1
|
Alloggia FP, Bafumo RF, Ramírez DA, Heredia Martín JP, Maza MA, Camargo AB. Enhancement of yield and functional quality of Brassica microgreens: Effects of fertilization and substrate. Food Chem 2025; 470:142594. [PMID: 39740431 DOI: 10.1016/j.foodchem.2024.142594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/29/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025]
Abstract
Brassica microgreens are rich in bioactive compounds, whose concentrations are influenced by environmental and cultivation conditions. This study evaluates the impact of different substrates and fertigation treatments, including sulfur, on the yield, morphology, and phytochemical profile of radish, red cabbage, white mustard, and red mizuna microgreens. Phytochemicals analyzed included total phenolic compounds (TPC), ascorbic acid (AA), and glucosinolates. Nutrient solutions (NS) increased yield by 30 % compared to distilled water control. Nutrient-rich substrates significantly increased radish and red mizuna yields. Both substrate and fertigation treatments significantly affected morphology. AA and TPC increased significantly (up to 43 %) under restrictive fertigation and substrate conditions. Substrates and NS did not significantly affected glucosinolate levels, but changed their profiles by increasing indole glucosinolates with distilled water. Conversely to AA and TPC, NS improved yield without affecting glucosinolate levels by dilution in higher biomass. Thus, agricultural practices provide valuable tools for modulating the functionality of microgreens.
Collapse
Affiliation(s)
- Florencia P Alloggia
- Laboratorio de Cromatografía para Agroalimentos, Instituto de Biología Agrícola de Mendoza, CONICET- Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Almte. Brown 500, Chacras de Coria, Mendoza, Argentina
| | - Roberto F Bafumo
- Laboratorio de Cromatografía para Agroalimentos, Instituto de Biología Agrícola de Mendoza, CONICET- Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Almte. Brown 500, Chacras de Coria, Mendoza, Argentina
| | - Daniela A Ramírez
- Laboratorio de Cromatografía para Agroalimentos, Instituto de Biología Agrícola de Mendoza, CONICET- Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Almte. Brown 500, Chacras de Coria, Mendoza, Argentina; Cátedra de Química Analítica e Instrumental, Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Almte. Brown 500, Chacras de Coria, Mendoza, Argentina
| | - Juan P Heredia Martín
- Laboratorio de Cromatografía para Agroalimentos, Instituto de Biología Agrícola de Mendoza, CONICET- Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Almte. Brown 500, Chacras de Coria, Mendoza, Argentina
| | - Marcos A Maza
- Laboratorio de Cromatografía para Agroalimentos, Instituto de Biología Agrícola de Mendoza, CONICET- Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Almte. Brown 500, Chacras de Coria, Mendoza, Argentina; Cátedra de Enología I, Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Almte. Brown 500, Chacras de Coria, Mendoza, Argentina
| | - Alejandra B Camargo
- Laboratorio de Cromatografía para Agroalimentos, Instituto de Biología Agrícola de Mendoza, CONICET- Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Almte. Brown 500, Chacras de Coria, Mendoza, Argentina; Cátedra de Química Analítica e Instrumental, Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Almte. Brown 500, Chacras de Coria, Mendoza, Argentina.
| |
Collapse
|
2
|
Seth T, Mishra GP, Chattopadhyay A, Deb Roy P, Devi M, Sahu A, Sarangi SK, Mhatre CS, Lyngdoh YA, Chandra V, Dikshit HK, Nair RM. Microgreens: Functional Food for Nutrition and Dietary Diversification. PLANTS (BASEL, SWITZERLAND) 2025; 14:526. [PMID: 40006785 PMCID: PMC11859409 DOI: 10.3390/plants14040526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025]
Abstract
Microgreens are tender, edible seedlings harvested 7-21 days after germination containing a central stem, cotyledons, and true leaves. Known as a fresh, ready-to-eat functional food, they are mostly rich in vitamins, antioxidants, bioactive compounds, and minerals, with distinctive flavors, colors, and textures. These attributes make microgreens a valuable component in nutrition and health research. In countries like India, where low-income households spend 50-80% of their income on food, micronutrient deficiencies are common, particularly among women. Indian women, facing a double burden of malnutrition, experience both underweight (18.7%) and obesity (24.0%) issues, with 57% suffering from anemia. Women's unique health requirements vary across life stages, from infancy to their elderly years, and they require diets rich in vitamins and minerals to ensure micronutrient adequacy. Microgreens, with their high nutrient density, hold promise in addressing these deficiencies. Fresh and processed microgreens based products can enhance food variety, nutritive value, and appeal. Rethinking agriculture and horticulture as tools to combat malnutrition and reduce the risk of non-communicable diseases (NCDs) is vital for achieving nutritional security and poverty reduction. This review compiles recent research on microgreens, focusing on their nutrient profiles, health benefits, suitable crops, substrates, seed density, growing methods, sensory characteristics, and applications as fresh and value-added products. It offers valuable insights into sustainable agriculture and the role of microgreens in enhancing human nutrition and health.
Collapse
Affiliation(s)
- Tania Seth
- ICAR-Central Institute for Women in Agriculture, Bhubaneswar 751 003, Odisha, India; (M.D.); (A.S.); (C.S.M.)
| | - Gyan Prakash Mishra
- ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110 012, Delhi, India;
| | - Arup Chattopadhyay
- Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741 252, West Bengal, India;
| | - Partha Deb Roy
- ICAR-Indian Institute of Water Management, Bhubaneswar 751 023, Odisha, India;
| | - Mridula Devi
- ICAR-Central Institute for Women in Agriculture, Bhubaneswar 751 003, Odisha, India; (M.D.); (A.S.); (C.S.M.)
| | - Ankita Sahu
- ICAR-Central Institute for Women in Agriculture, Bhubaneswar 751 003, Odisha, India; (M.D.); (A.S.); (C.S.M.)
| | - Sukanta Kumar Sarangi
- ICAR-Central Institute for Women in Agriculture, Bhubaneswar 751 003, Odisha, India; (M.D.); (A.S.); (C.S.M.)
| | - Chaitrali Shashank Mhatre
- ICAR-Central Institute for Women in Agriculture, Bhubaneswar 751 003, Odisha, India; (M.D.); (A.S.); (C.S.M.)
| | - Yvonne Angel Lyngdoh
- ICAR-Central Potato Research Institute, Regional Station, Shillong 793 009, Meghalaya, India;
| | - Visalakshi Chandra
- ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram 695 017, Kerala, India;
| | - Harsh Kumar Dikshit
- ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110 012, Delhi, India;
| | | |
Collapse
|
3
|
Wu W, Chen L, Liang R, Huang S, Li X, Huang B, Luo H, Zhang M, Wang X, Zhu H. The role of light in regulating plant growth, development and sugar metabolism: a review. FRONTIERS IN PLANT SCIENCE 2025; 15:1507628. [PMID: 39840366 PMCID: PMC11747448 DOI: 10.3389/fpls.2024.1507628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025]
Abstract
Light provides the necessary energy for plant photosynthesis, which allows plants to produce organic matter and energy conversion, during plant growth and development. Light provides material energy to plants as the basis for cell division and differentiation, chlorophyll synthesis, tissue growth and stomatal movement, and light intensity, photoperiod, and light quality play important roles in these processes. There are several regulatory mechanisms involved in sugar metabolism in plants, and light, as one of the regulatory factors, affects cell wall composition, starch granules, sucrose synthesis, and vascular bundle formation. Similarly, sugar species and genes are affected in the context of light-regulated sugar metabolism. We searched the available databases and found that there are fewer relevant reviews. Therefore, this paper provides a summary of the effects of light on plant growth and development and sugar metabolism, further elaborates on the mechanisms of light effects on plants, and provides some new insights for a better understanding of how plant growth is regulated under different light conditions.
Collapse
Affiliation(s)
- Wenyuan Wu
- Guangxi Zhuang and Yao Ethnic Medicine Key Laboratory, Guangxi University of Chinese Medicine, Nanning, China
| | - Long Chen
- Guangxi Zhuang and Yao Ethnic Medicine Key Laboratory, Guangxi University of Chinese Medicine, Nanning, China
- Nutrition and Bromatology Group, Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) – CITEXVI, Universidade de Vigo, Vigo, Spain
| | - Rentao Liang
- Guangxi Zhuang and Yao Ethnic Medicine Key Laboratory, Guangxi University of Chinese Medicine, Nanning, China
| | - Shiping Huang
- Guangxi Zhuang and Yao Ethnic Medicine Key Laboratory, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiang Li
- Guangxi Zhuang and Yao Ethnic Medicine Key Laboratory, Guangxi University of Chinese Medicine, Nanning, China
| | - Bilei Huang
- Guangxi Zhuang and Yao Ethnic Medicine Key Laboratory, Guangxi University of Chinese Medicine, Nanning, China
| | - Huimin Luo
- Guangxi Zhuang and Yao Ethnic Medicine Key Laboratory, Guangxi University of Chinese Medicine, Nanning, China
| | - Miao Zhang
- Guangxi Zhuang and Yao Ethnic Medicine Key Laboratory, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiaoxun Wang
- Guangxi Zhuang and Yao Ethnic Medicine Key Laboratory, Guangxi University of Chinese Medicine, Nanning, China
| | - Hua Zhu
- Guangxi Zhuang and Yao Ethnic Medicine Key Laboratory, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
4
|
Singh A, Singh J, Kaur S, Gunjal M, Kaur J, Nanda V, Ullah R, Ercisli S, Rasane P. Emergence of microgreens as a valuable food, current understanding of their market and consumer perception: A review. Food Chem X 2024; 23:101527. [PMID: 38974201 PMCID: PMC11225695 DOI: 10.1016/j.fochx.2024.101527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 07/09/2024] Open
Abstract
Green leafy vegetables, especially microgreens are gaining popularity due to their high nutritional profiles, rich phytochemical content, and intense flavors. This review explores the growing commercial market for microgreens, especially in upscale dining and premium grocery outlets, highlighting consumer perceptions and their effect on market dynamics. Apart from these, the effect of modern agricultural methods that maximize the growth of microgreens is also examined. The value is anticipated to increase significantly, according to market predictions, from $1.7 billion in 2022 to $2.61 billion by 2029. Positive consumer views on microgreens health benefits drive this growth, although challenges such as varying levels of consumer awareness and income disparities affect sales. The review underscores the need for targeted research and strategic initiatives to enhance consumer understanding and improve cultivation methods to support market expansion in upcoming years.
Collapse
Affiliation(s)
- Aishvina Singh
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Jyoti Singh
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Sawinder Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Mahendra Gunjal
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Jaspreet Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Vikas Nanda
- Sant Longowal Institute of Engineering and Technology, Sangrur, Punjab 148106, India
| | - Riaz Ullah
- Medicinal Aromatic and Poisonous Plants Research Center College of Pharmacy, King Saud University Riyadh, Saudi Arabia
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum 25240, Türkiye
| | - Prasad Rasane
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, 144411, Punjab, India
| |
Collapse
|
5
|
Skała E, Olszewska MA, Tabaka P, Kicel A. Light-Emitting Diodes and Liquid System Affect the Caffeoylquinic Acid Derivative and Flavonoid Production and Shoot Growth of Rhaponticum carthamoides (Willd.) Iljin. Molecules 2024; 29:2145. [PMID: 38731636 PMCID: PMC11085107 DOI: 10.3390/molecules29092145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Plant in vitro cultures can be an effective tool in obtaining desired specialized metabolites. The purpose of this study was to evaluate the effect of light-emitting diodes (LEDs) on phenolic compounds in Rhaponticum carthamoides shoots cultured in vitro. R. carthamoides is an endemic and medicinal plant at risk of extinction due to the massive harvesting of its roots and rhizomes from the natural environment. The shoots were cultured on an agar-solidified and liquid-agitated Murashige and Skoog's medium supplemented with 0.1 mg/L of indole-3-acetic acid (IAA) and 0.5 mg/L of 6-benzyladenine (BA). The effect of the medium and different treatments of LED lights (blue (BL), red (RL), white (WL), and a combination of red and blue (R:BL; 7:3)) on R. carthamoides shoot growth and its biosynthetic potential was observed. Medium type and the duration of LED light exposure did not affect the proliferation rate of shoots, but they altered the shoot morphology and specialized metabolite accumulation. The liquid medium and BL light were the most beneficial for the caffeoylquinic acid derivatives (CQAs) production, shoot growth, and biomass increment. The liquid medium and BL light enhanced the content of the sum of all identified CQAs (6 mg/g DW) about three-fold compared to WL light and control, fluorescent lamps. HPLC-UV analysis confirmed that chlorogenic acid (5-CQA) was the primary compound in shoot extracts regardless of the type of culture and the light conditions (1.19-3.25 mg/g DW), with the highest level under R:BL light. BL and RL lights were equally effective. The abundant component was also 3,5-di-O-caffeoylquinic acid, accompanied by 4,5-di-O-caffeoylquinic acid, a tentatively identified dicaffeoylquinic acid derivative, and a tricaffeoylquinic acid derivative 2, the contents of which depended on the LED light conditions.
Collapse
Affiliation(s)
- Ewa Skała
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Monika A. Olszewska
- Department of Pharmacognosy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (M.A.O.); (A.K.)
| | - Przemysław Tabaka
- Institute of Electrical Power Engineering, Lodz University of Technology, 90-537 Lodz, Poland;
| | - Agnieszka Kicel
- Department of Pharmacognosy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (M.A.O.); (A.K.)
| |
Collapse
|
6
|
Belošević SD, Milinčić DD, Gašić UM, Kostić AŽ, Salević-Jelić AS, Marković JM, Đorđević VB, Lević SM, Pešić MB, Nedović VA. Broccoli, Amaranth, and Red Beet Microgreen Juices: The Influence of Cold-Pressing on the Phytochemical Composition and the Antioxidant and Sensory Properties. Foods 2024; 13:757. [PMID: 38472870 DOI: 10.3390/foods13050757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The aim of this study was to analyze in detail the phytochemical composition of amaranth (AMJ), red beet (RBJ), and broccoli (BCJ) microgreens and cold-pressed juices and to evaluate the antioxidant and sensory properties of the juices. The results showed the presence of various phenolic compounds in all samples, namely betalains in amaranth and red beet microgreens, while glucosinolates were only detected in broccoli microgreens. Phenolic acids and derivatives dominated in amaranth and broccoli microgreens, while apigenin C-glycosides were most abundant in red beet microgreens. Cold-pressing of microgreens into juice significantly altered the profiles of bioactive compounds. Various isothiocyanates were detected in BCJ, while more phenolic acid aglycones and their derivatives with organic acids (quinic acid and malic acid) were identified in all juices. Microgreen juices exhibited good antioxidant properties, especially ABTS•+ scavenging activity and ferric reducing antioxidant power. Microgreen juices had mild acidity, low sugar content, and good sensory acceptability and quality with the typical flavors of the respective microgreen species. Cold-pressed microgreen juices from AMJ, RBJ, and BCJ represent a rich source of bioactive compounds and can be characterized as novel functional products.
Collapse
Affiliation(s)
- Spasoje D Belošević
- Food Biotechnology Laboratory, Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Danijel D Milinčić
- Food Chemistry and Biochemistry Laboratory, Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Uroš M Gašić
- Department of Plant Physiology, Institute for Biological Research Siniša Stanković-National Institute of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Aleksandar Ž Kostić
- Food Chemistry and Biochemistry Laboratory, Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Ana S Salević-Jelić
- Food Biotechnology Laboratory, Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Jovana M Marković
- Food Biotechnology Laboratory, Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Verica B Đorđević
- Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Steva M Lević
- Food Biotechnology Laboratory, Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Mirjana B Pešić
- Food Chemistry and Biochemistry Laboratory, Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Viktor A Nedović
- Food Biotechnology Laboratory, Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| |
Collapse
|
7
|
Soufi HR, Roosta HR, Hamidpour M. The plant growth, water and electricity consumption, and nutrients uptake are influenced by different light spectra and nutrition of lettuce. Sci Rep 2023; 13:20766. [PMID: 38007543 PMCID: PMC10676428 DOI: 10.1038/s41598-023-48284-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/24/2023] [Indexed: 11/27/2023] Open
Abstract
The aim of this study was to investigate the effect of different replacement methods of nutrient solution (complete replacement, electrical conductivity (EC)- based replacement, and replacing based on the plant needs) and different LED light spectra (monochromic white, red, blue, and a combination of red/blue) on the uptake of mineral nutrients, water and electricity consumption and biomass production of two varieties of lettuce (Lollo Rossa and Lollo Bionda; Lactuca sativa var. crispa) in the hydroponic systems. The results showed that replacement methods based on the plant needs and based on EC increased shoot fresh mass and yield index in the NFT system. Also, results showed that the combination of red/blue light increased shoot fresh mass and yield index in the NFT system and in the plant factory under treatment by replacement method based on plant needs. Increasing the concentrations of N, K, and Zn and loss of Fe in nutrient solution were observed in all three replacement methods of nutrient solution in the NFT system. Water consumption was decreased under plant nutrition based on plant needs and based on EC. In the plant factory, the application of LED light spectrum also decreased electricity consumption and cost against fluorescent lamps. In general, it is concluded that nutrient solution replacement based on the plant needs and based on EC and the use of different LED light spectra (especially the combination of red and blue light) can be used to reduce the consumption of water and nutrients in the hydroponic cultivation of lettuce.
Collapse
Affiliation(s)
- Hamid Reza Soufi
- Department of Horticultural Sciences, Faculty of Agriculture, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran.
| | - Hamid Reza Roosta
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran.
| | - Mohsen Hamidpour
- Department of Soil Science and Engineering, Faculty of Agriculture, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
8
|
Sanyukta, Brar DS, Pant K, Kaur S, Nanda V, Nayik GA, Ramniwas S, Rasane P, Ercisli S. Comprehensive Analysis of Physicochemical, Functional, Thermal, and Morphological Properties of Microgreens from Different Botanical Sources. ACS OMEGA 2023; 8:29558-29567. [PMID: 37608870 PMCID: PMC10442067 DOI: 10.1021/acsomega.3c03429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/21/2023] [Indexed: 08/24/2023]
Abstract
Due to the significant increase in global pollution and a corresponding decrease in agricultural land, there is a growing demand for sustainable modes of modern agriculture that can provide nutritious food. In this regard, microgreens are an excellent option as they are loaded with nutrients and can be grown in controlled environments using various vertical farming approaches. Microgreens are salad crops that mature within 15-20 days, and they have tender leaves with an abundant nutritive value. Therefore, this study aims to explore the physicochemical, techno-functional, functional, thermal, and morphological characteristics of four botanical varieties of microgreens, including carrot (Daucus carota), spinach (Spinacia oleracea), bathua (Chenopodium album), and Bengal gram (Cicer arietinum), which are known for their exceptional nutritional benefits. Among the four botanical varieties of microgreens studied, bathua microgreens demonstrated the highest protein content (3.40%), water holding capacity (1.58 g/g), emulsion activity (56.37%), and emulsion stability (53.72%). On the other hand, Bengal gram microgreens had the highest total phenolic content (32.2 mg GAE/g), total flavonoid content (7.57 mg QE/100 g), and DPPH activity (90.60%). Fourier transform infrared spectroscopy analysis of all microgreens revealed the presence of alkanes, amines, and alcohols. Moreover, X-ray diffraction analysis indicated low crystallinity and high amorphousness in the microgreens. Particle size analysis showed that the median, modal, and mean sizes of the microgreens ranged from 110.327 to 952.393, 331.06 to 857.773, and 97.567 to 406.037 μm, respectively. As per the observations of the results, specific types of microgreens can be utilized as an ingredient in food processing industry, including bakery, confectionery, and more, making them a promising nutritive additive for consumers. This study sheds light on various food-based analytical parameters and offers a foundation for future research to fully harness the potential of microgreens as a novel and sustainable food source, benefiting both the industry and consumers alike.
Collapse
Affiliation(s)
- Sanyukta
- Department
of Food Engineering and Technology, Sant
Longowal Institute of Engineering and Technology, Longowal, 148106 Sangrur, Punjab, India
| | - Dilpreet Singh Brar
- Department
of Food Engineering and Technology, Sant
Longowal Institute of Engineering and Technology, Longowal, 148106 Sangrur, Punjab, India
| | - Kirty Pant
- Department
of Food Engineering and Technology, Sant
Longowal Institute of Engineering and Technology, Longowal, 148106 Sangrur, Punjab, India
| | - Sawinder Kaur
- Department
of Food Science and Nutrition, Lovely Professional
University, Phagwara 144001, Punjab, India
| | - Vikas Nanda
- Department
of Food Engineering and Technology, Sant
Longowal Institute of Engineering and Technology, Longowal, 148106 Sangrur, Punjab, India
| | - Gulzar Ahmad Nayik
- Department
of Food Science & Technology, Government
Degree College Shopian, Shopian 192303, Jammu and Kashmir, India
| | - Seema Ramniwas
- University
Centre for Research and Development, Chandigarh
University, Gharuan, Mohali 140413, Punjab, India
| | - Prasad Rasane
- Department
of Food Science and Nutrition, Lovely Professional
University, Phagwara 144001, Punjab, India
| | - Sezai Ercisli
- Department
of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
- HGF
Agro,
Ata Teknokent, TR-25240 Erzurum, Turkey
| |
Collapse
|
9
|
Fayezizadeh MR, Ansari NA, Sourestani MM, Hasanuzzaman M. Biochemical Compounds, Antioxidant Capacity, Leaf Color Profile and Yield of Basil (Ocimum sp.) Microgreens in Floating System. PLANTS (BASEL, SWITZERLAND) 2023; 12:2652. [PMID: 37514265 PMCID: PMC10386441 DOI: 10.3390/plants12142652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
Basil is a great source of phytochemicals such as polyphenols, vitamin C, anthocyanin, and flavonoids. In this work, the biochemical compounds, antioxidant capacity, leaf color profile, and yield of 21 cultivars and genotypes of basil microgreen were investigated. Results showed that the highest antioxidant potential composite index (APCI) was measured in Persian Ablagh genotype (70.30). Twenty-one basil genotypes were classified into four clusters, including cluster 1 (lowest antioxidant capacity and total phenolic compounds), cluster 2 (lowest anthocyanin, vitamin C and APCI index), cluster 3 (highest vitamin C, total phenolic compounds, antioxidant capacity and APCI index), and cluster 4 (highest levels of anthocyanin). The principal components analysis (PCA) of basil genotypes showed diversity in terms of phytochemical components, and F1, F2, F3, and F4 explained the variation at the rate of 78.12%. The average annual temperature of the origin of basil seeds plays an important role in the synthesis of antioxidant content. Most of the seeds with moderate origin had a higher APCI index. The Persian Ablagh genotype, Violeto, and Kapoor cultivars can be recommended, according to their APCI index and yield. These cultivars can be used individually or in different ratios to produce different biochemical substances with different concentrations for various purposes.
Collapse
Affiliation(s)
- Mohammad Reza Fayezizadeh
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz 61357-43311, Iran
| | - Naser Alemzadeh Ansari
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz 61357-43311, Iran
| | - Mohammad Mahmoudi Sourestani
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz 61357-43311, Iran
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
10
|
Hammock HA, Sams CE. Variation in supplemental lighting quality influences key aroma volatiles in hydroponically grown 'Italian Large Leaf' basil. FRONTIERS IN PLANT SCIENCE 2023; 14:1184664. [PMID: 37434608 PMCID: PMC10332322 DOI: 10.3389/fpls.2023.1184664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/30/2023] [Indexed: 07/13/2023]
Abstract
The spectral quality of supplemental greenhouse lighting can directly influence aroma volatiles and secondary metabolic resource allocation (i.e., specific compounds and classes of compounds). Research is needed to determine species-specific secondary metabolic responses to supplemental lighting (SL) sources with an emphasis on variations in spectral quality. The primary objective of this experiment was to determine the impact of supplemental narrowband blue (B) and red (R) LED lighting ratios and discrete wavelengths on flavor volatiles in hydroponic basil (Ocimum basilicum var. Italian Large Leaf). A natural light (NL) control and different broadband lighting sources were also evaluated to establish the impact of adding discrete and broadband supplements to the ambient solar spectrum. Each SL treatment provided 8.64 mol.m-2.d-1 (100 µmol.m-2.s-1, 24 h.d-1) photon flux. The daily light integral (DLI) of the NL control averaged 11.75 mol.m-2.d-1 during the growth period (ranging from 4 to 20 mol.m-2.d-1). Basil plants were harvested 45 d after seeding. Using GC-MS, we explored, identified, and quantified several important volatile organic compounds (VOCs) with known influence on sensory perception and/or plant physiological processes of sweet basil. We found that the spectral quality from SL sources, in addition to changes in the spectra and DLI of ambient sunlight across growing seasons, directly influence basil aroma volatile concentrations. Further, we found that specific ratios of narrowband B/R wavelengths, combinations of discrete narrowband wavelengths, and broadband wavelengths directly and differentially influence the overall aroma profile as well as specific compounds. Based on the results of this study, we recommend supplemental 450 and 660 nm (± 20 nm) wavelengths at a ratio of approximately 10B/90R at 100-200 µmol.m-2.s-1, 12-24 h.d-1 for sweet basil grown under standard greenhouse conditions, with direct consideration of the natural solar spectrum and DLI provided for any given location and growing season. This experiment demonstrates the ability to use discrete narrowband wavelengths to augment the natural solar spectrum to provide an optimal light environment across variable growing seasons. Future experiments should investigate SL spectral quality for the optimization of sensory compounds in other high-value specialty crops.
Collapse
|
11
|
Gupta A, Sharma T, Singh SP, Bhardwaj A, Srivastava D, Kumar R. Prospects of microgreens as budding living functional food: Breeding and biofortification through OMICS and other approaches for nutritional security. Front Genet 2023; 14:1053810. [PMID: 36760994 PMCID: PMC9905132 DOI: 10.3389/fgene.2023.1053810] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
Nutrient deficiency has resulted in impaired growth and development of the population globally. Microgreens are considered immature greens (required light for photosynthesis and growing medium) and developed from the seeds of vegetables, legumes, herbs, and cereals. These are considered "living superfood/functional food" due to the presence of chlorophyll, beta carotene, lutein, and minerals like magnesium (Mg), Potassium (K), Phosphorus (P), and Calcium (Ca). Microgreens are rich at the nutritional level and contain several phytoactive compounds (carotenoids, phenols, glucosinolates, polysterols) that are helpful for human health on Earth and in space due to their anti-microbial, anti-inflammatory, antioxidant, and anti-carcinogenic properties. Microgreens can be used as plant-based nutritive vegetarian foods that will be fruitful as a nourishing constituent in the food industryfor garnish purposes, complement flavor, texture, and color to salads, soups, flat-breads, pizzas, and sandwiches (substitute to lettuce in tacos, sandwich, burger). Good handling practices may enhance microgreens'stability, storage, and shelf-life under appropriate conditions, including light, temperature, nutrients, humidity, and substrate. Moreover, the substrate may be a nutritive liquid solution (hydroponic system) or solid medium (coco peat, coconut fiber, coir dust and husks, sand, vermicompost, sugarcane filter cake, etc.) based on a variety of microgreens. However integrated multiomics approaches alongwith nutriomics and foodomics may be explored and utilized to identify and breed most potential microgreen genotypes, biofortify including increasing the nutritional content (macro-elements:K, Ca and Mg; oligo-elements: Fe and Zn and antioxidant activity) and microgreens related other traits viz., fast growth, good nutritional values, high germination percentage, and appropriate shelf-life through the implementation of integrated approaches includes genomics, transcriptomics, sequencing-based approaches, molecular breeding, machine learning, nanoparticles, and seed priming strategiesetc.
Collapse
Affiliation(s)
- Astha Gupta
- Sharda School of Agricultural Sciences, Sharda University, Greater Noida, India,*Correspondence: Astha Gupta, ; Rajendra Kumar,
| | - Tripti Sharma
- Sharda School of Agricultural Sciences, Sharda University, Greater Noida, India
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University,, Kanpur, India
| | - Archana Bhardwaj
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, India
| | - Deepti Srivastava
- Department of Agriculture, Integral Institute of Agricultural Science and Technology, Integral University, Lucknow, Uttar Pradesh, India
| | - Rajendra Kumar
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India,*Correspondence: Astha Gupta, ; Rajendra Kumar,
| |
Collapse
|
12
|
Giordano M, Petropoulos SA, Kyriacou MC, Graziani G, Zarrelli A, Rouphael Y, El-Nakhel C. Nutritive and Phytochemical Composition of Aromatic Microgreen Herbs and Spices Belonging to the Apiaceae Family. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223057. [PMID: 36432786 PMCID: PMC9695664 DOI: 10.3390/plants11223057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 06/12/2023]
Abstract
Microgreens represent a new generation of food products, commonly used to garnish and embellish culinary dishes, and recently associated with an increasing interest in their nutraceutical and phytochemical profiles. Four Apiaceae species: Pimpinella anisum L. (anise), Anthriscus cerefolium L. (chervil), Carum carvi L. (caraway), and Anethum graveolens L. (dill) were assessed for fresh yield, macro- and microminerals, total chlorophylls, total ascorbic acid, carotenoids, polyphenols, and their antioxidant activity. Anise was the species yielding the most (2.53 kg m-2) and having the highest lutein content (18.4 µg g-1 dry weight (DW)). Chervil and dill were characterized by the highest total ascorbic acid content (~151 mg AA g-1 fresh weight (FW)). The phenolic profile highlighted the presence of five flavonoid derivatives and 12 phenolic acid derivatives, with quinic acid derivatives being the most abundant phenols in the species tested. In addition, anise, caraway, and dill proved to be considerably rich in total polyphenols (~11056 μg g-1 DW). Caraway and dill were characterized by the highest antioxidant activity measured by the DPPH and ABTS methods, whereas the FRAP method revealed caraway as having the highest antioxidant activity. Such results highlight the potential of Apiaceae species as an alternative to other families which are commonly used for microgreens production.
Collapse
Affiliation(s)
- Maria Giordano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Spyridon A. Petropoulos
- Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Fytokou Street, 38446 Volos, Greece
| | - Marios C. Kyriacou
- Department of Vegetable Crops, Agricultural Research Institute, Nicosia 1516, Cyprus
| | - Giulia Graziani
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Armando Zarrelli
- Department of Chemical Sciences, University of Naples Federico II, 800126 Naples, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
13
|
Jambor T, Zajickova T, Arvay J, Ivanisova E, Tirdilova I, Knizatova N, Greifova H, Kovacik A, Galova E, Lukac N. Exceptional Properties of Lepidium sativum L. Extract and Its Impact on Cell Viability, Ros Production, Steroidogenesis, and Intracellular Communication in Mice Leydig Cells In Vitro. Molecules 2022; 27:5127. [PMID: 36014360 PMCID: PMC9412889 DOI: 10.3390/molecules27165127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 12/02/2022] Open
Abstract
The prevalence of reproductive dysfunction in males has risen in the last few years, and alternative therapies are gradually gaining in popularity. Our in vitro study aimed to evaluate the potential impact of Lepidium sativum L. on mice TM3 Leydig cells, concerning basal parameters such as cell viability, cell membrane integrity, and lysosomal activity, after 24 h and 48 h exposure. Moreover, reactive oxygens species generation, sex-steroid hormone secretion, and intercellular communication were quantified. In the present study, the microgreen extract from Lepidium was rich in ferulic acid, 4-OH benzoic acid, and resveratrol, with a significant antioxidant activity. The results showed that lower experimental doses (62.5-250 µg/mL) could positively affect the observed parameters, with significant differences at 250 µg/mL after 24 h and 48 h, respectively. Potential risks could be associated with higher concentrations, starting at 500 µg/mL, 1000 µg/mL, and 2000 µg/mL of Lepidium. Nevertheless, biochemical quantification indicated a significant antioxidant potential and a rich content of biologically active molecules at the applied doses, and time determined the intracellular response of the cultured model.
Collapse
Affiliation(s)
- Tomas Jambor
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Terezia Zajickova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Julius Arvay
- Institute of Food Science, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Eva Ivanisova
- Institute of Food Science, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Ivana Tirdilova
- AgroBioTech Research Centre, Department of Food Technology, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Nikola Knizatova
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Hana Greifova
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Anton Kovacik
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Eliska Galova
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Norbert Lukac
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| |
Collapse
|
14
|
Morphological, Molecular, and Biochemical Characterization of a Unique Lentil (Lens culinaris Medik.) Genotype Showing Seed-Coat Color Anomalies Due to Altered Anthocyanin Pathway. PLANTS 2022; 11:plants11141815. [PMID: 35890449 PMCID: PMC9319573 DOI: 10.3390/plants11141815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022]
Abstract
This study reports the identification of a unique lentil (Lens culinaris Medik.) genotype L4717-NM, a natural mutant (NM) derived from a variety L4717, producing brown, black, and spotted seed-coat colored seeds in a single plant, generation after generation, in different frequencies. The genetic similarity of L4717 with that of L4717-NM expressing anomalous seed-coat color was established using 54 SSR markers. In addition, various biochemical parameters such as TPC (total phenolic content), TFC (total flavonoid content), DPPH (2,2-diphenyl-1-picrylhydrazyl), FRAP (ferric reducing antioxidant power), H2O2 (peroxide quantification), TCC (total carotenoids content), TAC (total anthocyanin content), and TAA (total ascorbic acid) were also studied in the seeds, sprouts, and seedlings of L4717, brown, black, and spotted seed-coat colored seeds. Stage-specific variations for the key biochemical parameters were recorded, and seedling stage was found the best for many parameters. Moreover, seeds with black seed coat showed better nutraceutical values for most of the studied traits. A highly significant (p ≤ 0.01) and positive correlation was observed between DPPH and TPC, TAA, TFC, etc., whereas, protein content showed a negative correlation with the other studied parameters. The seed coat is maternal tissue and we expect expression of seed-coat color as per the maternal genotype. However, such an anomalous seed-coat expression, which seems to probably be governed by some transposable element in the identified genotype, warrants more detailed studies involving exploitation of the anthocyanin pathway.
Collapse
|
15
|
An Appraisal of Critical Factors Configuring the Composition of Basil in Minerals, Bioactive Secondary Metabolites, Micronutrients and Volatile Aromatic Compounds. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
The Inclusion of Green Light in a Red and Blue Light Background Impact the Growth and Functional Quality of Vegetable and Flower Microgreen Species. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030217] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Microgreens are edible seedlings of vegetables and flowers species which are currently considered among the five most profitable crops globally. Light-emitting diodes (LEDs) have shown great potential for plant growth, development, and synthesis of health-promoting phytochemicals with a more flexible and feasible spectral manipulation for microgreen production in indoor farms. However, research on LED lighting spectral manipulation specific to microgreen production, has shown high variability in how these edible seedlings behave regarding their light environmental conditions. Hence, developing species-specific LED light recipes for enhancement of growth and valuable functional compounds is fundamental to improve their production system. In this study, various irradiance levels and wavelengths of light spectrum produced by LEDs were investigated for their effect on growth, yield, and nutritional quality in four vegetables (chicory, green mizuna, china rose radish, and alfalfa) and two flowers (french marigold and celosia) of microgreens species. Microgreens were grown in a controlled environment using sole-source light with different photosynthetic photon flux density (110, 220, 340 µmol m−2 s−1) and two different spectra (RB: 65% red, 35% blue; RGB: 47% red, 19% green, 34% blue). At harvest, the lowest level of photosynthetically active photon flux (110 µmol m−2 s−1) reduced growth and decreased the phenolic contents in almost all species. The inclusion of green wavelengths under the highest intensity showed positive effects on phenolic accumulation. Total carotenoid content and antioxidant capacity were in general enhanced by the middle intensity, regardless of spectral combination. Thus, this study indicates that the inclusion of green light at an irradiance level of 340 µmol m−2 s−1 in the RB light environment promotes the growth (dry weight biomass) and the accumulation of bioactive phytochemicals in the majority of the microgreen species tested.
Collapse
|
17
|
Paradiso R, Proietti S. Light-Quality Manipulation to Control Plant Growth and Photomorphogenesis in Greenhouse Horticulture: The State of the Art and the Opportunities of Modern LED Systems. JOURNAL OF PLANT GROWTH REGULATION 2022; 41:742-780. [PMID: 0 DOI: 10.1007/s00344-021-10337-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/01/2021] [Indexed: 05/27/2023]
Abstract
AbstractLight quantity (intensity and photoperiod) and quality (spectral composition) affect plant growth and physiology and interact with other environmental parameters and cultivation factors in determining the plant behaviour. More than providing the energy for photosynthesis, light also dictates specific signals which regulate plant development, shaping and metabolism, in the complex phenomenon of photomorphogenesis, driven by light colours. These are perceived even at very low intensity by five classes of specific photoreceptors, which have been characterized in their biochemical features and physiological roles. Knowledge about plant photomorphogenesis increased dramatically during the last years, also thanks the diffusion of light-emitting diodes (LEDs), which offer several advantages compared to the conventional light sources, such as the possibility to tailor the light spectrum and to regulate the light intensity, depending on the specific requirements of the different crops and development stages. This knowledge could be profitably applied in greenhouse horticulture to improve production schedules and crop yield and quality. This article presents a brief overview on the effects of light spectrum of artificial lighting on plant growth and photomorphogenesis in vegetable and ornamental crops, and on the state of the art of the research on LEDs in greenhouse horticulture. Particularly, we analysed these effects by approaching, when possible, each single-light waveband, as most of the review works available in the literature considers the influence of combined spectra.
Collapse
|
18
|
Kongdang P, Dukaew N, Pruksakorn D, Koonrungsesomboon N. Biochemistry of Amaranthus polyphenols and their potential benefits on gut ecosystem: A comprehensive review of the literature. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114547. [PMID: 34425138 DOI: 10.1016/j.jep.2021.114547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Amaranthus is phytonutrients-rich plant distributed worldwide and has been recognized as having medicinal value in traditional use against several diseases and conditions. There are a large amount of research data on the polyphenol profiles of Amaranthus plants and their links with potential benefits against gastrointestinal disorders. AIM OF THE REVIEW This review article aims to provide a comprehensive review of Amaranthus phenolic compounds and their microbial metabolites, as well as the biological and/or pharmacological effects of those compounds/metabolites. METHODOLOGY The relevant information about the genus Amaranthus was collected from various sources and databases, including Google Scholar, Google Books, PubMed, Web of Science, Scopus, Science Direct, and other internet sources. The World Flora Online (2021) database was used to verify the scientific names of the plants. RESULTS Comprehensive review of identified compounds in Amaranthus plants revealed the presence of phenolic acids, flavonoids, and coumarins in each part of the plants. The biotransformation by gut microbiota enzymes prominently produces diverse bioactive metabolites that are potentially active than their precursors. Lines of the evidence support the beneficial roles of Amaranthus extracts in several gastrointestinal diseases, particularly with the polar extracts of several plant parts. Dietary fibers in Amaranthus plants also coordinate the alteration of gut microbiota-related metabolisms and may be beneficial to certain gastrointestinal disorders in particular, such as constipation. CONCLUSIONS Amaranthus plants are rich in polyphenols and dietary fibers. Several microbial metabolites are biologically active, so alteration of gut microbiota is largely linked to the metabolic feature of the plants. Based on the evidence available to date, several Amaranthus plants containing a combination of phytonutrients, particularly polyphenols and dietary fibers, may be a promising candidate that is of interest to be further developed for use in the treatment of certain gastrointestinal conditions/disorders.
Collapse
Affiliation(s)
- Patiwat Kongdang
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Nahathai Dukaew
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Dumnoensun Pruksakorn
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, Thailand.
| | - Nut Koonrungsesomboon
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
19
|
Fernández-Galleguillos C, Quesada-Romero L, Puerta A, Padrón JM, Souza E, Romero-Parra J, Simirgiotis MJ. UHPLC-MS Chemical Fingerprinting and Antioxidant, Antiproliferative, and Enzyme Inhibition Potential of Gaultheria pumila Berries. Metabolites 2021; 11:metabo11080523. [PMID: 34436464 PMCID: PMC8401902 DOI: 10.3390/metabo11080523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/24/2022] Open
Abstract
Gaultheria pumila (Ericaceae) (known as Chaura or Mutilla) is a Chilean native small shrub that produces berry fruits consumed by local Mapuche people. In this study, the chemical fingerprinting and antioxidant, enzyme inhibition, and antiproliferative activities of the berries were investigated for the first time. Thirty-six metabolites were identified in the fruits by ultra-high performance liquid chromatography-photodiode array detection, hyphenated with Orbitrap mass spectrometry analysis (UHPLC-DAD-Orbitrap-MS). Metabolites, included anthocyanins, phenolic acids, flavonoids, iridoids, diterpenes, and fatty acids. Moderate inhibitory activities against acetylcholinesterase (7.7 ± 0.3 µg/mL), butyrylcholinesterase (34.5 ± 0.5 µg/mL), and tyrosinase (3.3 ± 0.2 µg/mL) enzymes were found. Moreover, selected major compounds were subjected to docking assays in light of their experimental inhibition. Results indicated that hydrogen bonding, π–π interaction, and a salt bridge interaction contributed significantly. Gaultheria pumila berries showed a total phenolic content of 189.2 ± 0.2 mg of gallic acid equivalents/g, total flavonoid content of 51.8 ± 0.1 mg quercetin equivalents/g, and total anthocyanin content of 47.3 ± 0.2 mg of cianydin-3-glucoside equivalents/g. Antioxidant activity was assessed using DPPH (92.8 ± 0.1 µg/mL), FRAP (134.1 ± 0.1 μmol Trolox equivalents/g), and ORAC (4251.6 ± 16.9 μmol Trolox equivalents/g) assays. Conversely, Gaultheria pumila showed a scarce antiproliferative potential against several solid human cancer cells. Our findings suggest that Gaultheria pumila berries have several bioactive metabolites with inhibitory effects against acetylcholinesterase, butyrylcholinesterase, and tyrosinase, and have the potential for use in food supplements.
Collapse
Affiliation(s)
- Carlos Fernández-Galleguillos
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia 5090000, Chile;
| | - Luisa Quesada-Romero
- Facultad de Ciencias Para el Cuidado de la Salud, Universidad San Sebastián, Valdivia 5090000, Chile
- Correspondence: (L.Q.-R.); (M.J.S.); Tel.: +56-632632811 (L.Q.-R.)
| | - Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, 38206 La Laguna, Spain; (A.P.); (J.M.P.)
| | - José M. Padrón
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, 38206 La Laguna, Spain; (A.P.); (J.M.P.)
| | - Ernane Souza
- The Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL 33401, USA;
| | - Javier Romero-Parra
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos 1007, Casilla 233, Santiago 6640022, Chile;
| | - Mario J. Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia 5090000, Chile;
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia 5090000, Chile
- Correspondence: (L.Q.-R.); (M.J.S.); Tel.: +56-632632811 (L.Q.-R.)
| |
Collapse
|
20
|
Toscano S, Cavallaro V, Ferrante A, Romano D, Patané C. Effects of Different Light Spectra on Final Biomass Production and Nutritional Quality of Two Microgreens. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10081584. [PMID: 34451630 PMCID: PMC8399618 DOI: 10.3390/plants10081584] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 05/07/2023]
Abstract
To improve microgreen yield and nutritional quality, suitable light spectra can be used. Two species-amaranth (Amaranthus tricolor L.) and turnip greens (Brassica rapa L. subsp. oleifera (DC.) Metzg)-were studied. The experiment was performed in a controlled LED environment growth chamber (day/night temperatures of 24 ± 2 °C, 16 h photoperiod, and 50/60% relative humidity). Three emission wavelengths of a light-emitting diode (LED) were adopted for microgreen lighting: (1) white LED (W); (2) blue LED (B), and (3) red LED (R); the photosynthetic photon flux densities were 200 ± 5 µmol for all light spectra. The response to light spectra was often species-specific, and the interaction effects were significant. Morphobiometric parameters were influenced by species, light, and their interaction; at harvest, in both species, the fresh weight was significantly greater under B. In amaranth, Chl a was maximized in B, whereas it did not change with light in turnip greens. Sugar content varied with the species but not with the light spectra. Nitrate content of shoots greatly varied with the species; in amaranth, more nitrates were measured in R, while no difference in turnip greens was registered for the light spectrum effect. Polyphenols were maximized under B in both species, while R depressed the polyphenol content in amaranth.
Collapse
Affiliation(s)
- Stefania Toscano
- Department of Agriculture, Food and Environment (Di3A), Università degli Studi di Catania, 95123 Catania, Italy;
| | - Valeria Cavallaro
- IBE-Istituto di BioEconomia, Consiglio Nazionale delle Ricerche, 95126 Catania, Italy; (V.C.); (C.P.)
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Daniela Romano
- Department of Agriculture, Food and Environment (Di3A), Università degli Studi di Catania, 95123 Catania, Italy;
- Correspondence:
| | - Cristina Patané
- IBE-Istituto di BioEconomia, Consiglio Nazionale delle Ricerche, 95126 Catania, Italy; (V.C.); (C.P.)
| |
Collapse
|
21
|
Priti, Mishra GP, Dikshit HK, T. V, Tontang MT, Stobdan T, Sangwan S, Aski M, Singh A, Kumar RR, Tripathi K, Kumar S, Nair RM, Praveen S. Diversity in Phytochemical Composition, Antioxidant Capacities, and Nutrient Contents Among Mungbean and Lentil Microgreens When Grown at Plain-Altitude Region (Delhi) and High-Altitude Region (Leh-Ladakh), India. FRONTIERS IN PLANT SCIENCE 2021; 12:710812. [PMID: 34497624 PMCID: PMC8420906 DOI: 10.3389/fpls.2021.710812] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/25/2021] [Indexed: 09/26/2024]
Abstract
Mungbeans and lentils are relatively easily grown and cheaper sources of microgreens, but their phytonutrient diversity is not yet deeply explored. In this study, 20 diverse genotypes each of mungbean and lentil were grown as microgreens under plain-altitude (Delhi) and high-altitude (Leh) conditions, which showed significant genotypic variations for ascorbic acid, tocopherol, carotenoids, flavonoid, total phenolics, DPPH (1, 1-diphenyl-2-picrylhydrazyl), FRAP (ferric-reducing antioxidant power), peroxide activity, proteins, enzymes (peroxidase and catalase), micronutrients, and macronutrients contents. The lentil and mungbean genotypes L830 and MH810, respectively, were found superior for most of the studied parameters over other studied genotypes. Interestingly, for most of the studied parameters, Leh-grown microgreens were found superior to the Delhi-grown microgreens, which could be due to unique environmental conditions of Leh, especially wide temperature amplitude, photosynthetically active radiation (PAR), and UV-B content. In mungbean microgreens, total phenolics content (TPC) was found positively correlated with FRAP and DPPH, while in lentil microgreens, total flavonoid content (TFC) was found positively correlated with DPPH. The most abundant elements recorded were in the order of K, P, and Ca in mungbean microgreens; and K, Ca, and P in the lentil microgreens. In addition, these Fabaceae microgreens may help in the nutritional security of the population residing in the high-altitude regions of Ladakh, especially during winter months when this region remains landlocked due to heavy snowfall.
Collapse
Affiliation(s)
- Priti
- Division of Genetics, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi, India
| | - Gyan P. Mishra
- Division of Genetics, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi, India
| | - Harsh K. Dikshit
- Division of Genetics, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi, India
| | - Vinutha T.
- Division of Biochemistry, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi, India
| | - M. Tomuilim Tontang
- Division of Genetics, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi, India
| | - Tsering Stobdan
- Defence Research and Development Organisation-Defence Institute of High Altitude Research, Leh, India
| | - Seema Sangwan
- Division of Genetics, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi, India
| | - Muraleedhar Aski
- Division of Genetics, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi, India
| | - Ajeet Singh
- Division of Biochemistry, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi, India
| | - Ranjeet R. Kumar
- Division of Biochemistry, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi, India
| | - Kuldeep Tripathi
- Germplasm Evaluation Division, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Shiv Kumar
- Biodiversity and Integrated Gene Management Program, International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
| | - Ramakrishnan M. Nair
- World Vegetable Center, South Asia, International Crops Research Institute for the Semi-Arid Tropics Campus Patancheru, Hyderabad, India
| | - Shelly Praveen
- Division of Biochemistry, Indian Council of Agricultural Research-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
22
|
Truzzi F, Whittaker A, Roncuzzi C, Saltari A, Levesque MP, Dinelli G. Microgreens: Functional Food with Antiproliferative Cancer Properties Influenced by Light. Foods 2021; 10:foods10081690. [PMID: 34441474 PMCID: PMC8392261 DOI: 10.3390/foods10081690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 01/21/2023] Open
Abstract
The anti-proliferative/pro-oxidant efficacy of green pea, soybean, radish, Red Rambo radish, and rocket microgreens, cultivated under either fluorescent lighting (predominant spectral peaks in green and orange) or combination light-emitting diode (LED, predominant spectral peak in blue) was investigated using Ewing sarcoma lines, RD-ES and A673, respectively. All aqueous microgreen extracts significantly reduced cell proliferation (cancer prevention effect) to varying extents in two-dimensional sarcoma cell cultures. The effect of the polyphenol fraction in the aqueous food matrix was unrelated to total polyphenol content, which differed between species and light treatment. Only Pisum sativum (LED-grown) extracts exercised anti-proliferative and pro-apoptotic effects in both three-dimensional RD-ES and A673 spheroids (early tumor progression prevention), without cytotoxic effects on healthy L929 fibroblasts. A similar anti-tumor effect of Red Rambo radish (LED and fluorescent-grown) was evident only in the RD-ES spheroids. Aside from the promising anti-tumor potential of the polyphenol fraction of green pea microgreens, the latter also displayed favorable growth quality parameters, along with radish, under both light treatments over the 10 day cultivation period.
Collapse
Affiliation(s)
- Francesca Truzzi
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin, 44-40127 Bologna, Italy; (A.W.); (C.R.); (G.D.)
- Correspondence: ; Tel.: +39-05-1209-6673
| | - Anne Whittaker
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin, 44-40127 Bologna, Italy; (A.W.); (C.R.); (G.D.)
| | - Chiara Roncuzzi
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin, 44-40127 Bologna, Italy; (A.W.); (C.R.); (G.D.)
| | - Annalisa Saltari
- Department of Dermatology, University of Zurich Hospital, University of Zurich, Zurich, CH 8952 Schlieren, Switzerland; (A.S.); (M.P.L.)
| | - Mitchell P. Levesque
- Department of Dermatology, University of Zurich Hospital, University of Zurich, Zurich, CH 8952 Schlieren, Switzerland; (A.S.); (M.P.L.)
| | - Giovanni Dinelli
- Department of Agricultural and Food Sciences, University of Bologna, Viale Fanin, 44-40127 Bologna, Italy; (A.W.); (C.R.); (G.D.)
| |
Collapse
|
23
|
Combined Effect of Salinity and LED Lights on the Yield and Quality of Purslane (Portulaca oleracea L.) Microgreens. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7070180] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The present work aims to explore the potential to improve quality of purslane microgreens by combining water salinity and LED lighting during their cultivation. Purslane plants were grown in a growth chamber with light insulated compartments, under different lighting sources on a 16 h d−1 photoperiod—fluorescent lamps (FL) and two LED treatments, including a red and blue (RB)) spectrum and a red, blue and far red (RB+IR) LED lights spectrum—while providing all of them a light intensity of 150 µmol m−2 s−1. Plants were exposed to two salinity treatments, by adding 0 or 80 mM NaCl. Biomass, cation and anions, total phenolics (TPC) and flavonoids content (TFC), total antioxidant capacity (TAC), total chlorophylls (Chl) and carotenoids content (Car) and fatty acids were determined. The results showed that yield was increased by 21% both in RB and RB+FR lights compared to FL and in salinity compared to non-salinity conditions. The nitrate content was reduced by 81% and 91% when microgreens were grown under RB and RB+FR, respectively, as compared to FL light, and by 9.5% under saline conditions as compared with non-salinity conditions. The lowest oxalate contents were obtained with the combinations of RB or RB+FR lighting and salinity. The content of Cl and Na in the leaves were also reduced when microgreens were grown under RB and RB+FR lights under saline conditions. Microgreens grown under RB light reached the highest TPC, while salinity reduced TFC, Chl and Car. Finally, the fatty acid content was not affected by light or salinity, but these factors slightly influenced their composition. It is concluded that the use of RB and RB+FR lights in saline conditions is of potential use in purslane microgreens production, since it improves the yield and quality of the product, reducing the content of anti-nutritional compounds.
Collapse
|
24
|
Kyriacou MC, El-Nakhel C, Soteriou GA, Graziani G, Kyratzis A, Antoniou C, Ritieni A, De Pascale S, Rouphael Y. Preharvest Nutrient Deprivation Reconfigures Nitrate, Mineral, and Phytochemical Content of Microgreens. Foods 2021; 10:foods10061333. [PMID: 34207882 PMCID: PMC8228507 DOI: 10.3390/foods10061333] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 12/23/2022] Open
Abstract
While imparting gastronomic novelty and sensory delight, microgreens also constitute rudimentary leafy greens packed with nutrients and phytochemicals. As such, they comprise an upcoming class of functional foods. However, apart from bioactive secondary metabolites, microgreens also accumulate antinutritive agents such as nitrate, especially under conducive protected cultivation conditions. The current work examined nutrient deprivation before harvest (DBH), applied by replacing nutrient solution with osmotic water for six and twelve days, as a strategy for reducing microgreen nitrate levels in different species (lettuce, mustard, and rocket). The three species were sown on a peat-based substrate, cultivated in a controlled climate chamber, and harvested 18 days after sowing, when the first two true leaves emerged. DBH impact on major constituents of the secondary metabolome, mineral content, colorimetric, and yield traits was appraised. Nitrate and mineral content were determined through ion chromatography, phenolic composition through UHPLC-Q-Orbitrap HRMS, and carotenoid composition through HPLC-DAD. Nutrient deprivation was effective in reducing nitrate content; however, effective treatment duration differed between species and decline was more precipitous in nitrate hyperaccumulating species such as rocket. Quercetin and kaempferol glycosides were the flavonol glycosides most abundant in brassicaceous microgreens, whereas lettuce microgreens were steeped in caffeoyl quinic acid. DBH interacted with species as it increased the total phenolic content of lettuce, decreased that of rocket, but did not affect mustard. Further research to link changes in phenolic composition to the sensory and in vivo bioactive profile of microgreens is warranted. Notably, brief (≤6 days) DBH can be applied across species with moderate or no impact on the phenolic, carotenoid, and mineral composition of microgreens. Brief DBH applications also have limited impact on microgreens' yield and colorimetric traits hence on the commercial value of the product. They can therefore be applied for reducing microgreen nitrate levels without significantly impacting key secondary metabolic constituents and their potential bioactive role.
Collapse
Affiliation(s)
- Marios C. Kyriacou
- Department of Vegetable Crops, Agricultural Research Institute, Nicosia 1516, Cyprus; (M.C.K.); (G.A.S.); (A.K.); (C.A.)
| | - Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (C.E.-N.); (S.D.P.)
| | - Georgios A. Soteriou
- Department of Vegetable Crops, Agricultural Research Institute, Nicosia 1516, Cyprus; (M.C.K.); (G.A.S.); (A.K.); (C.A.)
| | - Giulia Graziani
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (G.G.); (A.R.)
| | - Angelos Kyratzis
- Department of Vegetable Crops, Agricultural Research Institute, Nicosia 1516, Cyprus; (M.C.K.); (G.A.S.); (A.K.); (C.A.)
| | - Chrystalla Antoniou
- Department of Vegetable Crops, Agricultural Research Institute, Nicosia 1516, Cyprus; (M.C.K.); (G.A.S.); (A.K.); (C.A.)
| | - Alberto Ritieni
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (G.G.); (A.R.)
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (C.E.-N.); (S.D.P.)
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (C.E.-N.); (S.D.P.)
- Correspondence:
| |
Collapse
|
25
|
Alrifai O, Hao X, Liu R, Lu Z, Marcone MF, Tsao R. LED-Induced Carotenoid Synthesis and Related Gene Expression in Brassica Microgreens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4674-4685. [PMID: 33861063 DOI: 10.1021/acs.jafc.1c00200] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, various ratios of combined red, blue, and amber light-emitting diodes (rbaLEDs) were investigated for their effect on the expression of carotenoid biosynthetic genes and carotenoid accumulation in eight Brassica microgreens. Total and individual (β-carotene, lutein, α-carotene, neoxanthin, and violaxanthin) carotenoids were increased 20-44 and 10-55%, respectively, under dose-dependent increasing amber-blue light and decreasing red in most microgreens. Lipophilic 2,2-diphenyl-1-picrylhydrazyl and ferric reducing antioxidant power antioxidant activities were significantly increased under higher amber and blue light fractions, while oxygen radical absorbance capacity was generally decreased. Under rbaLED in mizuna (B. rapa) microgreens, the lycopene epsilon cyclase (LYCε) expression was 10-15-fold higher, which resulted in downstream accumulation of α-carotene and lutein. Lycopene beta cyclase (LYCβ) was not significantly changed, suggesting that β-carotene, violaxanthin and neoxanthin were mainly controlled by upstream phytoene synthase and branch-point LYCε. Increased beta-ring carotenoid hydroxylase (CHXβ) expression was also consistent with lutein accumulation. This study demonstrated for the first time that amber LED was involved in the regulatory mechanism of carotenoid biosynthesis, thus a potential novel approach to production of antioxidant-rich microgreens.
Collapse
Affiliation(s)
- Oday Alrifai
- Guelph Research & Development Center, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
- Department of Food Science, Ontario Agricultural College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Xiuming Hao
- Harrow Research & Development Center, Agriculture and Agri-Food Canada, 2585 County Road 20, Harrow, Ontario N0R 1G0, Canada
| | - Ronghua Liu
- Guelph Research & Development Center, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| | - Zhanhui Lu
- Guelph Research & Development Center, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| | - Massimo F Marcone
- Department of Food Science, Ontario Agricultural College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Rong Tsao
- Guelph Research & Development Center, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| |
Collapse
|
26
|
Brazaitytė A, Miliauskienė J, Vaštakaitė-Kairienė V, Sutulienė R, Laužikė K, Duchovskis P, Małek S. Effect of Different Ratios of Blue and Red LED Light on Brassicaceae Microgreens under a Controlled Environment. PLANTS 2021; 10:plants10040801. [PMID: 33921895 PMCID: PMC8073284 DOI: 10.3390/plants10040801] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 11/24/2022]
Abstract
The consumption of microgreens has increased due to their having higher levels of bioactive compounds and mineral nutrients than mature plants. The lighting conditions during the cultivation of microgreens, if optimally selected, can have a positive effect by further increasing their nutritional value. Thus, our study aimed to determine the changes in mineral nutrients contents of Brassicaceae microgreens depending on different blue–red (B:R) light ratios in light-emitting diode (LED) lighting and to evaluate their growth and nutritional value according to different indexes. Experiments were performed in controlled environment growth chambers at IH LRCAF, 2020. Microgreens of mustard (Brassica juncea ‘Red Lace’) and kale (Brassica napus ‘Red Russian’) were grown hydroponically under different B:R light ratios: 0%B:100%R, 10%B:90%R, 25%B:75%R, 50%B:50%R, 75%B:25%R, and 100%B:0%R. A 220 μmol m−2 s−1 total photon flux density (TPFD), 18 h photoperiod, 21/17 ± 2 °C temperature and 60% ± 5% relative humidity in the growth chamber were maintained during cultivation. We observed that an increasing percentage of blue light in the LED illumination spectrum during growth was associated with reduced elongation in the microgreens of both species and had a positive effect on the accumulation of mostly macro- and micronutrients. However, different B:R light ratios indicate a species-dependent response to changes in growth parameters such as leaf area, fresh and dry mass, and optical leaf indexes such as for chlorophyll, flavonol, anthocyanin, and carotenoid reflectance.
Collapse
Affiliation(s)
- Aušra Brazaitytė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kaunas str. 30, LT-54333 Babtai, Lithuania; (J.M.); (V.V.-K.); (R.S.); (K.L.); (P.D.)
- Correspondence:
| | - Jurga Miliauskienė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kaunas str. 30, LT-54333 Babtai, Lithuania; (J.M.); (V.V.-K.); (R.S.); (K.L.); (P.D.)
| | - Viktorija Vaštakaitė-Kairienė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kaunas str. 30, LT-54333 Babtai, Lithuania; (J.M.); (V.V.-K.); (R.S.); (K.L.); (P.D.)
| | - Rūta Sutulienė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kaunas str. 30, LT-54333 Babtai, Lithuania; (J.M.); (V.V.-K.); (R.S.); (K.L.); (P.D.)
| | - Kristina Laužikė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kaunas str. 30, LT-54333 Babtai, Lithuania; (J.M.); (V.V.-K.); (R.S.); (K.L.); (P.D.)
| | - Pavelas Duchovskis
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Kaunas str. 30, LT-54333 Babtai, Lithuania; (J.M.); (V.V.-K.); (R.S.); (K.L.); (P.D.)
| | - Stanisław Małek
- Department of Ecology and Silviculture, Faculty of Forestry, University of Agriculture in Krakow, 31-425 Krakow, Poland;
| |
Collapse
|
27
|
Johnson SA, Prenni JE, Heuberger AL, Isweiri H, Chaparro JM, Newman SE, Uchanski ME, Omerigic HM, Michell KA, Bunning M, Foster MT, Thompson HJ, Weir TL. Comprehensive Evaluation of Metabolites and Minerals in 6 Microgreen Species and the Influence of Maturity. Curr Dev Nutr 2021; 5:nzaa180. [PMID: 33644632 PMCID: PMC7897203 DOI: 10.1093/cdn/nzaa180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Microgreens are the young leafy greens of many vegetables, herbs, grains, and flowers with potential to promote human health and sustainably diversify the global food system. For successful further integration into the global food system and evaluation of their health impacts, it is critical to elucidate and optimize their nutritional quality. OBJECTIVES We aimed to comprehensively evaluate the metabolite and mineral contents of 6 microgreen species, and the influence of maturity on their contents. METHODS Plant species evaluated were from the Brassicaceae (arugula, broccoli, and red cabbage), Amaranthaceae (red beet and red amaranth), and Fabaceae (pea) plant families. Nontargeted metabolomics and ionomics analyses were performed to examine the metabolites and minerals, respectively, in each microgreen species and its mature counterpart. RESULTS Nontargeted metabolomics analysis detected 3321 compounds, 1263 of which were annotated and included nutrients and bioactive compounds. Ionomics analysis detected and quantified 26 minerals including macrominerals, trace minerals, ultratrace minerals, and other metals. Principal component analysis indicated that microgreens have distinct metabolite and mineral profiles compared with one another and with their mature counterparts. Several compounds were higher (P < 0.05; fold change ≥2) in microgreens compared with their mature counterparts, whereas some were not different or lower. In many cases, compounds that were higher in microgreens compared with the mature counterpart were also unique to that microgreen species. CONCLUSIONS These data provide evidence for the nutritional quality of microgreens, and can inform future research and development aimed at characterizing and optimizing microgreen nutritional quality and health impacts.
Collapse
Affiliation(s)
- Sarah A Johnson
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Jessica E Prenni
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, USA
- Analytical Resources Core: Bioanalysis and Omics, Colorado State University, Fort Collins, CO, USA
| | - Adam L Heuberger
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, USA
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Hanan Isweiri
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, USA
- Department of Biology, Faculty of Education, University of Benghazi, Benghazi, Libya
| | - Jacqueline M Chaparro
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, USA
- Analytical Resources Core: Bioanalysis and Omics, Colorado State University, Fort Collins, CO, USA
| | - Steven E Newman
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, USA
| | - Mark E Uchanski
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, USA
| | - Heather M Omerigic
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, USA
| | - Kiri A Michell
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Marisa Bunning
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Michelle T Foster
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Henry J Thompson
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, USA
| | - Tiffany L Weir
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
28
|
Fertilization and Pre-Sowing Seed Soaking Affect Yield and Mineral Nutrients of Ten Microgreen Species. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7020014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Microgreens, vegetable or herb seedlings consumed at a young growth stage, are considered to be a functional food with high concentrations of mineral nutrients and healthy beneficial bioactive compounds. The production of microgreens has been increasing in recent years. Vegetable growers are interested in growing microgreens as a new specialty crop due to their high market value, popularity, and short production cycles. However, there is a lack of research-based crop-specific recommendations for cultural practices including fertilization, pre-sowing seed treatments, and their effects on nutritional facts of microgreens. Ten microgreen species were evaluated for their shoot growth and mineral nutrient concentrations as affected by one-time post-emergence fertilization and pre-sowing seed soaking in two repeated experiments, from November 2018 to January 2019, in a greenhouse. The microgreen species varied in fresh and dry shoot weights, shoot height, visual rating, as well as macro- and micro-nutrient concentrations. Fertilization with a general-purpose soluble fertilizer (20-20-20 with micronutrients) at a rate of 100 mg·L−1 nitrogen (N) increased fresh shoot weight, and macro- and micro-nutrient concentrations in one or both experiments, with the exception of decreasing concentrations of calcium (Ca), magnesium (Mg), and manganese (Mn). Seed soaking consistently decreased fresh or dry shoot weight and nutrient concentrations when there was a significant effect.
Collapse
|
29
|
Abstract
Microgreens are gaining increasing recognition among consumers, acclaimed for their freshness and health promoting properties associated with densely fortified secondary metabolites. These immature greens enhance human diet and enrich it with sharp colors and flavors. While numerous species are being tested for agronomic and nutritional suitability, consumer acceptance of appearance, texture, and flavor is critical for the microgreens’ marketplace success. This study investigates whether sensory attributes and visual appearance affect consumer preference for microgreens and their willingness to consume them. By means of a consumer test, the sensory attributes of 12 microgreens species were evaluated, wherein a partial least squares structural equation model was developed to link sensorial attributes to willingness to eat the product. The results showed that although visual appearance of the microgreens was largely appreciated, consumer acceptance overall was mainly determined by flavor and texture. In particular, the lower the astringency, sourness, and bitterness, the higher the consumer acceptability of microgreens. Among the 12 examined species, mibuna and cress scored the lowest acceptance by consumers, while Swiss chard and coriander were the most appreciated, being therefore good candidates to be introduced in Western country markets. In addition, both Swiss chard and coriander have been identified by previous literature as good dietary source of phenolic antioxidants.
Collapse
|
30
|
Mars Regolith Simulant Ameliorated by Compost as in situ Cultivation Substrate Improves Lettuce Growth and Nutritional Aspects. PLANTS 2020; 9:plants9050628. [PMID: 32423057 PMCID: PMC7285329 DOI: 10.3390/plants9050628] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022]
Abstract
Heavy payloads in future shuttle journeys to Mars present limiting factors, making self-sustenance essential for future colonies. Therefore, in situ resources utilization (ISRU) is the path to successful and feasible space voyages. This research frames the concept of planting leafy vegetables on Mars regolith simulant, ameliorating this substrate’s fertility by the addition of organic residues produced in situ. For this purpose, two butterhead lettuce (Lactuca sativa L. var. capitata) cultivars (green and red Salanova®) were chosen to be cultivated in four different mixtures of MMS-1 Mojave Mars simulant:compost (0:100, 30:70, 70:30 and 100:0; v:v) in a phytotron open gas exchange growth chamber. The impact of compost rate on both crop performance and the nutritive value of green- and red-pigmented cultivars was assessed. The 30:70 mixture proved to be optimal in terms of crop performance, photosynthetic activity, intrinsic water use efficiency and quality traits of lettuce. In particular, red Salanova® showed the best performance in terms of these quality traits, registering 32% more phenolic content in comparison to 100% simulant. Nonetheless, the 70:30 mixture represents a more realistic scenario when taking into consideration the sustainable use of compost as a limited resource in space farming, while still accepting a slight significant decline in yield and quality in comparison to the 30:70 mixture.
Collapse
|
31
|
El-Nakhel C, Pannico A, Graziani G, Kyriacou MC, Giordano M, Ritieni A, De Pascale S, Rouphael Y. Variation in Macronutrient Content, Phytochemical Constitution and In Vitro Antioxidant Capacity of Green and Red Butterhead Lettuce Dictated by Different Developmental Stages of Harvest Maturity. Antioxidants (Basel) 2020; 9:antiox9040300. [PMID: 32260224 PMCID: PMC7222179 DOI: 10.3390/antiox9040300] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/30/2022] Open
Abstract
Rising life expectancy and the demanding modern lifestyle drive the growing appeal of healthy and balanced diets centered on vegetable and fruit consumption. Functional, phytonutrient-packed and principally raw food is in high demand. Microgreens constitute such a novel functional food that combines a high sensory and bioactive value, which invites comparison to their mature-leaf counterparts. For this purpose, a controlled environment chamber experiment was carried out to compare the mineral, phytochemical and antioxidant capacity attributes of two-pigmented Lactuca sativa L. var. capitata cultivars (green and red Salanova®) harvested at the microgreens and the mature-leaf stage. Macronutrients were assessed through ion chromatography, while carotenoids and polyphenols were assessed and quantified through HPLC-DAD and UHPLC-Q-Orbitrap HRMS, respectively. Calcium and magnesium were higher in microgreens irrespective of the cultivar; conversely, phosphorous, potassium and nitrate where higher in mature leaves. All pigments including chlorophyll, lutein and β-carotene augmented at advanced maturity stage and were more concentrated in the red pigmented cultivar at both stages. Total polyphenols accumulated more densely in red Salanova, particularly in the microgreens stage; whereas, in green Salanova, the accumulation was significant but less pronounced in the mcirogreens stage. Chlorogenic acid, quercetin malonyl glucoside, rutin and coumaroyl quinic acid were the most concentrated phenolic acids in microgreens, while feruloyl tartaric acid was predominant in mature leaves. Finally, when a high carotenoids content is sought, mature lettuce leaves should be the prime culinary choice, whereas high polyphenolic content is dictated by both the cultivar and the harvest stage, with red Salanova microgreens being the most nutrient-packed choice.
Collapse
Affiliation(s)
- Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (C.E.-N.); (A.P.); (M.G.); (S.D.P.)
| | - Antonio Pannico
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (C.E.-N.); (A.P.); (M.G.); (S.D.P.)
| | - Giulia Graziani
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (G.G.); (A.R.)
| | - Marios C. Kyriacou
- Department of Vegetable Crops, Agricultural Research Institute, 1516 Nicosia, Cyprus;
| | - Maria Giordano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (C.E.-N.); (A.P.); (M.G.); (S.D.P.)
| | - Alberto Ritieni
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (G.G.); (A.R.)
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (C.E.-N.); (A.P.); (M.G.); (S.D.P.)
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (C.E.-N.); (A.P.); (M.G.); (S.D.P.)
- Correspondence: ; Tel.: +39-081-2539-134
| |
Collapse
|
32
|
Kyriacou MC, El-Nakhel C, Pannico A, Graziani G, Soteriou GA, Giordano M, Palladino M, Ritieni A, De Pascale S, Rouphael Y. Phenolic Constitution, Phytochemical and Macronutrient Content in Three Species of Microgreens as Modulated by Natural Fiber and Synthetic Substrates. Antioxidants (Basel) 2020; 9:E252. [PMID: 32244953 PMCID: PMC7139710 DOI: 10.3390/antiox9030252] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/14/2020] [Accepted: 03/18/2020] [Indexed: 11/16/2022] Open
Abstract
The present study examined the modulatory effects of natural fiber substrates (agave fiber, coconut fiber and peat moss) and synthetic alternatives (capillary mat and cellulose sponge) on the nutritive and phytochemical composition of select microgreens species (coriander, kohlrabi and pak choi) grown in a controlled environment. Polyphenols were analyzed by UHPLC-Q-Orbitrap-HRMS, major carotenoids by HPLC-DAD, and macro-minerals by ion chromatography. Microgreens grown on peat moss had outstanding fresh and dry yield but low dry matter content. Natural fiber substrates increased nitrate and overall macro-mineral concentrations in microgreens compared to synthetic substrates. The concentrations of chlorophylls, carotenoids and ascorbate were influenced primarily by species. On the contrary, variability in polyphenols content was wider between substrates than species. Out of twenty phenolic compounds identified, chlorogenic acid and quercetin-3-O-rutinoside were most abundant. Hydroxycinnamic acids and their derivatives accounted for 49.8% of mean phenolic content across species, flavonol glycosides for 48.4% and flavone glycosides for 1.8%. Peat moss provided optimal physicochemical conditions that enhanced microgreens growth rate and biomass production at the expense of phenolic content. In this respect, the application of controlled stress (eustress) on microgreens growing on peat moss warrants investigation as a means of enhancing phytochemical composition without substantial compromise in crop performance and production turnover. Finally, nitrate deprivation practices should be considered for microgreens grown on natural fiber substrates in order to minimize consumer exposure to nitrate.
Collapse
Affiliation(s)
- Marios C. Kyriacou
- Department of Vegetable Crops, Agricultural Research Institute, 1516 Nicosia, Cyprus; (M.C.K.); (G.A.S.)
| | - Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (C.E.-N.); (A.P.); (M.G.); (M.P.); (S.D.P.)
| | - Antonio Pannico
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (C.E.-N.); (A.P.); (M.G.); (M.P.); (S.D.P.)
| | - Giulia Graziani
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (G.G.); (A.R.)
| | - Georgios A. Soteriou
- Department of Vegetable Crops, Agricultural Research Institute, 1516 Nicosia, Cyprus; (M.C.K.); (G.A.S.)
| | - Maria Giordano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (C.E.-N.); (A.P.); (M.G.); (M.P.); (S.D.P.)
| | - Mario Palladino
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (C.E.-N.); (A.P.); (M.G.); (M.P.); (S.D.P.)
| | - Alberto Ritieni
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (G.G.); (A.R.)
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (C.E.-N.); (A.P.); (M.G.); (M.P.); (S.D.P.)
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (C.E.-N.); (A.P.); (M.G.); (M.P.); (S.D.P.)
| |
Collapse
|
33
|
Thoma F, Somborn-Schulz A, Schlehuber D, Keuter V, Deerberg G. Effects of Light on Secondary Metabolites in Selected Leafy Greens: A Review. FRONTIERS IN PLANT SCIENCE 2020; 11:497. [PMID: 32391040 PMCID: PMC7193822 DOI: 10.3389/fpls.2020.00497] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 04/02/2020] [Indexed: 05/05/2023]
Abstract
In contrast to the primary metabolism, responsible for essential synthesis mechanisms and mass balance in plants, the secondary metabolism is not of particular importance for each cell but for the plant organism as its whole. Most of these metabolites show antioxidant properties and are beneficial for human health. In order to affect accumulation of those metabolites, light is an essential factor. It is possible to select various combinations of light intensity and light quality to address corresponding photoreceptors and synthesis. However, the plethora of additional variables considering environmental conditions such as temperature, relative humidity or cultivation method complicate defining specific "light recipes". This review summarizes experiments dealing with consumable leafy greens such as lettuce or basil and the enhancement of three selected metabolites - anthocyanins, carotenoids and flavonols.
Collapse
|