsNTL6 protein accumulation, whereas OsNTL6 counteracts OsHLP1 by alleviating sensitivity to ER stress and decreasing disease resistance in OsHLP1 overexpression plants. These findings unravel a mechanism whereby OsHLP1 promotes disease resistance by compromising ER homeostasis when plants are infected by pathogens.
Collapse
Affiliation(s)
- Fanwei Meng
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Qiqi Zhao
- School of Life Sciences, University of Inner Mongolia, Hohhot 010021, China
| | - Xia Zhao
- MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Chao Yang
- MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Rui Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinhuan Pang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wensheng Zhao
- MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Qi Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Muxing Liu
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhengguang Zhang
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Liu
- MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
12
|
Su Y, Wang P, Lu S, Chen B. Molecular cloning, bioinformatics analysis, and transient expression of MdAux/IAA28 in apple (Malus domestic). GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Ning N, Xie X, Yu H, Mei J, Li Q, Zuo S, Wu H, Liu W, Li Z. Plant Peroxisome-Targeting Effector MoPtep1 Is Required for the Virulence of Magnaporthe oryzae. Int J Mol Sci 2022; 23:2515. [PMID: 35269662 PMCID: PMC8910473 DOI: 10.3390/ijms23052515] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
Rice blast caused by Magnaporthe oryzae is one of the most serious fungous diseases in rice. In the past decades, studies have reported that numerous M. oryzae effectors were secreted into plant cells to facilitate inoculation. Effectors target host proteins to assist the virulence of pathogens via the localization of specific organelles, such as the nucleus, endoplasmic reticulum, chloroplast, etc. However, studies on the pathogenesis of peroxisome-targeting effectors are still limited. In our previous study, we analyzed the subcellular localization of candidate effectors from M. oryzae using the agrobacterium-mediated transient expression system in tobacco and found that MoPtep1 (peroxisomes-targeted effector protein 1) localized in plant peroxisomes. Here, we proved that MoPtep1 was induced in the early stage of the M. oryzae infection and positively regulated the pathogenicity, while it did not affect the vegetative growth of mycelia. Subcellular localization results showed that MoPtep1 was localized in the plant peroxisomes with a signal peptide and a cupredoxin domain. Sequence analysis indicated that the homologous protein of MoPtep1 in plant-pathogenic fungi was evolutionarily conserved. Furthermore, MoPtep1 could suppress INF1-induced cell death in tobacco, and the targeting host proteins were identified using the Y2H system. Our results suggested that MoPtep1 is an important pathogenic effector in rice blast.
Collapse
Affiliation(s)
- Na Ning
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, China; (N.N.); (X.X.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.Y.); (J.M.); (H.W.)
| | - Xin Xie
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, China; (N.N.); (X.X.)
| | - Haiyue Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.Y.); (J.M.); (H.W.)
| | - Jie Mei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.Y.); (J.M.); (H.W.)
| | - Qianqian Li
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China;
| | - Shimin Zuo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China;
| | - Hanxiang Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.Y.); (J.M.); (H.W.)
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.Y.); (J.M.); (H.W.)
| | - Zhiqiang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.Y.); (J.M.); (H.W.)
| |
Collapse
|
14
|
Qiu T, Zhao X, Feng H, Qi L, Yang J, Peng Y, Zhao W. OsNBL3, a mitochondrion-localized pentatricopeptide repeat protein, is involved in splicing nad5 intron 4 and its disruption causes lesion mimic phenotype with enhanced resistance to biotic and abiotic stresses. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2277-2290. [PMID: 34197672 PMCID: PMC8541779 DOI: 10.1111/pbi.13659] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/08/2021] [Accepted: 06/27/2021] [Indexed: 05/06/2023]
Abstract
Lesion mimic mutants are used to elucidate mechanisms controlling plant responses to pathogen attacks and environmental stresses. Although dozens of genes had been functionally demonstrated to be involved in lesion mimic phenotype in several plant species, the molecular mechanisms underlying the hypersensitive response are largely unknown. Here, a rice (Oryza sativa) lesion mimic mutant natural blight leaf 3 (nbl3) was identified from T-DNA insertion lines. The causative gene, OsNBL3, encodes a mitochondrion-localized pentatricopeptide repeat (PPR) protein. The nbl3 mutant exhibited spontaneous cell death response and H2 O2 accumulation, and displayed enhanced resistance to the fungal and bacterial pathogens Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae. This resistance was consistent with the up-regulation of several defence-related genes; thus, defence responses were induced in nbl3. RNA interference lines of OsNBL3 exhibited enhanced disease resistance similar to that of nbl3, while the disease resistance in overexpression lines did not differ from that of the wild type. In addition, nbl3 displayed improved tolerance to salt, accompanied by up-regulation of several salt-associated marker genes. OsNBL3 was found to mainly participate in the splicing of mitochondrial gene nad5 intron 4. Disruption of OsNBL3 leads to the reduction in complex I activity, the elevation of alternative respiratory pathways and the destruction of mitochondrial morphology. Overall, the results demonstrated that the PPR protein-coding gene OsNBL3 is essential for mitochondrial development and functions, and its disruption causes the lesion mimic phenotype and enhances disease resistance and tolerance to salt in rice.
Collapse
Affiliation(s)
- Tiancheng Qiu
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green ManagementDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Xiaosheng Zhao
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green ManagementDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Huijing Feng
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green ManagementDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Linlu Qi
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green ManagementDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Jun Yang
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green ManagementDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| | - You‐Liang Peng
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green ManagementDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Wensheng Zhao
- State Key Laboratory of Agrobiotechnology, MOA Key Lab of Pest Monitoring and Green ManagementDepartment of Plant PathologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
15
|
Chincinska IA. Leaf infiltration in plant science: old method, new possibilities. PLANT METHODS 2021; 17:83. [PMID: 34321022 PMCID: PMC8316707 DOI: 10.1186/s13007-021-00782-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/11/2021] [Indexed: 05/07/2023]
Abstract
The penetration of substances from the surface to deep inside plant tissues is called infiltration. Although various plant tissues may be effectively saturated with externally applied fluid, most described infiltration strategies have been developed for leaves. The infiltration process can be spontaneous (under normal atmospheric pressure) or forced by a pressure difference generated between the lamina surface and the inside of the leaf. Spontaneous infiltration of leaf laminae is possible with the use of liquids with sufficiently low surface tension. Forced infiltration is most commonly performed using needle-less syringes or vacuum pumps.Leaf infiltration is widely used in plant sciences for both research and application purposes, usually as a starting technique to obtain plant material for advanced experimental procedures. Leaf infiltration followed by gentle centrifugation allows to obtain the apoplastic fluid for further analyses including various omics. In studies of plant-microorganism interactions, infiltration is used for the controlled introduction of bacterial suspensions into leaf tissues or for the isolation of microorganisms inhabiting apoplastic spaces of leaves. The methods based on infiltration of target tissues allow the penetration of dyes, fixatives and other substances improving the quality of microscopic imaging. Infiltration has found a special application in plant biotechnology as a method of transient transformation with the use of Agrobacterium suspension (agroinfiltration) enabling genetic modifications of mature plant leaves, including the local induction of mutations using genome editing tools. In plant nanobiotechnology, the leaves of the target plants can be infiltrated with suitably prepared nanoparticles, which can act as light sensors or increase the plant resistance to environmental stress. In addition the infiltration has been also intensively studied due to the undesirable effects of this phenomenon in some food technology sectors, such as accidental contamination of leafy greens with pathogenic bacteria during the vacuum cooling process.This review, inspired by the growing interest of the scientists from various fields of plant science in the phenomenon of infiltration, provides the description of different infiltration methods and summarizes the recent applications of this technique in plant physiology, phytopathology and plant (nano-)biotechnology.
Collapse
Affiliation(s)
- Izabela Anna Chincinska
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk, ul. Wita Stwosza 59, 80-308, Gdańsk, Poland.
| |
Collapse
|
16
|
Ye LX, Zhang JX, Hou XJ, Qiu MQ, Wang WF, Zhang JX, Hu CG, Zhang JZ. A MADS-Box Gene CiMADS43 Is Involved in Citrus Flowering and Leaf Development through Interaction with CiAGL9. Int J Mol Sci 2021; 22:ijms22105205. [PMID: 34069068 PMCID: PMC8156179 DOI: 10.3390/ijms22105205] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
MADS-box genes are involved in various developmental processes including vegetative development, flower architecture, flowering, pollen formation, seed and fruit development. However, the function of most MADS-box genes and their regulation mechanism are still unclear in woody plants compared with model plants. In this study, a MADS-box gene (CiMADS43) was identified in citrus. Phylogenetic and sequence analysis showed that CiMADS43 is a GOA-like Bsister MADS-box gene. It was localized in the nucleus and as a transcriptional activator. Overexpression of CiMADS43 promoted early flowering and leaves curling in transgenic Arabidopsis. Besides, overexpression or knockout of CiMADS43 also showed leaf curl phenotype in citrus similar to that of CiMADS43 overexpressed in Arabidopsis. Protein–protein interaction found that a SEPALLATA (SEP)-like protein (CiAGL9) interacted with CiMADS43 protein. Interestingly, CiAGL9 also can bind to the CiMADS43 promoter and promote its transcription. Expression analysis also showed that these two genes were closely related to seasonal flowering and the development of the leaf in citrus. Our findings revealed the multifunctional roles of CiMADS43 in the vegetative and reproductive development of citrus. These results will facilitate our understanding of the evolution and molecular mechanisms of MADS-box genes in citrus.
Collapse
|
17
|
Qu M, Zhang Z, Liang T, Niu P, Wu M, Chi W, Chen ZQ, Chen ZJ, Zhang S, Chen S. Overexpression of a methyl-CpG-binding protein gene OsMBD707 leads to larger tiller angles and reduced photoperiod sensitivity in rice. BMC PLANT BIOLOGY 2021; 21:100. [PMID: 33602126 PMCID: PMC7893954 DOI: 10.1186/s12870-021-02880-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/04/2021] [Indexed: 05/19/2023]
Abstract
BACKGROUND Methyl-CpG-binding domain (MBD) proteins play important roles in epigenetic gene regulation, and have diverse molecular, cellular, and biological functions in plants. MBD proteins have been functionally characterized in various plant species, including Arabidopsis, wheat, maize, and tomato. In rice, 17 sequences were bioinformatically predicted as putative MBD proteins. However, very little is known regarding the function of MBD proteins in rice. RESULTS We explored the expression patterns of the rice OsMBD family genes and identified 13 OsMBDs with active expression in various rice tissues. We further characterized the function of a rice class I MBD protein OsMBD707, and demonstrated that OsMBD707 is constitutively expressed and localized in the nucleus. Transgenic rice overexpressing OsMBD707 displayed larger tiller angles and reduced photoperiod sensitivity-delayed flowering under short day (SD) and early flowering under long day (LD). RNA-seq analysis revealed that overexpression of OsMBD707 led to reduced photoperiod sensitivity in rice and to expression changes in flowering regulator genes in the Ehd1-Hd3a/RFT1 pathway. CONCLUSION The results of this study suggested that OsMBD707 plays important roles in rice growth and development, and should lead to further studies on the functions of OsMBD proteins in growth, development, or other molecular, cellular, and biological processes in rice.
Collapse
Affiliation(s)
- Mengyu Qu
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Zhujian Zhang
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tingmin Liang
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Peipei Niu
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mingji Wu
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Wenchao Chi
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Zi-Qiang Chen
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Zai-Jie Chen
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Shubiao Zhang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Songbiao Chen
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
| |
Collapse
|
18
|
Pan Z, Liu M, Zhao H, Tan Z, Liang K, Sun Q, Gong D, He H, Zhou W, Qiu F. ZmSRL5 is involved in drought tolerance by maintaining cuticular wax structure in maize. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1895-1909. [PMID: 32965083 DOI: 10.1111/jipb.12982] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/10/2020] [Indexed: 05/20/2023]
Abstract
Cuticular wax is a natural barrier on terrestrial plant organs, which protects plants from damages caused by a variety of stresses. Here, we report the identification and functional characterization of a cuticular-wax-related gene, Zea mays L. SEMI-ROLLED LEAF 5 (ZmSRL5). The loss-of-function mutant srl5, which was created by a 3,745 bp insertion in the first intron that led to the premature transcript, exhibited abnormal wax crystal morphology and distribution, which, in turn, caused the pleiotropic phenotypes including increased chlorophyll leaching and water loss rate, decreased leaf temperature, sensitivity to drought, as well as semi-rolled mature leaves. However, total wax amounts showed no significant difference between wild type and semi-rolled leaf5 (srl5) mutant. The phenotype of srl5 was confirmed through the generation of two allelic mutants using CRISPR/Cas9. ZmSRL5 encodes a CASPARIAN-STRIP-MEMBRANE-DOMAIN-LIKE (CASPL) protein located in plasma membrane, and highly expressed in developing leaves. Further analysis showed that the expressions of the most wax related genes were not affected or slightly altered in srl5. This study, thus, primarily uncovers that ZmSRL5 is required for the structure formation of the cuticular wax and could increase the drought tolerance by maintaining the proper cuticular wax structure in maize.
Collapse
Affiliation(s)
- Zhenyuan Pan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Min Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hailiang Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zengdong Tan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kun Liang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qin Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dianming Gong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haijun He
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Wenqi Zhou
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Fazhan Qiu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
19
|
Cao Y, Cai W, Chen X, Chen M, Chu J, Liang W, Persson S, Liu Z, Zhang D. Bright Fluorescent Vacuolar Marker Lines Allow Vacuolar Tracing Across Multiple Tissues and Stress Conditions in Rice. Int J Mol Sci 2020; 21:E4203. [PMID: 32545623 PMCID: PMC7352260 DOI: 10.3390/ijms21124203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/27/2020] [Accepted: 06/10/2020] [Indexed: 11/17/2022] Open
Abstract
The vacuole is indispensable for cells to maintain their water potential and to respond to environmental changes. Nevertheless, investigations of vacuole morphology and its functions have been limited to Arabidopsis thaliana with few studies in the model crop rice (Oryza sativa). Here, we report the establishment of bright rice vacuole fluorescent reporter systems using OsTIP1;1, a tonoplast water channel protein, fused to either an enhanced green fluorescent protein or an mCherry red fluorescent protein. We used the corresponding transgenic rice lines to trace the vacuole morphology in roots, leaves, anthers, and pollen grains. Notably, we observed dynamic changes in vacuole morphologies in pollen and root epidermis that corresponded to their developmental states as well as vacuole shape alterations in response to abiotic stresses. Our results indicate that the application of our vacuole markers may aid in understanding rice vacuole function and structure across different tissues and environmental conditions in rice.
Collapse
Affiliation(s)
- Yiran Cao
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.C.); (W.C.); (X.C.); (M.C.); (J.C.); (W.L.); (S.P.)
| | - Wenguo Cai
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.C.); (W.C.); (X.C.); (M.C.); (J.C.); (W.L.); (S.P.)
- Flow Station of Post-doctoral Scientific Research, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaofei Chen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.C.); (W.C.); (X.C.); (M.C.); (J.C.); (W.L.); (S.P.)
| | - Mingjiao Chen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.C.); (W.C.); (X.C.); (M.C.); (J.C.); (W.L.); (S.P.)
| | - Jianjun Chu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.C.); (W.C.); (X.C.); (M.C.); (J.C.); (W.L.); (S.P.)
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.C.); (W.C.); (X.C.); (M.C.); (J.C.); (W.L.); (S.P.)
| | - Staffan Persson
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.C.); (W.C.); (X.C.); (M.C.); (J.C.); (W.L.); (S.P.)
- School of Biosciences, University of Melbourne, Parkville Victoria 3010, Melbourne, Australia
| | - Zengyu Liu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.C.); (W.C.); (X.C.); (M.C.); (J.C.); (W.L.); (S.P.)
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.C.); (W.C.); (X.C.); (M.C.); (J.C.); (W.L.); (S.P.)
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia 5064, Australia
| |
Collapse
|