1
|
Ringelmann VE, Wagner ND. Rapid loss of plastid ndh genes in slipper orchids (Cypripedioideae, Orchidaceae). FRONTIERS IN PLANT SCIENCE 2025; 16:1507415. [PMID: 40330132 PMCID: PMC12053501 DOI: 10.3389/fpls.2025.1507415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/31/2025] [Indexed: 05/08/2025]
Abstract
Introduction The eleven plastid ndh genes encode for subunits of the ndh (NAD(P)H dehydrogenase-like) complex, which mediates electron flow in photosystem I. The loss of ndh genes in plants was observed in many different lineages of Viridiplantae. In lineages of Orchidaceae, the loss of ndh genes was often associated with myco-heterotrophy. However, in previous studies on this topic only a few slipper orchids were included. Our study aimed to analyze the loss of ndh genes within Cypripedioideae, a subfamily that is assumed to be fully autotroph. Methods Based on a comprehensive sampling of 100 published plastomes representing 60% of Cypripedioideae species, the phylogenetic relationships were revealed on three levels. For family and subfamily levels, 57 and 66 plastid genes, respectively, were extracted and concatenated in Geneious, while for the genus-level phylogeny, complete plastomes were used to calculate a maximum likelihood tree. Additionally, divergence time estimates were performed to illuminate the evolutionary timeframe of the gene loss. The prevalence, pseudogenization and loss of ndh genes were assessed and visualized along the phylogenetic trees. Results The results confirmed the four analyzed genera of Cypripedioideae to be monophyletic and could increase the resolution within the genera compared to previous studies. The diversification of the subfamily started at about 30 Ma with genus Paphiopedilum displaying the most recent diversification starting at about 11 Ma and showing most speciation events around 4 Ma. The rapid loss of plastid ndh genes within the subfamily Cypripedioideae, particularly in the genera Mexipedium, Phragmipedium and Paphiopedilum could be illustrated. Furthermore, the results illustrated that Cypripedioideae are in an early stage of plastid degradation. Discussion and conclusions Recent studies showed that partial myco-heterotrophy (mixotrophy) is far more common in plant lineages than originally assumed. Based on our findings, we suggest that the possibility of a mixotrophic lifestyle within (sub-)tropical slipper orchids should be reevaluated. Further research regarding the reasons behind plastid gene loss in slipper orchids could provide a better understanding of the ecological evolution of Cypripedioideae.
Collapse
|
2
|
Tian L, An M, Liu F, Zhang Y. Fungal community characteristics of the last remaining habitat of three paphiopedilum species in China. Sci Rep 2024; 14:24737. [PMID: 39433552 PMCID: PMC11494054 DOI: 10.1038/s41598-024-75185-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024] Open
Abstract
Paphiopedilum armeniacum, Paphiopedilum wenshanense and Paphiopedilum emersonii are critically endangered wild orchids. Their populations are under severe threat, with a dramatic decline in the number of their natural distribution sites. Ex situ conservation and artificial breeding are the keys to maintaining the population to ensure the success of ex situ conservation and field return in the future. The habitat characteristics and soil nutrient information of the last remaining wild distribution sites of the three species were studied. ITS high-throughput sequencing was used to reveal the composition and structure of the soil fungal community, analyze its diversity and functional characteristics, and reveal its relationship with soil nutrients. The three species preferred to grow on low-lying, ventilated and shaded declivities with good water drainage. There were significant differences in soil alkali-hydrolyzed nitrogen and available phosphorus among the three species. There were 336 fungal species detected in the samples. On average, there were different dominant groups in the soil fungal communities of the three species. The functional groups of soil fungi within their habitats were dominated by saprophytic fungi and ectomycorrhizae, with significant differences in diversity and structure. The co-occurrence network of habitat soil fungi was mainly positive. Soil pH significantly affected soil fungal diversity within their habitats of the three paphiopedilum species. The study confirmed that the dominant groups of soil fungi were significantly correlated with soil nutrients. The three species exhibit comparable habitat inclinations, yet they display substantial variations in the composition, structure, and diversity of soil fungi. The fungal functional group is characterized by a rich presence of saprophytic fungi, a proliferation of ectomycorrhizae, and a modest occurrence of orchid mycorrhizae. The symbiotic interactions among the soil fungi associated with these three species are well-coordinated, enhancing their resilience against challenging environmental conditions. There is a significant correlation between soil environmental factors and the composition of soil fungal communities, with pH emerging as a pivotal factor regulating fungal diversity. Our research into the habitat traits and soil fungal ecosystems of the three wild Paphiopedilum species has established a cornerstone for prospective ex situ conservation measures and the eventual reestablishment of these species in their native landscapes.
Collapse
Affiliation(s)
- Li Tian
- College of Forestry, Guizhou University, Huaxi District, Guiyang City, 550025, Guizhou Province, China
| | - Mingtai An
- College of Forestry, Guizhou University, Huaxi District, Guiyang City, 550025, Guizhou Province, China.
| | - Feng Liu
- College of Forestry, Guizhou University, Huaxi District, Guiyang City, 550025, Guizhou Province, China
| | - Yang Zhang
- Guiyang City, Guizhou Province Forestry Bureau, Nanming District, Guiyang City, Guizhou Province, 550002, China
| |
Collapse
|
3
|
Herrera-Alsina L, Lancaster LT, Algar AC, Bocedi G, Papadopulos AST, Gubry-Rangin C, Osborne OG, Mynard P, Creer S, Villegas-Patraca R, Made Sudiana I, Fahri F, Lupiyaningdyah P, Nangoy M, Iskandar DT, Juliandi B, Burslem DFRP, Travis JMJ. Accounting for extinction dynamics unifies the geological and biological histories of Indo-Australian Archipelago. Proc Biol Sci 2024; 291:20240966. [PMID: 39317319 PMCID: PMC11421907 DOI: 10.1098/rspb.2024.0966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 07/22/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
Biogeographical reconstructions of the Indo-Australian Archipelago (IAA) have suggested a recent spread across the Sunda and Sahul shelves of lineages with diverse origins, which appears to be congruent with a geological history of recent tectonic uplift in the region. However, this scenario is challenged by new geological evidence suggesting that the Sunda shelf was never submerged prior to the Pliocene, casting doubt on the interpretation of recent uplift and the correspondence of evidence from biogeography and geology. A mismatch between geological and biogeographical data may occur if analyses ignore the dynamics of extinct lineages, because this may add uncertainty to the timing and origin of clades in biogeographical reconstructions. We revisit the historical biogeography of multiple IAA taxa and explicitly allow for the possibility of lineage extinction. In contrast to models assuming zero extinction, we find that all of these clades, including plants, invertebrates and vertebrates, have a common and widespread geographic origin, and each has spread and colonized the region much earlier than previously thought. The results for the eight clades re-examined in this article suggest that they diversified and spread during the early Eocene, which helps to unify the geological and biological histories of IAA.
Collapse
Affiliation(s)
| | - Lesley T. Lancaster
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Adam C. Algar
- Deparment of Biology, Lakehead University, Thunder Bay, Ontario, Canada P7B 5E1
| | - Greta Bocedi
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | | | - Cecile Gubry-Rangin
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Owen G. Osborne
- School of Natural Sciences, Bangor University, BangorLL57 2DG, UK
| | - Poppy Mynard
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Simon Creer
- School of Natural Sciences, Bangor University, BangorLL57 2DG, UK
| | - Rafael Villegas-Patraca
- Departamento de Biología Evolutiva, Instituto de Ecología, AC (INECOL), Xalapa, Veracruz91073, Mexico
| | - I. Made Sudiana
- Research Center for Biology, Indonesian Institute of Sciences, Jakarta, Indonesia
| | - Fahri Fahri
- Department of Biology, Tadulako University, Palu, Indonesia
| | - Pungki Lupiyaningdyah
- Zoology Division, Museum Zoologicum Bogoriense, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Meis Nangoy
- Faculty of Animal Husbandry, Sam Ratulangi University, Kampus Bahu Street, Manado95115, Indonesia
| | - Djoko T. Iskandar
- Department of Biology, FMIPA Institut Teknologi Bandung 10 Jalan Ganesa, Bandung40132, Indonesia
| | - Berry Juliandi
- Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Bogor16680, Indonesia
| | | | - Justin M. J. Travis
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| |
Collapse
|
4
|
Wang Y, Wang H, Ye C, Wang Z, Ma C, Lin D, Jin X. Progress in systematics and biogeography of Orchidaceae. PLANT DIVERSITY 2024; 46:425-434. [PMID: 39280975 PMCID: PMC11390685 DOI: 10.1016/j.pld.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 09/18/2024]
Abstract
Orchidaceae are one of the largest families of angiosperms in terms of species richness. In the last decade, numerous studies have delved into reconstructing the phylogenetic framework of Orchidaceae, leveraging data from plastid, mitochondrial and nuclear sources. These studies have provided new insights into the systematics, diversification and biogeography of Orchidaceae, establishing a robust foundation for future research. Nevertheless, pronounced controversies persist regarding the precise placement of certain lineages within these phylogenetic frameworks. To address these discrepancies and deepen our understanding of the phylogenetic structure of Orchidaceae, we provide a comprehensive overview and analysis of phylogenetic studies focusing on contentious groups within Orchidaceae since 2015, delving into discussions on the underlying reasons for observed topological conflicts. We also provide a novel phylogenetic framework at the subtribal level. Furthermore, we examine the tempo and mode underlying orchid species diversity from the perspective of historical biogeography, highlighting factors contributing to extensive speciation. Ultimately, we delineate avenues for future research aimed at enhancing our understanding of Orchidaceae phylogeny and diversity.
Collapse
Affiliation(s)
- Yajun Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Hanchen Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Chao Ye
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Zhiping Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Chongbo Ma
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Dongliang Lin
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xiaohua Jin
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| |
Collapse
|
5
|
Karbarz M, Szlachcikowska D, Zapał A, Leśko A. Unlocking the Genetic Identity of Endangered Paphiopedilum Orchids: A DNA Barcoding Approach. Genes (Basel) 2024; 15:689. [PMID: 38927625 PMCID: PMC11202981 DOI: 10.3390/genes15060689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Orchids of the genus Paphiopedilum, also called slippers, are among the most valued representatives of the Orchidaceae family due to their aesthetic qualities. Due to overexploitation, deforestation, and illegal trade in these plants, especially in the vegetative phase, Paphiopedilum requires special protection. This genus is listed in Appendix I of the Convention on International Trade in Endangered Species of Wild Fauna and Flora. Their precise identification is of great importance for the preservation of genetic resources and biodiversity of the orchid family (Orchidaceae). Therefore, the main objective of the study was to investigate the usefulness of the DNA barcoding technique for the identification of endangered orchids of the genus Paphiopedilum and to determine the effectiveness of five loci: matK, rbcL, ITS2, atpF-atpH and trnH-psbA as potential molecular markers for species of this genus. Among single locus barcodes, matK was the most effective at identifying species (64%). Furthermore, matK, ITS2, matK + rbcL, and matK + trnH-psbA barcodes can be successfully used as a complementary tool to identify Paphiopedilum orchids while supporting morphological data provided by taxonomists.
Collapse
Affiliation(s)
| | - Dominika Szlachcikowska
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, 35-225 Rzeszów, Poland
| | - Angelika Zapał
- Institute of Biology, University of Rzeszow, 35-959 Rzeszów, Poland
| | | |
Collapse
|
6
|
Tian F, Wang J, Ding F, Wang L, Yang Y, Bai X, Tan C, Liao X. Comparative transcriptomics and proteomics analysis of the symbiotic germination of Paphiopedilum barbigerum with Epulorhiza sp. FQXY019. Front Microbiol 2024; 15:1358137. [PMID: 38562471 PMCID: PMC10982344 DOI: 10.3389/fmicb.2024.1358137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Paphiopedilum barbigerum is currently the rarest and most endangered species of orchids in China and has significant ornamental value. The mature seeds of P. barbigerum are difficult to germinate owing to the absence of an endosperm and are highly dependent on mycorrhizal fungi for germination and subsequent development. However, little is known about the regulation mechanisms of symbiosis and symbiotic germination of P. barbigerum seeds. Methods Herein, transcriptomics and proteomics were used to explore the changes in the P. barbigerum seeds after inoculation with (FQXY019 treatment group) or without (control group) Epulorhiza sp. FQXY019 at 90 days after germination. Results Transcriptome sequencing revealed that a total of 10,961 differentially expressed genes (DEGs; 2,599 upregulated and 8,402 downregulated) were identified in the control and FQXY019 treatment groups. These DEGs were mainly involved in carbohydrate, fatty acid, and amino acid metabolism. Furthermore, the expression levels of candidate DEGs related to nodulin, Ca2+ signaling, and plant lectins were significantly affected in P. barbigerum in the FQXY019 treatment groups. Subsequently, tandem mass tag-based quantitative proteomics was performed to recognize the differentially expressed proteins (DEPs), and a total of 537 DEPs (220 upregulated and 317 downregulated) were identified that were enriched in processes including photosynthesis, photosynthesis-antenna proteins, and fatty acid biosynthesis and metabolism. Discussion This study provides novel insight on the mechanisms underlying the in vitro seed germination and protocorm development of P. barbigerum by using a compatible fungal symbiont and will benefit the reintroduction and mycorrhizal symbiotic germination of endangered orchids.
Collapse
Affiliation(s)
- Fan Tian
- Guizhou Academy of Forestry, Guiyang, Guizhou, China
- Key Laboratory for Biodiversity Conservation in the Karst Mountain Area of Southwestern China, National Forestry and Grassland Administration, Guiyang, Guizhou, China
| | - Juncai Wang
- Guizhou Academy of Sciences, Guiyang, Guizhou, China
| | - Fangjun Ding
- Guizhou Academy of Forestry, Guiyang, Guizhou, China
- Key Laboratory for Biodiversity Conservation in the Karst Mountain Area of Southwestern China, National Forestry and Grassland Administration, Guiyang, Guizhou, China
| | - Lianhui Wang
- Guizhou Academy of Forestry, Guiyang, Guizhou, China
- Key Laboratory for Biodiversity Conservation in the Karst Mountain Area of Southwestern China, National Forestry and Grassland Administration, Guiyang, Guizhou, China
| | - Yanbing Yang
- Guizhou Academy of Forestry, Guiyang, Guizhou, China
- Key Laboratory for Biodiversity Conservation in the Karst Mountain Area of Southwestern China, National Forestry and Grassland Administration, Guiyang, Guizhou, China
| | - Xinxiang Bai
- College of Forestry, Guizhou University, Guiyang, Guizhou, China
| | - Chengjiang Tan
- Guizhou Maolan National Nature Reserve Administration, Libo, Guizhou, China
| | - Xiaofeng Liao
- Guizhou Academy of Sciences, Guiyang, Guizhou, China
| |
Collapse
|
7
|
Tian L, An M, Wu M, Liu F, Zhang Y. Habitat ecological characteristics and soil fungal community structure of Paphiopedilum subgenus Brachypetalum Hallier (Orchidaceae) plants in Southwest China. PLANT SIGNALING & BEHAVIOR 2023; 18:2227365. [PMID: 37377110 DOI: 10.1080/15592324.2023.2227365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 06/29/2023]
Abstract
Species of the subgenus Brachypetalum are the most primitive, most ornamental and most threatened group in the Orchid. This study revealed the ecological characteristics, soil nutrient characteristics and soil fungal community structure of habitats of the subgenus Brachypetalum in Southwest China. Lays a foundation for research on the wild populations and conservation Brachypetalum. The results showed that species of the subgenus Brachypetalum preferred a cool and humid environment, grew in scattered or aggregated form in narrow negative terrain, mainly in humic soil. The soil physical and chemical properties and soil enzyme activity indexes of the habitats were significantly different among different species, and the soil properties of different distribution points of the same species also varied greatly. There were significant differences in the soil fungal community structure among the habitats of different species. Basidiomycetes and ascomycetes were the main fungi in habitats of subgenus Brachypetalum species, and their relative abundance varied among different species. The functional groups of soil fungi were mainly symbiotic fungi and saprophytic fungi. LEfSe analysis found that there were different numbers and species of biomarkers in the habitats of subgenus Brachypetalum species, indicating that the habitat preference characteristics of each species in subgenus Brachypetalum were reflected in the fungal community. It was found that environmental factors had an impact on the changes in soil fungal communities in the habitats of subgenus Brachypetalum species, with climatic factors having the highest explanation rate (20.96%). Soil properties were significantly positively or negatively correlated with a variety of dominant soil fungal groups. Conclusions: The results of this study lay the foundation for the study of the habitat characteristics of wild populations of subgenus Brachypetalum and provides data to support in situ and ex situ conservation in the future.
Collapse
Affiliation(s)
- Li Tian
- Forestry College of Guizhou University, Guizhou University, Guiyang, China
- Research Center of Biodiversity and Nature Conservation, Guizhou University, Guiyang, China
| | - Mingtai An
- Forestry College of Guizhou University, Guizhou University, Guiyang, China
- Research Center of Biodiversity and Nature Conservation, Guizhou University, Guiyang, China
| | - Moxu Wu
- Forestry College of Guizhou University, Guizhou University, Guiyang, China
- Research Center of Biodiversity and Nature Conservation, Guizhou University, Guiyang, China
| | - Feng Liu
- Forestry College of Guizhou University, Guizhou University, Guiyang, China
- Research Center of Biodiversity and Nature Conservation, Guizhou University, Guiyang, China
| | - Yang Zhang
- Forestry College of Guizhou University, Guizhou University, Guiyang, China
- Research Center of Biodiversity and Nature Conservation, Guizhou University, Guiyang, China
| |
Collapse
|
8
|
Comparative Analyses of Chloroplast Genomes Provide Comprehensive Insights into the Adaptive Evolution of Paphiopedilum (Orchidaceae). HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An elucidation of how the selection pressures caused by habitat environments affect plant plastid genomes and lead to the adaptive evolution of plants, is a very intense area of research in evolutionary biology. The genus Paphiopedilum is a predominant group of orchids that includes over 66 species with high horticultural and ornamental value. However, owing to the destructive exploitation and habitat deterioration of wild germplasm resources of Paphiopedilum, it needs more molecular genetic resources and studies on this genus. The chloroplast is cytoplasmically inherited and often used in evolutionary studies. Thus, for this study, we newly sequenced, assembled and annotated five chloroplast genomes of the Paphiopedilum species. The size of these genomes ranged from 155,886 bp (P. henryanum) to 160,503 bp (P. ‘GZSLKY’ Youyou) and they contained 121–122 genes, which consisted of 76 protein coding genes, eight ribosomal RNAs, and 37–38 transfer RNAs. Combined with the other 14 Paphiopedilum species, the characteristics of the repeat sequences, divergent hotspot regions, and the condo usage bias were evaluated and identified, respectively. The gene transfer analysis showed that some fragments of the ndh and ycf gene families were shared by both the chloroplast and nucleus. Although the genomic structure and gene content was conserved, there was a significant boundary shift caused by the inverted repeat (IR) expansion and small single copy (SSC) contraction. The lower GC content and loss of ndh genes could be the result of adaptive evolutionary responses to its unique habitats. The genes under positive selection, including accD, matK, psbM, rpl20, rps12, ycf1, and ycf2 might be regarded as potential candidate genes for further study, which significantly contribute to the adaptive evolution of Paphiopedilum.
Collapse
|
9
|
Sun Y, Zou P, Jiang N, Fang Y, Liu G. Comparative Analysis of the Complete Chloroplast Genomes of Nine Paphiopedilum Species. Front Genet 2022; 12:772415. [PMID: 35186004 PMCID: PMC8854857 DOI: 10.3389/fgene.2021.772415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022] Open
Abstract
Paphiopedilum is known as “lady’s or Venus” slipper orchids due to its prominent shoe-shaped labellum, with high ornamental value. Phylogenetic relationships among some species in Paphiopedilum genus cannot be effectively determined by morphological features alone or through the analysis of nuclear or chloroplast DNA fragments. In order to provide aid in understanding the evolutionary and phylogenetic relationship in Paphiopedilum at chloroplast (cp) genome-scale level, the complete cp genomes of six Paphiopedilum species were newly sequenced in this study, and three other published cp genome sequences of Paphiopedilum were included in the comparative analyses. The cp genomes of the six Paphiopedilum species ranged from 154,908 bp (P. hirsutissimum) to 161,300 bp (P. victoria-mariae) in size, all constituting four-part annular structures. Analyses of the nucleotide substitutions, insertions/deletions, and simple sequence repeats in the cp genomes were conducted. Ten highly variable regions that could serve as potential DNA barcodes or phylogenetic markers for this diverse genus were identified. Sequence variations in the non-coding regions were greater than that in the conserved protein-coding regions, as well as in the large single copy (LSC) and small single copy (SSC) regions than in the inverted repeat (IR) regions. Phylogenetic analysis revealed that all Paphiopedilum species clustered in one monophyletic clade in the Cypripedioideae subfamily and then subdivided into seven smaller branches corresponding to different subgenus or sections of the genus, with high bootstrap supports, indicate that cp genome sequencing can be an effective means in resolving the complex relationship in Paphiopedilum.
Collapse
Affiliation(s)
- Yin Sun
- Shandong Provincial Academy of Forestry, Jinan, China
| | - Peishan Zou
- Department of Botany, Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou, China
| | - Nannan Jiang
- Shandong Provincial Academy of Forestry, Jinan, China
| | - Yifu Fang
- Shandong Provincial Academy of Forestry, Jinan, China
| | - Guofeng Liu
- Department of Botany, Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou, China
| |
Collapse
|
10
|
Zhang FP, Zhang SB. Genome Size and Labellum Epidermal Cell Size Are Evolutionarily Correlated With Floral Longevity in Paphiopedilum Species. FRONTIERS IN PLANT SCIENCE 2021; 12:793516. [PMID: 34975981 PMCID: PMC8716874 DOI: 10.3389/fpls.2021.793516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/19/2021] [Indexed: 06/02/2023]
Abstract
Genome size is known to influence phenotypic traits in leaves and seeds. Although genome size is closely related to cellular and developmental traits across biological kingdoms, floral longevity is a floral trait with important fitness consequence, but less is known about the link between floral longevity and sizes of genomes and cells. In this study, we examined evolutionary coordination between genome size, floral longevity, and epidermal cell size in flowers and leaves in 13 Paphiopedilum species. We found that, across all the study species, the genome size was positively correlated with floral longevity but negatively associated with labellum epidermal cell size, and a negative relationship was found between floral longevity and labellum epidermal cell size. This suggested that genome size is potentially correlated with floral longevity, and genome size has an important impact on life-history trait. In addition, genome size was positively correlated with leaf epidermal cell size, which was different from the relationship in flower due to different selective pressures they experienced or different functions they performed. Therefore, genome size constraints floral longevity, and it is a strong predictor of cell size. The impact of genome size on reproduction might have more implications for the evolution of flowering plants and pollination ecology.
Collapse
Affiliation(s)
- Feng-Ping Zhang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Shi-Bao Zhang
- Key Laboratory of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
11
|
Geographical Distribution and Relationship with Environmental Factors of Paphiopedilum Subgenus Brachypetalum Hallier (Orchidaceae) Taxa in Southwest China. DIVERSITY 2021. [DOI: 10.3390/d13120634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The determination of the geographic distributions of orchid species and their relationships with environmental factors are considered fundamental to their conservation. Paphiopedilum subgenus Brachypetalum is one of the most primitive, ornamental, and threatened groups of Orchidaceae. However, little is known about the distribution of Brachypetalum orchids and how they are influenced by environmental factors. In this study, we developed a database on the geographical distribution of Brachypetalum orchids based on a large-scale field investigation in the Guangxi, Guizhou, and Yunnan provinces of southwest China (2019–2020). Using this database, we first adopted the nonparametric Mann–Whitney U test to analyze the differences in the geographical distributions and growth environments of Brachypetalum orchids. In addition, we also used the method of principal component analysis (PCA) to explore distribution patterns of Brachypetalum orchids in relation to environmental factors (topography, climate, anthropogenic disturbance, productivity, and soil) in southwest China. Our results indicated that Brachypetalum orchid species were mainly distributed in the karst limestone habitats of southwest China. In general, there were 194 existing localities with the occurrence of seven target orchids in the investigated area. Of the discovered species in our study, 176 locations (~90.7%) were distributed primarily in the karst habitat. Among them, the range of 780–1267 m was the most concentrated elevation of Brachypetalum orchids. In addition, the findings also suggested that the distribution of Brachypetalum orchids in southwest China was relatively scattered in geographical space. However, the density of the distribution of Brachypetalum orchids was high, between 104° and 108° E and between 25° and 26° N. The results of the Mann–Whitney U test revealed that there are obviously different geographical distributions and growth environments of Brachypetalum in southwest China. More specifically, we found some extremely significant differences (p < 0.001) in elevation, mean diurnal range, precipitation of coldest quarter, solar radiation, and exchangeable Ca2+ between the provinces of southwest China. The PCA analysis revealed that elevation, solar radiation, temperature (mean diurnal range, annual temperature range) and precipitation (precipitation seasonality, precipitation of the warmest quarter) were found to be the most significant factors in determining Brachypetalum orchids’ distribution. These findings have implications in assessing conservation effectiveness and determining niche breadth to better protect the populations of these Brachypetalum orchid species in the future.
Collapse
|
12
|
Górniak M, Szlachetko DL, Olędrzyńska N, Naczk AM, Mieszkowska A, Boss L, Ziętara MS. Species Phylogeny versus Gene Trees: A Case Study of an Incongruent Data Matrix Based on Paphiopedilum Pfitz. (Orchidaceae). Int J Mol Sci 2021; 22:ijms222111393. [PMID: 34768824 PMCID: PMC8583834 DOI: 10.3390/ijms222111393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
The phylogeny of the genus Paphiopedilum based on the plastome is consistent with morphological analysis. However, to date, none of the analyzed nuclear markers has confirmed this. Topology incongruence among the trees of different nuclear markers concerns entire sections of the subgenus Paphiopedilum. The low-copy nuclear protein-coding gene PHYC was obtained for 22 species representing all sections and subgenera of Paphiopedilum. The nuclear-based phylogeny is supported by morphological characteristics and plastid data analysis. We assumed that an incongruence in nuclear gene trees is caused by ancestral homoploid hybridization. We present a model for inferring the phylogeny of the species despite the incongruence of the different tree topologies. Our analysis, based on six low-copy nuclear genes, is congruent with plastome phylogeny and has been confirmed by phylogenetic network analysis.
Collapse
Affiliation(s)
- Marcin Górniak
- Department of Evolutionary Genetics and Biosystematics, University of Gdańsk, 80-309 Gdańsk, Poland; (A.M.N.); (A.M.); (M.S.Z.)
- Correspondence:
| | - Dariusz L. Szlachetko
- Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, 80-309 Gdańsk, Poland; (D.L.S.); (N.O.)
| | - Natalia Olędrzyńska
- Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, 80-309 Gdańsk, Poland; (D.L.S.); (N.O.)
| | - Aleksandra M. Naczk
- Department of Evolutionary Genetics and Biosystematics, University of Gdańsk, 80-309 Gdańsk, Poland; (A.M.N.); (A.M.); (M.S.Z.)
| | - Agata Mieszkowska
- Department of Evolutionary Genetics and Biosystematics, University of Gdańsk, 80-309 Gdańsk, Poland; (A.M.N.); (A.M.); (M.S.Z.)
| | - Lidia Boss
- Department of Bacterial Molecular Genetics, University of Gdańsk, 80-309 Gdańsk, Poland;
| | - Marek S. Ziętara
- Department of Evolutionary Genetics and Biosystematics, University of Gdańsk, 80-309 Gdańsk, Poland; (A.M.N.); (A.M.); (M.S.Z.)
| |
Collapse
|
13
|
Guo YY, Yang JX, Bai MZ, Zhang GQ, Liu ZJ. The chloroplast genome evolution of Venus slipper (Paphiopedilum): IR expansion, SSC contraction, and highly rearranged SSC regions. BMC PLANT BIOLOGY 2021; 21:248. [PMID: 34058997 DOI: 10.21203/rs.3.rs-257472/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/20/2021] [Indexed: 05/29/2023]
Abstract
BACKGROUND Paphiopedilum is the largest genus of slipper orchids. Previous studies showed that the phylogenetic relationships of this genus are not well resolved, and sparse taxon sampling documented inverted repeat (IR) expansion and small single copy (SSC) contraction of the chloroplast genomes of Paphiopedilum. RESULTS Here, we sequenced, assembled, and annotated 77 plastomes of Paphiopedilum species (size range of 152,130 - 164,092 bp). The phylogeny based on the plastome resolved the relationships of the genus except for the phylogenetic position of two unstable species. We used phylogenetic and comparative genomic approaches to elucidate the plastome evolution of Paphiopedilum. The plastomes of Paphiopedilum have a conserved genome structure and gene content except in the SSC region. The large single copy/inverted repeat (LSC/IR) boundaries are relatively stable, while the boundaries of the inverted repeat and small single copy region (IR/SSC) varied among species. Corresponding to the IR/SSC boundary shifts, the chloroplast genomes of the genus experienced IR expansion and SSC contraction. The IR region incorporated one to six genes of the SSC region. Unexpectedly, great variation in the size, gene order, and gene content of the SSC regions was found, especially in the subg. Parvisepalum. Furthermore, Paphiopedilum provides evidence for the ongoing degradation of the ndh genes in the photoautotrophic plants. The estimated substitution rates of the protein coding genes show accelerated rates of evolution in clpP, psbH, and psbZ. Genes transferred to the IR region due to the boundary shift also have higher substitution rates. CONCLUSIONS We found IR expansion and SSC contraction in the chloroplast genomes of Paphiopedilum with dense sampling, and the genus shows variation in the size, gene order, and gene content of the SSC region. This genus provides an ideal system to investigate the dynamics of plastome evolution.
Collapse
Affiliation(s)
- Yan-Yan Guo
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Jia-Xing Yang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ming-Zhu Bai
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Guo-Qiang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China, The Orchid Conservation and Research Center of Shenzhen, Shenzhen, 518114, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization At College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- College of Forestry, Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
14
|
Guo YY, Yang JX, Bai MZ, Zhang GQ, Liu ZJ. The chloroplast genome evolution of Venus slipper (Paphiopedilum): IR expansion, SSC contraction, and highly rearranged SSC regions. BMC PLANT BIOLOGY 2021; 21:248. [PMID: 34058997 PMCID: PMC8165784 DOI: 10.1186/s12870-021-03053-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/20/2021] [Indexed: 05/24/2023]
Abstract
BACKGROUND Paphiopedilum is the largest genus of slipper orchids. Previous studies showed that the phylogenetic relationships of this genus are not well resolved, and sparse taxon sampling documented inverted repeat (IR) expansion and small single copy (SSC) contraction of the chloroplast genomes of Paphiopedilum. RESULTS Here, we sequenced, assembled, and annotated 77 plastomes of Paphiopedilum species (size range of 152,130 - 164,092 bp). The phylogeny based on the plastome resolved the relationships of the genus except for the phylogenetic position of two unstable species. We used phylogenetic and comparative genomic approaches to elucidate the plastome evolution of Paphiopedilum. The plastomes of Paphiopedilum have a conserved genome structure and gene content except in the SSC region. The large single copy/inverted repeat (LSC/IR) boundaries are relatively stable, while the boundaries of the inverted repeat and small single copy region (IR/SSC) varied among species. Corresponding to the IR/SSC boundary shifts, the chloroplast genomes of the genus experienced IR expansion and SSC contraction. The IR region incorporated one to six genes of the SSC region. Unexpectedly, great variation in the size, gene order, and gene content of the SSC regions was found, especially in the subg. Parvisepalum. Furthermore, Paphiopedilum provides evidence for the ongoing degradation of the ndh genes in the photoautotrophic plants. The estimated substitution rates of the protein coding genes show accelerated rates of evolution in clpP, psbH, and psbZ. Genes transferred to the IR region due to the boundary shift also have higher substitution rates. CONCLUSIONS We found IR expansion and SSC contraction in the chloroplast genomes of Paphiopedilum with dense sampling, and the genus shows variation in the size, gene order, and gene content of the SSC region. This genus provides an ideal system to investigate the dynamics of plastome evolution.
Collapse
Affiliation(s)
- Yan-Yan Guo
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Jia-Xing Yang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ming-Zhu Bai
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Guo-Qiang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China, The Orchid Conservation and Research Center of Shenzhen, Shenzhen, 518114, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization At College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- College of Forestry, Fujian Colleges and Universities Engineering Research Institute of Conservation and Utilization of Natural Bioresources, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|