1
|
Meirelles JV, Estevam DCD, dos Santos VF, Pereira HMG, Saint Pierre TD, Veiga-Junior VF, Padilha MC. Optimized Extraction Method for Neutral Cannabinoids Quantification Using UHPLC-HRMS/MS. Biomolecules 2025; 15:246. [PMID: 40001549 PMCID: PMC11852687 DOI: 10.3390/biom15020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
The Cannabis market is experiencing steady global growth. Cannabis herbal extracts (CHE) are interesting and sought-after products for many clinical conditions. The medical potential of these formulations is mainly attributed to neutral cannabinoids, such as cannabidiol (CBD), tetrahydrocannabinol (THC), and cannabinol (CBN), and their non-standardized content poses a significant fragility in these pharmaceutical inputs. High-resolution mass spectrometry portrays a powerful alternative to their accurate monitoring; however, further analytical steps need to be critically optimized to keep up with instrumental performance. In this study, Full Factorial and Box-Behnken designs were employed to achieve a multivariate optimization of CBD, THC, and CBN extraction from human and veterinary commercial CHE using a minimum methanol/hexane 9:1 volume and short operational times. A predictive model was also constructed using the Response Surface Methodology and its accuracy was validated. Agitation and sonication times were identified as the most significant operational extraction parameters, followed by the extraction mixture volume. The final setup of the optimized method represented a significantly faster and cheaper protocol than those in the literature. The selected neutral cannabinoids quantification was conducted using ultra high-performance liquid chromatography coupled to high-resolution tandem mass spectrometry (UHPLC-HRMS/MS) with a precision of <15%, accuracy of 69-98%, sensitivity of 23-39 ng kg-1, and linearity regarding pharmaceutical requirements. State-of-the-art levels of analytical sensitivity and specificity were achieved in the target quantification due to high-resolution mass spectrometry. The developed method demonstrated reliability and feasibility for routine analytical applications. As a proof-of-concept, it enabled the efficient processing of 16 samples of commercial CHE within a three-hour timeframe, showcasing its practicality and reproducibility, and highlighting its potential for broader adoption in similar scenarios for both human and veterinary medicines.
Collapse
Affiliation(s)
- João Victor Meirelles
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro 22451-045, RJ, Brazil; (J.V.M.); (T.D.S.P.)
- Laboratório Brasileiro de Controle de Dopagem (LBCD), Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil; (D.C.D.E.); (V.F.d.S.); (H.M.G.P.)
| | - Débora Cristina Diniz Estevam
- Laboratório Brasileiro de Controle de Dopagem (LBCD), Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil; (D.C.D.E.); (V.F.d.S.); (H.M.G.P.)
| | - Vanessa Farelo dos Santos
- Laboratório Brasileiro de Controle de Dopagem (LBCD), Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil; (D.C.D.E.); (V.F.d.S.); (H.M.G.P.)
| | - Henrique Marcelo Gualberto Pereira
- Laboratório Brasileiro de Controle de Dopagem (LBCD), Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil; (D.C.D.E.); (V.F.d.S.); (H.M.G.P.)
| | - Tatiana D. Saint Pierre
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro 22451-045, RJ, Brazil; (J.V.M.); (T.D.S.P.)
| | - Valdir F. Veiga-Junior
- Department of Chemical Engineering, Military Institute of Engineering, Rio de Janeiro 22290-270, RJ, Brazil;
| | - Monica Costa Padilha
- Laboratório Brasileiro de Controle de Dopagem (LBCD), Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil; (D.C.D.E.); (V.F.d.S.); (H.M.G.P.)
| |
Collapse
|
2
|
Cull A, Joly DL. Development and validation of a minimal SNP genotyping panel for the differentiation of Cannabis sativa cultivars. BMC Genomics 2025; 26:83. [PMID: 39875833 PMCID: PMC11773717 DOI: 10.1186/s12864-025-11263-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/20/2025] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Due to its previously illicit nature, Cannabis sativa had not fully reaped the benefits of recent innovations in genomics and plant sciences. However, Canada's legalization of C. sativa and products derived from its flower in 2018 triggered significant new demand for robust genotyping tools to assist breeders in meeting consumer demands. Early molecular marker-based research on C. sativa focused on screening for plant sex and chemotype, and more recent research has sought to use molecular markers to target traits of agronomic interest, to study populations and to differentiate between C. sativa cultivars. RESULTS In this study, we have conducted whole genome sequencing of 32 cultivars, mined the sequencing data for SNPs, developed a reduced SNP genotyping panel to discriminate between sequenced cultivars, then validated the 20-SNP panel using DNA from the sequenced cultivars and tested the assays on commercially available dried flower. The assay conversion rate was higher in DNA extracted from fresh plant material than in DNA extracted from dried flower samples. However, called genotypes were internally consistent, highlighting discrepancies between genotypes detected using sequencing data and observed using genotyping assays. The primary contributions of this work are to clearly document the process used to develop minimal SNP genotyping panels, the feasibility of using such panels to differentiate between C. sativa cultivars, and outline improvements and goals for future iterations of PCR-based, minimal SNP panels to enable efficient development genotyping tools to identify and screen C. sativa cultivars. CONCLUSIONS Our key recommendations are to increase sampling density to account for intra-cultivar variability; leverage higher read length paired-end short-read technology; conduct in-depth pre- and post-processing of reads, mapping, and variant calling data; integrate trait-associated loci to develop multi-purpose panels; and use iterative approaches for in vitro validation to ensure that only the most discriminant and performant SNPs are retained.
Collapse
Affiliation(s)
- Alex Cull
- Cannabis Innovation and Research Center, Université de Moncton, Moncton, New-Brunswick, Canada
| | - David L Joly
- Cannabis Innovation and Research Center, Université de Moncton, Moncton, New-Brunswick, Canada.
| |
Collapse
|
3
|
Ntsoane T, Nemukondeni N, Nemadodzi LE. A Systematic Review: Assessment of the Metabolomic Profile and Anti-Nutritional Factors of Cannabis sativa as a Feed Additive for Ruminants. Metabolites 2024; 14:712. [PMID: 39728493 DOI: 10.3390/metabo14120712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
Background:Cannabis sativa is a high-value crop that can be cultivated for ruminant's feed and medicinal purposes. The demand for Cannabis and Cannabis products has increased since the beginning of 21st century. Objectives: The increase in the production cost of high-protein feeds such as lucerne has led to an urgent need to investigate alternative high-protein sources. Methods: Cannabis has been identified as an alternative to lucerne due to its high protein content. Results: However, the cultivation and uses of Cannabis and its by-products in South Africa is limited due to the strict legislation. The metabolites and nutritional value of Cannabis are influenced by growing conditions and soil type. Furthermore, the available literature has shown that Cannabis contains anti-nutritional factors that may affect feed intake or bioavailability and digestibility. Conclusions: Therefore, it is crucial to employ a processing method that can reduce anti-nutritional factors to promote the feed intake and growth rate of sheep. Fermentation, as a processing method, can reduce anti-nutritional factors found in Cannabis, which will make it a palatable alternative feed supplement for ruminants such as Dorper sheep. Overall, this review paper aimed to examine the available literature on the use of Cannabis as an alternative high-protein feed supplement for Dorper sheep in South Africa.
Collapse
Affiliation(s)
- Tumisho Ntsoane
- Department of Agriculture and Animal Health, University of South Africa, Science Campus, Florida 1709, South Africa
| | - Ndivho Nemukondeni
- Department of Animal Sciences, Tshwane University of Technology, Pretoria 0001, South Africa
| | - Lufuno Ethel Nemadodzi
- Department of Agriculture and Animal Health, University of South Africa, Science Campus, Florida 1709, South Africa
| |
Collapse
|
4
|
Jaikang C, Konguthaithip G, Amornlertwatana Y, Autsavapromporn N, Rattanachitthawat S, Monum T. Alterations in the Blood Kynurenine Pathway Following Long-Term PM2.5 and PM10 Exposure: A Cross-Sectional Study. Biomedicines 2024; 12:1947. [PMID: 39335463 PMCID: PMC11428296 DOI: 10.3390/biomedicines12091947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024] Open
Abstract
Human exposure to PM2.5 and PM10 has been linked to respiratory and cardiovascular diseases through inflammation activation. The kynurenine pathway is associated with inflammation, and it is necessary to investigate the effects of long-term PM2.5 and PM10 exposure on this pathway. This study aimed to conduct a cross-sectional analysis of long-term PM2.5 and PM10 exposure's impact on the kynurenine pathway using proton NMR spectroscopy (1H-NMR). The participants were divided into a low-PM-exposure group (LG; n = 98), and a high-PM-exposure group (HG; n = 92). The metabolites of tryptophan were determined in blood by 1H-NMR. Serotonin, cinnabarinic acid, xanthurenic acid, 5-hydroxytryptophan, indoleacetic acid, tryptamine, melatonin, L-tryptophan, 5-hydroxy-L-tryptophol, indoxyl, 2-aminobenzoic acid, 5-HTOL, hydroxykynurenine, L-3-hydroxykynurenine, N-formyl kynurenine, 3-hydroxy anthranilic acid, kynurenic acid, and picolinic acid significantly increased (p < 0.05) in the HG group. Conversely, NAD and quinolinic acid significantly decreased in the HG group compared to the LG group. The enzyme activities of indoleamine 2,3-dioxygenase and formamidase significantly decreased, while kynureninase and kynurenine monooxygenase significantly increased. The kynurenine pathway is linked to inflammation and non-communicable diseases. Disruption of the kynurenine pathway from particulate matter might promote diseases. Reducing exposure to the particulate matter is crucial for preventing adverse health effects.
Collapse
Affiliation(s)
- Churdsak Jaikang
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Metabolomics Research Group for Forensic Medicine and Toxicology, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Giatgong Konguthaithip
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Metabolomics Research Group for Forensic Medicine and Toxicology, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yutti Amornlertwatana
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Metabolomics Research Group for Forensic Medicine and Toxicology, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Narongchai Autsavapromporn
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Tawachai Monum
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
5
|
Benes F, Binova Z, Zlechovcova M, Maly M, Stranska M, Hajslova J. Thermally induced changes in the profiles of phytocannabinoids and other bioactive compounds in Cannabis sativa L. inflorescences. Food Res Int 2024; 190:114487. [PMID: 38945557 DOI: 10.1016/j.foodres.2024.114487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 07/02/2024]
Abstract
Phytocannabinoids occurring in Cannabis Sativa L. are unique secondary metabolites possessing interesting pharmacological activities. In this study, the dynamics of thermally induced (60 and 120 °C) phytocannabinoid reactions in four cannabis varieties were investigated. Using UHPLC-HRMS/MS, 40 phytocannabinoids were involved in target analysis, and an additional 281 compounds with cannabinoid-like structures and 258 non-cannabinoid bioactive compounds were subjected to suspect screening. As expected, the key reaction was the decarboxylation of acidic phytocannabinoids. Nevertheless, the rate constants differed among cannabis varieties, documenting the matrix-dependence of this process. Besides neutral counterparts of acidic species, ́neẃ bioactive compounds such as hydroxyquinones were found in heated samples. In addition, changes in other bioactive compounds with both cannabinoid-like and non-cannabinoid structures were documented during cannabis heating at 120 °C. The data document the complexity of heat-induced processes and provide a further understanding of changes in bioactivities occurring under such conditions.
Collapse
Affiliation(s)
- Frantisek Benes
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Zuzana Binova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Marie Zlechovcova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Matej Maly
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Milena Stranska
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| |
Collapse
|
6
|
He M, Shi J, Xu YJ, Liu Y. Cannabidiol (CBD) Inhibits Foam Cell Formation via Regulating Cholesterol Homeostasis and Lipid Metabolism. Mol Nutr Food Res 2024; 68:e2400154. [PMID: 38932553 DOI: 10.1002/mnfr.202400154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/22/2024] [Indexed: 06/28/2024]
Abstract
SCOPE The cannabidiol (CBD) in hemp oil has important pharmacological activities. Accumulating evidence suggests that CBD is beneficial in the cardiovascular system and has been applied as a health supplement for atherosclerosis. However, the mechanism remains unclear. METHODS AND RESULTS This study investigates the impact of CBD on foam cell formation, cholesterol homeostasis, and lipid metabolism in macrophages. CBD elevates the levels of peroxisome proliferator-activated receptor gamma (PPARγ) and its associated targets, such as ATP binding transporter A1/G1 (ABCA1/ABCG1), thus reducing foam cell formation, and increasing cholesterol efflux within macrophages. Notably, the upregulation of ABCA1 and ABCG1 expression induced by CBD is found to be attenuated by both a PPARγ inhibitor and PPARγ small interfering RNA (siRNA). Moreover, transfection of PPARγ siRNA results in a decrease in the inhibitory effect of CBD on foam cell formation and promotion of cholesterol efflux. Through lipidomics analysis, the study finds that CBD significantly reverses the enhancement of ceramide (Cer). Correlation analysis indicates a negative association between Cer level and the expression of ABCA1/ABCG1. CONCLUSION This study confirms that CBD can be an effective therapeutic candidate for atherosclerosis treatment by activating PPARγ, up-regulating ABCA1/ABCG1 expression, and down-regulating Cer level.
Collapse
Affiliation(s)
- Mengxue He
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China
| | - Jiachen Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
7
|
Raeber J, Poetzsch M, Schmidli A, Favrod S, Steuer C. Simultaneous quantification of terpenes and cannabinoids by reversed-phase LC-APCI-MS/MS in Cannabis sativa L. samples combined with a subsequent chemometric analysis. Anal Bioanal Chem 2024; 416:4193-4206. [PMID: 38795214 PMCID: PMC11249406 DOI: 10.1007/s00216-024-05349-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/27/2024]
Abstract
Cannabis sativa L. has been the most discussed medicinal plant in recent years. In particular, the dynamic shift from a formerly illicit and tightly controlled substance to a plant recognized for both medicinal and recreational purposes has brought C. sativa into the global spotlight. Due to the ongoing international legalization processes, fast and convenient analytical methods for the quality control of C. sativa flowers for medicinal and recreational purposes are of tremendous interest. In this study, we report the development and validation of a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method applying atmospheric pressure chemical ionization (APCI) to fully quantify 16 terpenes and 7 cannabinoids including their acidic forms by a single chromatographic method. The method presented here is unique and simple, as it eliminates the need for derivatization reactions and includes the unconventional analysis of volatile compounds by liquid chromatography. Samples were prepared by a simple and fast ethanolic extraction. Separation was accomplished within 25 min on a reversed-phase C18 column. Method validation was conducted according to international guidelines regarding selectivity, accuracy, precision, robustness, and linearity. Detection was done in multiple reaction monitoring, which allowed the simultaneous quantification of co-eluting analytes applying two selective mass transitions. In addition, due to reproducible in-source decarboxylation, the acidic forms of cannabinoids were reliably quantified using mass transitions of the neutral forms. The accuracy given as the bias was below 15% for all analytes. Matrix effects for cannabinoids were studied by spiking Humulus lupulus extracts with the analytes at varying concentrations. APCI did not show susceptibility toward ion suppression or enhancement. In addition, the recovery effect after spiking was between 80 and 120% for terpenes. Further, 55 authentic C. sativa extracts were fully quantified, and the obtained results for the terpene profiles were compared to state-of-the-art gas chromatography coupled to flame ionization detection. Comparable results were achieved, emphasizing the method's applicability for cannabinoids and terpenes. Further, acquired metabolite patterns for C. sativa samples were studied, identifying a relationship between cannabinoid and terpene patterns, as well as the abundance of myrcene in CBD-dominant C. sativa strains.
Collapse
Affiliation(s)
- Justine Raeber
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, CH-8093, Zurich, Switzerland
| | - Michael Poetzsch
- Swiss Drug Testing GmbH, Technoparkstrasse 2, CH-8406, Winterthur, Switzerland
| | - Anina Schmidli
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, CH-8093, Zurich, Switzerland
| | - Sina Favrod
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, CH-8093, Zurich, Switzerland
| | - Christian Steuer
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, CH-8093, Zurich, Switzerland.
| |
Collapse
|
8
|
Wishart DS, Hiebert-Giesbrecht M, Inchehborouni G, Cao X, Guo AC, LeVatte MA, Torres-Calzada C, Gautam V, Johnson M, Liigand J, Wang F, Zahraei S, Bhumireddy S, Wang Y, Zheng J, Mandal R, Dyck JRB. Chemical Composition of Commercial Cannabis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14099-14113. [PMID: 38181219 PMCID: PMC11212042 DOI: 10.1021/acs.jafc.3c06616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/07/2024]
Abstract
Cannabis is widely used for medicinal and recreational purposes. As a result, there is increased interest in its chemical components and their physiological effects. However, current information on cannabis chemistry is often outdated or scattered across many books and journals. To address this issue, we used modern metabolomics techniques and modern bioinformatics techniques to compile a comprehensive list of >6000 chemical constituents in commercial cannabis. The metabolomics methods included a combination of high- and low-resolution liquid chromatography-mass spectrometry (MS), gas chromatography-MS, and inductively coupled plasma-MS. The bioinformatics methods included computer-aided text mining and computational genome-scale metabolic inference. This information, along with detailed compound descriptions, physicochemical data, known physiological effects, protein targets, and referential compound spectra, has been made available through a publicly accessible database called the Cannabis Compound Database (https://cannabisdatabase.ca). Such a centralized, open-access resource should prove to be quite useful for the cannabis community.
Collapse
Affiliation(s)
- David S. Wishart
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
- Department
of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada
- Faculty
of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
- Department
of Laboratory Medicine and Pathology, University
of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | | | - Gozal Inchehborouni
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Xuan Cao
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - An Chi Guo
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Marcia A. LeVatte
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Claudia Torres-Calzada
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Vasuk Gautam
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Mathew Johnson
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Jaanus Liigand
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Fei Wang
- Department
of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada
| | - Shirin Zahraei
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Sudarshana Bhumireddy
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Yilin Wang
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Jiamin Zheng
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Rupasri Mandal
- Department
of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Jason R. B. Dyck
- Department
of Pediatrics, University of Alberta, Edmonton, Alberta T6G 1C9, Canada
| |
Collapse
|
9
|
He M, Liu A, Shi J, Xu YJ, Liu Y. Multi-Omics Reveals the Effects of Cannabidiol on Gut Microbiota and Metabolic Phenotypes. Cannabis Cannabinoid Res 2024; 9:714-727. [PMID: 37098174 DOI: 10.1089/can.2022.0331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
Introduction: Cannabidiol (CBD) has important pharmacological activity, which includes antispasmodic, antioxidant, antithrombotic, and antianxiety properties. CBD has been applied as a health supplement to atherosclerosis. However, CBDs effect on gut microbiota and metabolic phenotype is unclear. Materials and Methods: We constructed a high production of cardiovascular risk factors, such as trimethylamine-N-oxide (TMAO) and phenylacetylglutamine (PAGln), in a mouse model using Clostridium sporogenes colonization. We used 16S ribosomal RNA (rRNA) gene sequencing and ultra-high performance liquid chromatography-quadrupole time-of flight mass spectrometry-based metabolomics to evaluate the effect of CBD on gut microbiota and plasma metabolites. Results: CBD decreased the levels of creatine kinase (CK), alanine transaminase (ALT), and low-density lipoprotein cholesterol and markedly increased high-density lipoprotein cholesterol. Furthermore, CBD treatment increased the abundance of beneficial bacteria, which include Lachnospiraceae_NK4A136 and Blautia in the gut, but it decreased the levels of TMAO and PAGln in the plasma. Conclusion: CBD might have beneficial effects for cardiovascular protection.
Collapse
Affiliation(s)
- Mengxue He
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Aiyang Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Jiachen Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| |
Collapse
|
10
|
Myoli A, Choene M, Kappo AP, Madala NE, van der Hooft JJJ, Tugizimana F. Charting the Cannabis plant chemical space with computational metabolomics. Metabolomics 2024; 20:62. [PMID: 38796627 PMCID: PMC11127828 DOI: 10.1007/s11306-024-02125-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/02/2024] [Indexed: 05/28/2024]
Abstract
INTRODUCTION The chemical classification of Cannabis is typically confined to the cannabinoid content, whilst Cannabis encompasses diverse chemical classes that vary in abundance among all its varieties. Hence, neglecting other chemical classes within Cannabis strains results in a restricted and biased comprehension of elements that may contribute to chemical intricacy and the resultant medicinal qualities of the plant. OBJECTIVES Thus, herein, we report a computational metabolomics study to elucidate the Cannabis metabolic map beyond the cannabinoids. METHODS Mass spectrometry-based computational tools were used to mine and evaluate the methanolic leaf and flower extracts of two Cannabis cultivars: Amnesia haze (AMNH) and Royal dutch cheese (RDC). RESULTS The results revealed the presence of different chemical compound classes including cannabinoids, but extending it to flavonoids and phospholipids at varying distributions across the cultivar plant tissues, where the phenylpropnoid superclass was more abundant in the leaves than in the flowers. Therefore, the two cultivars were differentiated based on the overall chemical content of their plant tissues where AMNH was observed to be more dominant in the flavonoid content while RDC was more dominant in the lipid-like molecules. Additionally, in silico molecular docking studies in combination with biological assay studies indicated the potentially differing anti-cancer properties of the two cultivars resulting from the elucidated chemical profiles. CONCLUSION These findings highlight distinctive chemical profiles beyond cannabinoids in Cannabis strains. This novel mapping of the metabolomic landscape of Cannabis provides actionable insights into plant biochemistry and justifies selecting certain varieties for medicinal use.
Collapse
Affiliation(s)
- Akhona Myoli
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa
| | - Mpho Choene
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa
| | - Abidemi Paul Kappo
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa
| | | | - Justin J J van der Hooft
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa.
- Bioinformatics Group, Wageningen University, Wageningen, 6708 PB, the Netherlands.
| | - Fidele Tugizimana
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa.
- International Research and Development Division, Omnia Group, Ltd., Bryanston, Johannesburg, 2021, South Africa.
- National Institute for Theoretical and Computational Sciences, Johannesburg, South Africa.
| |
Collapse
|
11
|
Monyela S, Kayoka PN, Ngezimana W, Nemadodzi LE. Evaluating the Metabolomic Profile and Anti-Pathogenic Properties of Cannabis Species. Metabolites 2024; 14:253. [PMID: 38786730 PMCID: PMC11122914 DOI: 10.3390/metabo14050253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
The Cannabis species is one of the potent ancient medicinal plants acclaimed for its medicinal properties and recreational purposes. The plant parts are used and exploited all over the world for several agricultural and industrial applications. For many years Cannabis spp. has proven to present a highly diverse metabolomic profile with a pool of bioactive metabolites used for numerous pharmacological purposes ranging from anti-inflammatory to antimicrobial. Cannabis sativa has since been an extensive subject of investigation, monopolizing the research. Hence, there are fewer studies with a comprehensive understanding of the composition of bioactive metabolites grown in different environmental conditions, especially C. indica and a few other Cannabis strains. These pharmacological properties are mostly attributed to a few phytocannabinoids and some phytochemicals such as terpenoids or essential oils which have been tested for antimicrobial properties. Many other discovered compounds are yet to be tested for antimicrobial properties. These phytochemicals have a series of useful properties including anti-insecticidal, anti-acaricidal, anti-nematicidal, anti-bacterial, anti-fungal, and anti-viral properties. Research studies have reported excellent antibacterial activity against Gram-positive and Gram-negative multidrug-resistant bacteria as well as methicillin-resistant Staphylococcus aureus (MRSA). Although there has been an extensive investigation on the antimicrobial properties of Cannabis, the antimicrobial properties of Cannabis on phytopathogens and aquatic animal pathogens, mostly those affecting fish, remain under-researched. Therefore, the current review intends to investigate the existing body of research on metabolomic profile and anti-microbial properties whilst trying to expand the scope of the properties of the Cannabis plant to benefit the health of other animal species and plant crops, particularly in agriculture.
Collapse
Affiliation(s)
- Shadrack Monyela
- Department of Agriculture and Animal Health, University of South Africa, Science Campus, Florida, Johannesburg 1710, South Africa
| | - Prudence Ngalula Kayoka
- Department of Agriculture and Animal Health, University of South Africa, Science Campus, Florida, Johannesburg 1710, South Africa
| | - Wonder Ngezimana
- Department of Horticulture, Faculty of Plant and Animal Sciences and Technology, Marondera University of Agricultural Sciences and Technology, Marondera P.O. Box 35, Zimbabwe
| | - Lufuno Ethel Nemadodzi
- Department of Agriculture and Animal Health, University of South Africa, Science Campus, Florida, Johannesburg 1710, South Africa
| |
Collapse
|
12
|
Chico SFV, Diaz DAM, Contreras-Puentes N. Use of cannabidiol in the treatment of drug-refractory epilepsy in children and young adults: A systematic review. J Neurosci Rural Pract 2024; 15:203-210. [PMID: 38746511 PMCID: PMC11090527 DOI: 10.25259/jnrp_618_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/16/2024] [Indexed: 05/16/2024] Open
Abstract
Objectives Epilepsy poses a significant challenge in pediatric and adolescent populations, impacting not only seizures but also psychological and cognitive comorbidities, leading to higher mortality rates than the general population. Drug-refractory epilepsy, resistant to conventional treatments, affects a range of 7-20% of pediatric patients. The search for alternative therapies has led to exploring the therapeutic potential of Cannabis sativa L. compounds, particularly cannabidiol (CBD). Examine the use of CBD for treating drug-refractory epilepsy in children and young adults, summarizing existing evidence on its efficacy. Materials and Methods A systematic review, following Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines, assessed studies from 2018 to 2023, focusing on CBD's efficacy and safety for treatment-resistant epilepsy in pediatric and juvenile populations. The search spanned seven databases, and the studies underwent rigorous screening and data extraction. Results Out of 6351 identified articles, eight were selected for review. The included studies reported positive outcomes, with CBD leading to a reduction in seizure frequency ranging from 50% to complete seizure freedom. Adverse effects were mostly mild and reversible, including drowsiness, diarrhea, and loss of appetite. Conclusion The CBD emerges as a promising tool for refractory epilepsy in pediatric patients, showing efficacy in reducing seizure frequency and improving overall quality of life. Despite mild and reversible adverse effects, CBD's benefits outweigh the risks. However, more research on long-term effects is needed to fully understand its implications.
Collapse
|
13
|
Tzimas PS, Beteinakis S, Petrakis EA, Papastylianou PT, Kakabouki I, Small-Howard AL, Skaltsounis LA, Halabalaki M. Uncovering the metabolite complexity and variability of cultivated hemp (Cannabis sativa L.): A first phytochemical diversity mapping in Greece. PHYTOCHEMISTRY 2024; 222:114076. [PMID: 38570005 DOI: 10.1016/j.phytochem.2024.114076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/11/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
The high value of fiber-type Cannabis sativa L. (hemp) due to its phytochemicals has yet to be fully recognized and leveraged. Besides cannabidiol (CBD), which is the most prevalent non-psychoactive cannabinoid, hemp contains numerous other cannabinoids with unexplored bioactivities, in addition to various compound classes. Previous works have aimed to correlate chemical profiles of C. sativa inflorescences with important parameters, mostly based on experiments under controlled conditions. However, mapping studies that explore the phytochemical diversity of hemp in a more realistic context are crucial to guide decisions at multiple levels, especially in areas where hemp cultivation was recently re-authorized, including Mediterranean countries. In this work, a powerful strategy was followed to map the phytochemical diversity of cultivated hemp in Greece, being the first study of its kind for this environment. A panel of 98 inflorescence samples, covering two harvesting years, eleven geographical regions and seven commonly used EU varieties, were studied using a combination of targeted and untargeted approaches. Quantitative results based on UPLC-PDA revealed relatively constant CBD/THC (total) ratios, while profiling by LC-HRMS effectively probed the phytochemical variability of samples, and led to the annotation of 88 metabolites, including a multitude of minor cannabinoids. Multivariate analysis substantiated a strong effect of harvesting year in sample discrimination and related biomarkers were revealed, belonging to fatty acids and flavonoids. The effect of geographical region and, especially, variety on chemical variation patterns was more intricate to interpret. The results of this work are envisioned to enhance our understanding of the real-world phytochemical complexity of C. sativa (hemp), with a view to maximized utilization of hemp for the promotion of human well-being.
Collapse
Affiliation(s)
- Petros S Tzimas
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Stavros Beteinakis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Eleftherios A Petrakis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Panayiota T Papastylianou
- Laboratory of Agronomy, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Str., 11855 Athens, Greece
| | - Ioanna Kakabouki
- Laboratory of Agronomy, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Str., 11855 Athens, Greece
| | | | - Leandros A Skaltsounis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| |
Collapse
|
14
|
Scalabrin E, Radaelli M, Capodaglio G, Pierobon M, Del Vecchio S, Buffa G. Hemp cultivation opportunities for marginal lands development. PLoS One 2024; 19:e0299981. [PMID: 38512945 PMCID: PMC10956763 DOI: 10.1371/journal.pone.0299981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/20/2024] [Indexed: 03/23/2024] Open
Abstract
Agricultural diversification and high-quality products deriving from sustainable crops such as hemp can represent a solution to revitalize marginal areas and reverse land abandonment. This study aimed at comparing four different hemp cultivars (Carmagnola Selezionata, "CS"; Futura 75, "FUT"; Felina 32, "FEL"; Secuieni Jubileu, "JUB") to provide information to select the best suited cultivar for cultivation in mountain marginal areas and for specific end-use applications. Hemp cultivars were cultivated in a single experimental field to compare their ecological and agronomic behavior (duration of life cycle phases, plant size and biomass allocation, and plant resource-use strategies). Through metabolomic analysis of both vegetative and reproductive parts of the plants we tested the presence of substances of nutraceutical interest and traced seed nutritional profile. The four cultivars had different ecological and agronomic behavior, and nutritional profile. We found several compounds with potential pharmaceutical and nutraceutical values in all parts of the plant (leaves, inflorescences, and stems). JUB resulted the most suitable for seed production while CS showed the highest content of bioactive compounds in flowers and leaves. FUT, showed the best suitability for multi-purpose cultivation, while FEL seemed to be not appropriate for the cultivation in mountain area. The multi-disciplinary approach we adopted was effective in distinguish across hemp cultivars and provided information to farmers for the selection of the best hemp cultivar to select. Hemp had a high potential for cultivation in marginal lands, demonstrating to be an economic resource due to its multi-purpose use and to the possibility to generate high-added values products. Our results could serve as a stimulus for the reintroduction of this culture in the study area and in other similar environments.
Collapse
Affiliation(s)
- Elisa Scalabrin
- National Research Council, Polar Science Institute, Venice-Mestre, Italy
- Department of Environmental Sciences, Informatics and Statistics, University of Venice, Ca’ Foscari, Venice-Mestre, Italy
| | - Marta Radaelli
- Department of Environmental Sciences, Informatics and Statistics, University of Venice, Ca’ Foscari, Venice-Mestre, Italy
| | - Gabriele Capodaglio
- Department of Environmental Sciences, Informatics and Statistics, University of Venice, Ca’ Foscari, Venice-Mestre, Italy
| | - Manuela Pierobon
- Department of Environmental Sciences, Informatics and Statistics, University of Venice, Ca’ Foscari, Venice-Mestre, Italy
| | - Silvia Del Vecchio
- Department of Environmental Sciences, Informatics and Statistics, University of Venice, Ca’ Foscari, Venice-Mestre, Italy
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Gabriella Buffa
- Department of Environmental Sciences, Informatics and Statistics, University of Venice, Ca’ Foscari, Venice-Mestre, Italy
| |
Collapse
|
15
|
Kale R, Chaturvedi D, Dandekar P, Jain R. Analytical techniques for screening of cannabis and derivatives from human hair specimens. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1133-1149. [PMID: 38314866 DOI: 10.1039/d3ay00786c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Cannabis and associated substances are some of the most frequently abused drugs across the globe, mainly due to their anxiolytic and euphorigenic properties. Nowadays, the analysis of hair samples has been given high importance in forensic and analytical sciences and in clinical studies because they are associated with a low risk of infection, do not require complicated storage conditions, and offer a broad window of non-invasive detection. Analysis of hair samples is very easy compared to the analysis of blood, urine, and saliva samples. This review places particular emphasis on methodologies of analyzing hair samples containing cannabis, with a special focus on the preparation of samples for analysis, which involves screening and extraction techniques, followed by confirmatory assays. Through this manuscript, we have presented an overview of the available literature on the screening of cannabis using mass spectroscopy techniques. We have presented a detailed overview of the advantages and disadvantages of this technique, to establish it as a suitable method for the analysis of cannabis from hair samples.
Collapse
Affiliation(s)
- Rohit Kale
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Mumbai 400019, India.
| | - Deepa Chaturvedi
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India.
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India.
| | - Ratnesh Jain
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Mumbai 400019, India.
| |
Collapse
|
16
|
San Nicolas M, Villate A, Olivares M, Etxebarria N, Zuloaga O, Aizpurua-Olaizola O, Usobiaga A. Exploratory optimisation of a LC-HRMS based analytical method for untargeted metabolomic screening of Cannabis Sativa L. through Data Mining. Anal Chim Acta 2023; 1279:341848. [PMID: 37827627 DOI: 10.1016/j.aca.2023.341848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Recent increase in public acceptance of cannabis as a natural medical alternative for certain neurological pathologies has led to its approval in different regions of the world. However, due to its previous illegal background, little research has been conducted around its biochemical insights. Therefore, in the current framework, metabolomics may be a suitable approach for deepening the knowledge around this plant species. Nevertheless, experimental methods in metabolomics must be carefully handled, as slight modifications can lead to metabolomic coverage loss. Hence, the main objective of this work was to optimise an analytical method for appropriate untargeted metabolomic screening of cannabis. RESULTS We present an empirically optimised experimental procedure through which the broadest metabolomic coverage was obtained, in which extraction solvents for metabolite isolation, chromatographic columns for LC-qOrbitrap analysis and plant-representative biological tissues were compared. By exploratory means, it was determined that the solvent combination composed of CHCl3:H2O:CH3OH (2:1:1, v/v) provided the highest number of features from diverse chemical classes, as it was a two-phase extractant. In addition, a reverse phase 2.6 μm C18 100 Å (150 × 3 mm) chromatographic column was determined as the appropriate choice for adequate separation and further detection of the diverse metabolite classes. Apart from that, overall chromatographic peak quality provided by each column was observed and the need for batch correction methods through quality control (QC) samples was confirmed. At last, leaf and flower tissues resulted to provide complementary metabolic information of the plant, to the detriment of stem tissue, which resulted to be negligible. SIGNIFICANCE It was concluded that the optimised experimental procedure could significantly ease the path for future research works related to cannabis metabolomics by LC-HRMS means, as the work was based on previous plant metabolomics literature. Furthermore, it is crucial to highlight that an optimal analytical method can vary depending on the main objective of the research, as changes in the experimental factors can lead to different outcomes, regardless of whether the results are better or worse.
Collapse
Affiliation(s)
- M San Nicolas
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque Country, Spain; Sovereign Fields S.L., 20006, San Sebastian, Basque Country, Spain.
| | - A Villate
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque Country, Spain
| | - M Olivares
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque Country, Spain
| | - N Etxebarria
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque Country, Spain
| | - O Zuloaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque Country, Spain
| | | | - A Usobiaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque Country, Spain
| |
Collapse
|
17
|
Cerrato A, Biancolillo A, Cannazza G, Cavaliere C, Citti C, Laganà A, Marini F, Montanari M, Montone CM, Paris R, Virzì N, Capriotti AL. Untargeted cannabinomics reveals the chemical differentiation of industrial hemp based on the cultivar and the geographical field location. Anal Chim Acta 2023; 1278:341716. [PMID: 37709459 DOI: 10.1016/j.aca.2023.341716] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/13/2023] [Accepted: 08/13/2023] [Indexed: 09/16/2023]
Abstract
Cannabis sativa has long been harvested for industrial applications related to its fibers. Industrial hemp cultivars, a botanical class of Cannabis sativa with a low expression of intoxicating Δ9-tetrahydrocannabinol (Δ9-THC) have been selected for these purposes and scarcely investigated in terms of their content in bioactive compounds. Following the global relaxation in the market of industrial hemp-derived products, research in industrial hemp for pharmaceutical and nutraceutical purposes has surged. In this context, metabolomics-based approaches have proven to fulfill the aim of obtaining comprehensive information on the phytocompound profile of cannabis samples, going beyond the targeted evaluation of the major phytocannabinoids. In the present paper, an HRMS-based metabolomics study was addressed to seven distinct industrial hemp cultivars grown in four experimental fields in Northern, Southern, and Insular Italy. Since the role of minor phytocannabinoids as well as other phytocompounds was found to be critical in discriminating cannabis chemovars and in determining its biological activities, a comprehensive characterization of phytocannabinoids, flavonoids, and phenolic acids was carried out by LC-HRMS and a dedicated data processing workflow following the guidelines of the metabolomics Quality Assurance and Quality Control Consortium. A total of 54 phytocannabinoids, 134 flavonoids, and 77 phenolic acids were annotated, and their role in distinguishing hemp samples based on the geographical field location and cultivar was evaluated by ANOVA-simultaneous component analysis. Finally, a low-level fused model demonstrated the key role of untargeted cannabinomics extended to lesser-studied phytocompound classes for the discrimination of hemp samples.
Collapse
Affiliation(s)
- Andrea Cerrato
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Alessandra Biancolillo
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Coppito, Italy
| | - Giuseppe Cannazza
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 287, 41125, Modena, Italy; CNR NANOTEC, Campus Ecotekne, University of Salento, Via Monteroni, 73100, Lecce, Italy
| | - Chiara Cavaliere
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Cinzia Citti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi 287, 41125, Modena, Italy; CNR NANOTEC, Campus Ecotekne, University of Salento, Via Monteroni, 73100, Lecce, Italy
| | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Federico Marini
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Massimo Montanari
- CREA-Research Center for Cereal and Industrial Crops, Via di Corticella 133, 40128, Bologna, Italy
| | - Carmela Maria Montone
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Roberta Paris
- CREA-Research Center for Cereal and Industrial Crops, Via di Corticella 133, 40128, Bologna, Italy
| | - Nino Virzì
- CREA-Research Center for Cereal and Industrial Crops, C.so Savoia 190, 95024, Acireale, CT, Italy
| | - Anna Laura Capriotti
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
18
|
Sirangelo TM, Ludlow RA, Spadafora ND. Molecular Mechanisms Underlying Potential Pathogen Resistance in Cannabis sativa. PLANTS (BASEL, SWITZERLAND) 2023; 12:2764. [PMID: 37570918 PMCID: PMC10420965 DOI: 10.3390/plants12152764] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023]
Abstract
Cannabis (Cannabis sativa L.) is one of the earliest cultivated crops, valued for producing a broad spectrum of compounds used in medicinal products and being a source of food and fibre. Despite the availability of its genome sequences, few studies explore the molecular mechanisms involved in pathogen defense, and the underlying biological pathways are poorly defined in places. Here, we provide an overview of Cannabis defence responses against common pathogens, such as Golovinomyces spp., Fusarium spp., Botrytis cinerea and Pythium spp. For each of these pathogens, after a summary of their characteristics and symptoms, we explore studies identifying genes involved in Cannabis resistance mechanisms. Many studies focus on the potential involvement of disease-resistance genes, while others refer to other plants however whose results may be of use for Cannabis research. Omics investigations allowing the identification of candidate defence genes are highlighted, and genome editing approaches to generate resistant Cannabis species based on CRISPR/Cas9 technology are discussed. According to the emerging results, a potential defence model including both immune and defence mechanisms in Cannabis plant-pathogen interactions is finally proposed. To our knowledge, this is the first review of the molecular mechanisms underlying pathogen resistance in Cannabis.
Collapse
Affiliation(s)
- Tiziana M. Sirangelo
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development-Division Biotechnologies and Agroindustry, 00123 Rome, Italy
| | - Richard A. Ludlow
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK;
| | - Natasha D. Spadafora
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
19
|
Beleggia R, Menga V, Fulvio F, Fares C, Trono D. Effect of Genotype, Year, and Their Interaction on the Accumulation of Bioactive Compounds and the Antioxidant Activity in Industrial Hemp ( Cannabis sativa L.) Inflorescences. Int J Mol Sci 2023; 24:ijms24108969. [PMID: 37240314 DOI: 10.3390/ijms24108969] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The phytochemical content and the antioxidant activity in the inflorescences of six industrial hemp (Cannabis sativa L.) genotypes, four monoecious (Codimono, Carmaleonte, Futura 75, and Santhica 27), and two dioecious (Fibrante and Carmagnola Selezionata), were assessed for three consecutive years from 2018 to 2020. The total phenolic content, total flavonoid content, and antioxidant activity were determined by spectrophotometric measurements, whereas HPLC and GC/MS were used to identify and quantify the phenolic compounds, terpenes, cannabinoids, tocopherols, and phytosterols. All the measured traits were significantly affected by genotype (G), cropping year (Y), and their interaction (G × Y), although the Y effect prevailed as a source of variation, ranging from 50.1% to 88.5% for all the metabolites except cannabinoids, which were equally affected by G, Y, and G × Y interaction (33.9%, 36.5%, and 21.4%, respectively). The dioecious genotypes presented a more constant performance over the three years compared to the monoecious genotypes, with the highest and most stable phytochemical content observed in the inflorescences of Fibrante, which was characterized by the highest levels of cannabidiol, α-humulene and β-caryophyllene, which may confer on the inflorescences of this genotype a great economic value due to the important pharmacological properties of these metabolites. Conversely, the inflorescences of Santhica 27 were characterized by the lowest accumulation of phytochemicals over the cropping years, with the notable exception of cannabigerol, a cannabinoid that exhibits a wide range of biological activities, which was found at its highest level in this genotype. Overall, these findings can be used by breeders in future programs aimed at the selection of new hemp genotypes with improved levels of phytochemicals in their inflorescences, which can provide better health and industrial benefits.
Collapse
Affiliation(s)
- Romina Beleggia
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy
| | - Valeria Menga
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy
| | - Flavia Fulvio
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, Via di Corticella, 133, 40128 Bologna, Italy
| | - Clara Fares
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy
| | - Daniela Trono
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy
| |
Collapse
|
20
|
Mhando HB, Sahini MG, Makangara JJ. Chemical profiling of Cannabis sativa from eleven Tanzanian regions. Heliyon 2023; 9:e15892. [PMID: 37215917 PMCID: PMC10192767 DOI: 10.1016/j.heliyon.2023.e15892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
The aim of this research was to investigate the chemical profiles of Cannabis sativa from 11 Tanzanian regions using preliminary tests as well as instrumental analyses with GC-MS and LC-MS. Generally, all the seized samples tested positive for the presence of (Δ9-THC. The preliminary test with Duquenois method followed by chloroform addition revealed the presence of Δ9-tetrahydrocannabinol (Δ9-THC) in all the samples. GC-MS analyses of the samples revealed the presence of nine cannabinoids including Δ9-THC, Δ8-THC, cannabidivarol, cannabidiol, Δ9-tetrahydrocannabivarin (Δ9-THCV), cannabichromene, cannabinol, caryophyllene, and cannabicouramaronone, whereas LC-MS chemical profiling revealed the presence 24 chemical substances, including 4 cannabinoids, 15 different types of drugs and 5 amino acids. The Pwani region had the highest percentage composition of Δ9-THC (13.45%), the main psychoactive ingredient of Cannabis sativa, followed by Arusha (10.92%) and Singida (10.08%). The sample from Kilimanjaro had the lowest percentage of Δ9-THC (6.72%). Apart from cannabinoids, the majority of other chemical substances were found in the Dar es Salaam region sample, which could be attributed to the fact that the city is the epicenter of business rather than the cultivation area, implying that the samples were obtained from different sources and blended as a single package.
Collapse
|
21
|
Boulebd H. Insights on the antiradical capacity and mechanism of phytocannabinoids: H-abstraction and electron transfer processes in physiological media and the influence of the acid-base equilibrium. PHYTOCHEMISTRY 2023; 208:113608. [PMID: 36738909 DOI: 10.1016/j.phytochem.2023.113608] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/16/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Phytocannabinoids are natural products primarily isolated from Cannabis sativa that exhibit the typical C21 terpenophenolic skeleton. This class of compounds has been shown to be effective in the treatment of various oxidation-related diseases, which has made their antioxidant properties the focus of increasing interest. In the present contribution, the primary antioxidant properties of eight representative phytocannabinoids have been systematically studied against a variety of biologically significant radical species using the density functional theory (DFT) method. The findings demonstrated that phytocannabinoids, in water at physiological pH, exhibit excellent radical scavenging capacity, mainly exerted by the single electron transfer (SET) process from the deprotonated state. In contrast, phytocannabinoids are moderate radical scavengers in non-polar environment via the formal hydrogen atom transfer (fHAT) process. Among the compounds examined, cannabichromene (CBC) and cannabifuran (CBF) had the greatest free radical scavenging capacity in water, surpassing even common antioxidants like BHT and Trolox. CBF is expected to have potent antiradical action toward peroxyl radicals, alkoxy radicals, and nitrogen dioxide in water at physiological pH. These results provide supporting evidence that phytocannabinoids may be useful in scavenging harmful free radicals in physiological environments.
Collapse
Affiliation(s)
- Houssem Boulebd
- Chemistry Department, Faculty of Exact Science, University of Constantine 1, Constantine, 25000, Algeria.
| |
Collapse
|
22
|
Fernández S, Castro R, López-Radcenco A, Rodriguez P, Carrera I, García-Carnelli C, Moyna G. Beyond cannabinoids: Application of NMR-based metabolomics for the assessment of Cannabis sativa L. crop health. FRONTIERS IN PLANT SCIENCE 2023; 14:1025932. [PMID: 37035042 PMCID: PMC10075229 DOI: 10.3389/fpls.2023.1025932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
While Cannabis sativa L. varieties have been traditionally characterized by their major cannabinoid profile, it is now well established that other plant metabolites can also have physiological effects, including minor cannabinoids, terpenes, and flavonoids. Given the multiple applications of cannabis in the medical field, it is therefore critical to characterize it according to its chemical composition (i.e., its metabolome) and not only its botanical traits. With this in mind, the cannabinoid and metabolomic profiles from inflorescences of two C. sativa varieties with either high Δ9-tetrahydrocannabinolic acid (THCA) or high cannabidiolic acid (CBDA) contents harvested at different times were studied. According to results from HPLC and NMR-based untargeted metabolomic analyses of organic and aqueous plant material extracts, we show that in addition to expected variations according to cannabinoid profiles, it is possible to distinguish between harvests of the same variety. In particular, it was possible to correlate variations in the metabolome with presence of powdery mildew, leading to the identification of molecular markers associated with this fungal infection in C. sativa.
Collapse
Affiliation(s)
- Santiago Fernández
- Laboratorio de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Rossina Castro
- Laboratorio de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Andrés López-Radcenco
- Laboratorio de Fisicoquímica Orgánica, Departamento de Química del Litoral, Centro Universitario Regional Litoral Norte, Universidad de la República, Paysandú, Uruguay
| | - Paula Rodriguez
- Laboratorio de Biocatálisis y Biotransformaciones, Departamento de Química Orgánica and Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Inés Carrera
- Laboratorio de Experimentación Animal – Área Farmacología, Departamento de Ciencias Farmacéuticas, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Carlos García-Carnelli
- Laboratorio de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Guillermo Moyna
- Laboratorio de Fisicoquímica Orgánica, Departamento de Química del Litoral, Centro Universitario Regional Litoral Norte, Universidad de la República, Paysandú, Uruguay
| |
Collapse
|
23
|
Gloerfelt-Tarp F, Hewavitharana AK, Mieog J, Palmer WM, Fraser F, Ansari O, Kretzschmar T. Using a global diversity panel of Cannabis sativa L. to develop a near InfraRed-based chemometric application for cannabinoid quantification. Sci Rep 2023; 13:2253. [PMID: 36755037 PMCID: PMC9908977 DOI: 10.1038/s41598-023-29148-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
C. sativa has gained renewed interest as a cash crop for food, fibre and medicinal markets. Irrespective of the final product, rigorous quantitative testing for cannabinoids, the regulated biologically active constituents of C. sativa, is a legal prerequisite across the supply chains. Currently, the medicinal cannabis and industrial hemp industries depend on costly chromatographic analysis for cannabinoid quantification, limiting production, research and development. Combined with chemometrics, Near-InfraRed spectroscopy (NIRS) has potential as a rapid, accurate and economical alternative method for cannabinoid analysis. Using chromatographic data on 12 therapeutically relevant cannabinoids together with spectral output from a diffuse reflectance NIRS device, predictive chemometric models were built for major and minor cannabinoids using dried, homogenised C. sativa inflorescences from a diverse panel of 84 accessions. Coefficients of determination (r2) of the validation models for 10 of the 12 cannabinoids ranged from 0.8 to 0.95, with models for major cannabinoids showing best performance. NIRS was able to discriminate between neutral and acidic forms of cannabinoids as well as between C3-alkyl and C5-alkyl cannabinoids. The results show that NIRS, when used in conjunction with chemometrics, is a promising method to quantify cannabinoids in raw materials with good predictive results.
Collapse
Affiliation(s)
| | | | - Jos Mieog
- Southern Cross University, Lismore, NSW, 2480, Australia
| | - William M Palmer
- Research Division, Rapid Phenotyping (Hone), Newcastle, NSW, 2300, Australia
| | - Felicity Fraser
- Research Division, Rapid Phenotyping (Hone), Newcastle, NSW, 2300, Australia
| | - Omid Ansari
- Ecofibre Ltd, Virginia, QLD, 4014, Australia.,Hemp GenTech, Fig Tree Pocket, QLD, 4069, Australia
| | | |
Collapse
|
24
|
Araujo dos Santos N, Kerpel dos Santos M, Almirall J, Romão W. Cannabinomics studies – A review from colorimetric tests to modern analytical techniques: Part II. Forensic Chem 2023. [DOI: 10.1016/j.forc.2023.100477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
25
|
Huang P, Hameed R, Abbas M, Balooch S, Alharthi B, Du Y, Abbas A, Younas A, Du D. Integrated omic techniques and their genomic features for invasive weeds. Funct Integr Genomics 2023; 23:44. [PMID: 36680630 DOI: 10.1007/s10142-023-00971-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/01/2023] [Accepted: 01/11/2023] [Indexed: 01/22/2023]
Abstract
Many emerging invasive weeds display rapid adaptation against different stressful environments compared to their natives. Rapid adaptation and dispersal habits helped invasive populations have strong diversity within the population compared to their natives. Advances in molecular marker techniques may lead to an in-depth understanding of the genetic diversity of invasive weeds. The use of molecular techniques is rapidly growing, and their implications in invasive weed studies are considered powerful tools for genome purposes. Here, we review different approach used multi-omics by invasive weed studies to understand the functional structural and genomic changes in these species under different environmental fluctuations, particularly, to check the accessibility of advance-sequencing techniques used by researchers in genome sequence projects. In this review-based study, we also examine the importance and efficiency of different molecular techniques in identifying and characterizing different genes, associated markers, proteins, metabolites, and key metabolic pathways in invasive and native weeds. Use of these techniques could help weed scientists to further reduce the knowledge gaps in understanding invasive weeds traits. Although these techniques can provide robust insights about the molecular functioning, employing a single omics platform can rarely elucidate the gene-level regulation and the associated real-time expression of weedy traits due to the complex and overlapping nature of biological interactions. We conclude that different multi-omic techniques will provide long-term benefits in launching new genome projects to enhance the understanding of invasive weeds' invasion process.
Collapse
Affiliation(s)
- Ping Huang
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Rashida Hameed
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Manzer Abbas
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, Sichuan Province, People's Republic of China
| | - Sidra Balooch
- Institute of Botany, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Badr Alharthi
- Department of Biology, University College of Al Khurmah, Taif University, PO. Box 11099, Taif, 21944, Saudi Arabia
| | - Yizhou Du
- Faculty of Engineering, School of Computer Science, University of Sydney, Sydney, New South Wales, Australia
| | - Adeel Abbas
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Afifa Younas
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Daolin Du
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
26
|
Araujo dos Santos N, Romão W. Cannabis - a state of the art about the millenary plant: Part I. Forensic Chem 2023. [DOI: 10.1016/j.forc.2023.100470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Current status and future prospects in cannabinoid production through in vitro culture and synthetic biology. Biotechnol Adv 2023; 62:108074. [PMID: 36481387 DOI: 10.1016/j.biotechadv.2022.108074] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/27/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
For centuries, cannabis has been a rich source of fibrous, pharmaceutical, and recreational ingredients. Phytocannabinoids are the most important and well-known class of cannabis-derived secondary metabolites and display a broad range of health-promoting and psychoactive effects. The unique characteristics of phytocannabinoids (e.g., metabolite likeness, multi-target spectrum, and safety profile) have resulted in the development and approval of several cannabis-derived drugs. While most work has focused on the two main cannabinoids produced in the plant, over 150 unique cannabinoids have been identified. To meet the rapidly growing phytocannabinoid demand, particularly many of the minor cannabinoids found in low amounts in planta, biotechnology offers promising alternatives for biosynthesis through in vitro culture and heterologous systems. In recent years, the engineered production of phytocannabinoids has been obtained through synthetic biology both in vitro (cell suspension culture and hairy root culture) and heterologous systems. However, there are still several bottlenecks (e.g., the complexity of the cannabinoid biosynthetic pathway and optimizing the bioprocess), hampering biosynthesis and scaling up the biotechnological process. The current study reviews recent advances related to in vitro culture-mediated cannabinoid production. Additionally, an integrated overview of promising conventional approaches to cannabinoid production is presented. Progress toward cannabinoid production in heterologous systems and possible avenues for avoiding autotoxicity are also reviewed and highlighted. Machine learning is then introduced as a powerful tool to model, and optimize bioprocesses related to cannabinoid production. Finally, regulation and manipulation of the cannabinoid biosynthetic pathway using CRISPR- mediated metabolic engineering is discussed.
Collapse
|
28
|
Botta R, Limwichean S, Limsuwan N, Moonlek C, Horprathum M, Eiamchai P, Chananonnawathorn C, Patthanasettakul V, Chindaudom P, Nuntawong N, Ngernsutivorakul T. An efficient and simple SERS approach for trace analysis of tetrahydrocannabinol and cannabinol and multi-cannabinoid detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121598. [PMID: 35816867 DOI: 10.1016/j.saa.2022.121598] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/21/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Many countries have legalized cannabis and its derived products for multiple purposes. Consequently, it has become necessary to develop a rapid, effective, and reliable tool for detecting delta-9-tetrahydrocannabinol (THC) and cannabinol (CBN), which are important biologically active compounds in cannabis. Herein, we have fabricated SERS chips by using glancing angle deposition and tuned dimensions of silver nanorods (AgNRs) for detecting THC and CBN at low concentrations. Experimental and computational results showed that the AgNR substrate with film thickness (or nanorod length) of 150 nm, corresponding to nanorod diameter of 79 nm and gap between nanorods of 23 nm, can effectively sense trace THC and CBN with good reproducibility and sensitivity. Due to limited spectral studies of the cannabinoids in previous reports, this work also explored towards identifying characteristic Raman lines of THC and CBN. This information is critical to further reliable data analysis and interpretation. Moreover, multianalyte detection of THC and CBN in a mixture was successfully demonstrated by applying an open-source independent component analysis (ICA) model. The overall method is fast, sensitive, and reliable for sensing trace THC and CBN. The SERS chip-based method and spectral results here are useful for a variety of cannabis testing applications, such as product screening and forensic investigation.
Collapse
Affiliation(s)
- Raju Botta
- National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), 112 Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Saksorn Limwichean
- National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), 112 Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Nutthamon Limsuwan
- National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), 112 Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Chalisa Moonlek
- National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), 112 Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Mati Horprathum
- National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), 112 Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Pitak Eiamchai
- National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), 112 Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Chanunthorn Chananonnawathorn
- National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), 112 Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Viyapol Patthanasettakul
- National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), 112 Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Pongpan Chindaudom
- National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), 112 Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Noppadon Nuntawong
- National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), 112 Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Thitaphat Ngernsutivorakul
- National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), 112 Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| |
Collapse
|
29
|
Reichel P, Munz S, Hartung J, Kotiranta S, Graeff-Hönninger S. Impacts of Different Light Spectra on CBD, CBDA and Terpene Concentrations in Relation to the Flower Positions of Different Cannabis Sativa L. Strains. PLANTS (BASEL, SWITZERLAND) 2022; 11:2695. [PMID: 36297719 PMCID: PMC9612076 DOI: 10.3390/plants11202695] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Cannabis is one of the oldest cultivated plants, but plant breeding and cultivation are restricted by country-specific regulations. The plant has gained interest due to its medically important secondary metabolites, cannabinoids and terpenes. Besides biotic and abiotic stress factors, secondary metabolism can be manipulated by changing light quality and intensity. In this study, three morphologically different cannabis strains were grown in a greenhouse experiment under three different light spectra with three real light repetitions. The chosen light sources were as follows: a CHD Agro 400 ceramic metal-halide lamp with a sun-like broad spectrum and an R:FR ratio of 2.8, and two LED lamps, a Solray (SOL) and an AP67, with R:FR ratios of 13.49 and 4, respectively. The results of the study indicated that the considered light spectra significantly influenced CBDA and terpene concentrations in the plants. In addition to the different light spectra, the distributions of secondary metabolites were influenced by flower positions. The distributions varied between strains and indicated interactions between morphology and the chosen light spectra. Thus, the results demonstrate that secondary metabolism can be artificially manipulated by the choice of light spectrum, illuminant and intensity. Furthermore, the data imply that, besides the cannabis strain selected, flower position can have an impact on the medicinal potencies and concentrations of secondary metabolites.
Collapse
Affiliation(s)
- Philipp Reichel
- Agronomy, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Sebastian Munz
- Agronomy, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Jens Hartung
- Biostatistics, Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany
| | - Stiina Kotiranta
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, P.O. Box 27, FI-00014 Helsinki, Finland
| | | |
Collapse
|
30
|
Daniels R, Morato EO, Yassin OA, Mao J, Mutlu Z, Jain M, Valenti J, Cakmak M, Nair LS, Sotzing GA. Poly(cannabinoid)s: Hemp-Derived Biocompatible Thermoplastic Polyesters with Inherent Antioxidant Properties. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42804-42811. [PMID: 36112124 DOI: 10.1021/acsami.2c05556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The legalization of hemp cultivation in the United States has caused the price of hemp-derived cannabinoids to decrease 10-fold within 2 years. Cannabidiol (CBD), one of many naturally occurring diols found in hemp, can be purified in high yield for low cost, making it an interesting candidate for polymer feedstock. In this study, two polyesters were synthesized from the condensation of either CBD or cannabigerol (CBG) with adipoyl chloride. Poly(CBD-Adipate) was cast into free-standing films and subjected to thermal, mechanical, and biological characterization. Poly(CBD-Adipate) films exhibited a lack of cytotoxicity toward adipose-derived stem cells while displaying an inherent antioxidant activity compared to poly(lactide) films. Additionally, this material was found to be semi-crystalline and able to be melt-processed into a plastic hemp leaf using a silicone baking mold.
Collapse
Affiliation(s)
- Robert Daniels
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Erick Orozco Morato
- The Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
- Department of Skeletal Biology and Regeneration, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - Omer A Yassin
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jiahao Mao
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Zeynep Mutlu
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Mayank Jain
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Joseph Valenti
- College of Agriculture, Health, and Natural Resources, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Mukerrem Cakmak
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Lakshmi S Nair
- The Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
- Department of Skeletal Biology and Regeneration, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
- Department of Biomedical Engineering, Department of Material Science and Engineering, Institute of Material Science, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Gregory A Sotzing
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
31
|
Sirangelo TM, Ludlow RA, Spadafora ND. Multi-Omics Approaches to Study Molecular Mechanisms in Cannabis sativa. PLANTS (BASEL, SWITZERLAND) 2022; 11:2182. [PMID: 36015485 PMCID: PMC9416457 DOI: 10.3390/plants11162182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Cannabis (Cannabis sativa L.), also known as hemp, is one of the oldest cultivated crops, grown for both its use in textile and cordage production, and its unique chemical properties. However, due to the legislation regulating cannabis cultivation, it is not a well characterized crop, especially regarding molecular and genetic pathways. Only recently have regulations begun to ease enough to allow more widespread cannabis research, which, coupled with the availability of cannabis genome sequences, is fuelling the interest of the scientific community. In this review, we provide a summary of cannabis molecular resources focusing on the most recent and relevant genomics, transcriptomics and metabolomics approaches and investigations. Multi-omics methods are discussed, with this combined approach being a powerful tool to identify correlations between biological processes and metabolic pathways across diverse omics layers, and to better elucidate the relationships between cannabis sub-species. The correlations between genotypes and phenotypes, as well as novel metabolites with therapeutic potential are also explored in the context of cannabis breeding programs. However, further studies are needed to fully elucidate the complex metabolomic matrix of this crop. For this reason, some key points for future research activities are discussed, relying on multi-omics approaches.
Collapse
Affiliation(s)
- Tiziana M. Sirangelo
- CREA—Council for Agricultural Research and Agricultural Economy Analysis, Genomics and Bioinformatics Department, 26836 Montanaso Lombardo, Italy
| | - Richard A. Ludlow
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Natasha D. Spadafora
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
32
|
De Vita S, Finamore C, Chini MG, Saviano G, De Felice V, De Marino S, Lauro G, Casapullo A, Fantasma F, Trombetta F, Bifulco G, Iorizzi M. Phytochemical Analysis of the Methanolic Extract and Essential Oil from Leaves of Industrial Hemp Futura 75 Cultivar: Isolation of a New Cannabinoid Derivative and Biological Profile Using Computational Approaches. PLANTS 2022; 11:plants11131671. [PMID: 35807623 PMCID: PMC9269227 DOI: 10.3390/plants11131671] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022]
Abstract
Cannabis sativa L. is a plant belonging to the Cannabaceae family, cultivated for its psychoactive cannabinoid (Δ9-THC) concentration or for its fiber and nutrient content in industrial use. Industrial hemp shows a low Δ9-THC level and is a valuable source of phytochemicals, mainly represented by cannabinoids, flavones, terpenes, and alkaloids, with health-promoting effects. In the present study, we investigated the phytochemical composition of leaves of the industrial hemp cultivar Futura 75, a monoecious cultivar commercially used for food preparations or cosmetic purposes. Leaves are generally discarded, and represent waste products. We analyzed the methanol extract of Futura 75 leaves by HPLC and NMR spectroscopy and the essential oil by GC-MS. In addition, in order to compare the chemical constituents, we prepared the water infusion. One new cannabinoid derivative (1) and seven known components, namely, cannabidiol (2), cannabidiolic acid (3), β-cannabispirol (4), β-cannabispirol (5), canniprene (6), cannabiripsol (7), and cannflavin B (8) were identified. The content of CBD was highest in all preparations. In addition, we present the outcomes of a computational study focused on elucidating the role of 2α-hydroxy-Δ3,7-cannabitriol (1), CBD (2), and CBDA (3) in inflammation and thrombogenesis.
Collapse
Affiliation(s)
- Simona De Vita
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy; (S.D.V.); (G.L.); (A.C.)
| | - Claudia Finamore
- Department of Pharmacy, University of Naples, Via Domenico Montesano, 49, 80131 Naples, Italy; (C.F.); (S.D.M.)
| | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (M.G.C.); (G.S.); (V.D.F.); (F.F.)
| | - Gabriella Saviano
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (M.G.C.); (G.S.); (V.D.F.); (F.F.)
| | - Vincenzo De Felice
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (M.G.C.); (G.S.); (V.D.F.); (F.F.)
| | - Simona De Marino
- Department of Pharmacy, University of Naples, Via Domenico Montesano, 49, 80131 Naples, Italy; (C.F.); (S.D.M.)
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy; (S.D.V.); (G.L.); (A.C.)
| | - Agostino Casapullo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy; (S.D.V.); (G.L.); (A.C.)
| | - Francesca Fantasma
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (M.G.C.); (G.S.); (V.D.F.); (F.F.)
| | - Federico Trombetta
- Societa Cooperativa Agricola MarcheSana, Localita San Biagio 40, 61032 Fano, Italy;
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy; (S.D.V.); (G.L.); (A.C.)
- Correspondence: (G.B.); (M.I.); Tel.: +39-089969741 (G.B.); +39-087-4404100 (M.I.)
| | - Maria Iorizzi
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Isernia, Italy; (M.G.C.); (G.S.); (V.D.F.); (F.F.)
- Correspondence: (G.B.); (M.I.); Tel.: +39-089969741 (G.B.); +39-087-4404100 (M.I.)
| |
Collapse
|
33
|
Mass Spectrometry-Based Metabolomics of Phytocannabinoids from Non-Cannabis Plant Origins. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103301. [PMID: 35630777 PMCID: PMC9147514 DOI: 10.3390/molecules27103301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022]
Abstract
Phytocannabinoids are isoprenylated resorcinyl polyketides produced mostly in glandular trichomes of Cannabis sativa L. These discoveries led to the identification of cannabinoid receptors, which modulate psychotropic and pharmacological reactions and are found primarily in the human central nervous system. As a result of the biogenetic process, aliphatic ketide phytocannabinoids are exclusively found in the cannabis species and have a limited natural distribution, whereas phenethyl-type phytocannabinoids are present in higher plants, liverworts, and fungi. The development of cannabinomics has uncovered evidence of new sources containing various phytocannabinoid derivatives. Phytocannabinoids have been isolated as artifacts from their carboxylated forms (pre-cannabinoids or acidic cannabinoids) from plant sources. In this review, the overview of the phytocannabinoid biosynthesis is presented. Different non-cannabis plant sources are described either from those belonging to the angiosperm species and bryophytes, together with their metabolomic structures. Lastly, we discuss the legal framework for the ingestion of these biological materials which currently receive the attention as a legal high.
Collapse
|
34
|
Monti MC, Frei P, Weber S, Scheurer E, Mercer-Chalmers-Bender K. Beyond Δ9-tetrahydrocannabinol and cannabidiol: chemical differentiation of cannabis varieties applying targeted and untargeted analysis. Anal Bioanal Chem 2022; 414:3847-3862. [PMID: 35380230 PMCID: PMC9061671 DOI: 10.1007/s00216-022-04026-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 12/18/2022]
Abstract
Cannabis sativa (C. sativa) is commonly chemically classified based on its Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) content ratios. However, the plant contains nearly 150 additional cannabinoids, referred to as minor cannabinoids. Minor cannabinoids are gaining interest for improved plant and product characterization, e.g., for medical use, and bioanalytical questions in the medico-legal field. This study describes the development and validation of an analytical method for the elucidation of minor cannabinoid fingerprints, employing liquid chromatography coupled to high-resolution mass spectrometry. The method was used to characterize inflorescences from 18 different varieties of C. sativa, which were cultivated under the same standardized conditions. Complementing the targeted detection of 15 cannabinoids, untargeted metabolomics employing in silico assisted data analysis was used to detect additional plant ingredients with focus on cannabinoids. Principal component analysis (PCA) was used to evaluate differences between varieties. The overall purpose of this study was to examine the ability of targeted and non-targeted metabolomics using the mentioned techniques to distinguish cannabis varieties from each other by their minor cannabinoid fingerprint. Quantitative determination of targeted cannabinoids already gave valuable information on cannabinoid fingerprints as well as inter- and intra-variety variability of cannabinoid contents. The untargeted workflow led to the detection of 19 additional compounds. PCA of the targeted and untargeted datasets revealed further subgroups extending commonly applied phenotype classification systems of cannabis. This study presents an analytical method for the comprehensive characterization of C. sativa varieties.
Collapse
Affiliation(s)
- Manuela Carla Monti
- Institute of Forensic Medicine, Department of Biomedical Engineering, University of Basel, Pestalozzistrasse 22, 4056, Basel, Switzerland
| | - Priska Frei
- Institute of Forensic Medicine, Department of Biomedical Engineering, University of Basel, Pestalozzistrasse 22, 4056, Basel, Switzerland
| | - Sophie Weber
- Institute of Forensic Medicine, Department of Biomedical Engineering, University of Basel, Pestalozzistrasse 22, 4056, Basel, Switzerland
| | - Eva Scheurer
- Institute of Forensic Medicine, Department of Biomedical Engineering, University of Basel, Pestalozzistrasse 22, 4056, Basel, Switzerland
| | - Katja Mercer-Chalmers-Bender
- Institute of Forensic Medicine, Department of Biomedical Engineering, University of Basel, Pestalozzistrasse 22, 4056, Basel, Switzerland.
| |
Collapse
|
35
|
Characterization of the Biological Activity of the Ethanolic Extract from the Roots of Cannabis sativa L. Grown in Aeroponics. Antioxidants (Basel) 2022; 11:antiox11050860. [PMID: 35624724 PMCID: PMC9137677 DOI: 10.3390/antiox11050860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/25/2022] Open
Abstract
Cannabis sativa var. Kompolti, a variety routinely used for food production purposes, is characterized by a low concentration of psychoactive molecules, although containing many other biologically attractive metabolites in all parts of the plant, including the roots. In the present work, we evaluate the specific biological activities of the roots’ extract from plants cultivated through aeroponics, an affordable and reliable method facilitating the isolation and processing of roots, with the advantage of being suitable for industrial scale-up. Furthermore, aeroponics results in an increased net accumulation of the most biologically attractive constituents (β-sitosterol, friedelin and epi-friedelanol) found in the roots. The ethanolic extract of the aeroponic roots of C. sativa (APEX) and its separate components are studied to evaluate their anti-inflammatory (modulation of the expression level of specific markers upon LPS stimulation in U937 cells, such as IL-6, IL-8, TNF-α, IkB-α, iNOS, IRAK-1 and miR-146a) and antioxidant (in either acellular or cellular settings) activities. The APEX anti-inflammatory and antioxidant capacities are also functionally benchmarked using the wound-healing assay. On the whole, the data obtained show that APEX and its main components showed significant anti-inflammatory and antioxidant activities, which may render the exploitation of roots as a source of natural antioxidants and anti-inflammatory agents highly attractive, with the additional technical and economic advantages of aeroponics compared to soil cultivation.
Collapse
|
36
|
Detection of Eight Cannabinoids and One Tracer in Wastewater and River Water by SPE-UPLC–ESI-MS/MS. WATER 2022. [DOI: 10.3390/w14040588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The consumption of illicit drugs represents a global social and economic problem. Using suitable analytical methods, monitoring, and detection of different illegal drugs residues and their metabolites in wastewater samples can help combat this problem. Our article defines a method to develop, validate, and practically applicate a rapid and robust analytical process for the evaluation of six naturally occurring cannabinoids (CBG, CBD, CBDV, CBN, THC, THCV), two cannabinoids in acidic form (CBDA, THCA-A), and the major cannabis-related human metabolite (THC-COOH). After SPE offline enrichment, we used a UPLC–ESI-MS/MS system, which permitted the determination of several by-products. Studied matrices were samples of different origins: (i) effluent water from a wastewater treatment plant in the Porto urban area; (ii) environmental water from Febros River, the last left-bank tributary of the Douro River. The multi-residue approach was substantiated and successfully employed to analyze the water samples collected in the above locations. The rapid and precise quantification of nine different cannabinoids in different water samples occurred within nine minutes at the ng L−1 level. The appearance of dozens of ng L−1 of some cannabis secondary metabolites, such as CBD, CBDA, CBN, THCA-A, indicates this plant species’ widespread usage among the general population in the considered area.
Collapse
|
37
|
Anceschi L, Codeluppi A, Brighenti V, Tassinari R, Taglioli V, Marchetti L, Roncati L, Alessandrini A, Corsi L, Pellati F. Chemical characterization of non-psychoactive Cannabis sativa L. extracts, in vitro antiproliferative activity and induction of apoptosis in chronic myelogenous leukaemia cancer cells. Phytother Res 2022; 36:914-927. [PMID: 35107862 PMCID: PMC9304126 DOI: 10.1002/ptr.7357] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/22/2021] [Accepted: 12/01/2021] [Indexed: 01/17/2023]
Abstract
In this study, extracts from non‐psychoactive Cannabis sativa L. varieties were characterized by means of ultra high‐performance liquid chromatography coupled with high‐resolution mass spectrometry (UHPLC‐HRMS) and their antiproliferative activity was assessed in vitro. The human chronic myelogenous leukaemia cell line K562 was chosen to investigate the mechanism of cell death. The effect on the cell cycle and cell death was analysed by flow cytometry. Proteins related to apoptosis were studied by western blotting. Mechanical properties of cells were assessed using the Micropipette Aspiration Technique (MAT). The results indicated that the cannabidiol (CBD)‐rich extract inhibited cell proliferation of K562 cell line in a dose‐dependent manner and induced apoptosis via caspase 3 and 7 activation. A significant decrease in the mitochondrial membrane potential was detected, together with the release of cytochrome c into the cytosol. The main apoptotic markers were not involved in the mechanism of cell death. The extract was also able to modify the mechanical properties of cells. Thus, this hemp extract and its pure component CBD deserve further investigation for a possible application against myeloproliferative diseases, also in association with other anticancer drugs.
Collapse
Affiliation(s)
- Lisa Anceschi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandro Codeluppi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Virginia Brighenti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Riccardo Tassinari
- National Laboratory of Molecular Biology and Stem Cell Bioengineering-Eldor Lab, National Institute of Biostructures and Biosystems (NIBB), Innovation Accelerator, CNR, Bologna, Italy
| | - Valentina Taglioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Lucia Marchetti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Roncati
- Institute of Pathology, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Alessandrini
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Modena, Italy.,National Research Council (CNR), CNR-Nanoscience Institute-S3, Modena, Italy.,Biostructures and Biosystems National Institute (INBB) Inter-University Consortium, Rome, Italy
| | - Lorenzo Corsi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Biostructures and Biosystems National Institute (INBB) Inter-University Consortium, Rome, Italy
| | - Federica Pellati
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
38
|
Muguruma Y, Nunome M, Inoue K. A Review on the Foodomics Based on Liquid Chromatography Mass Spectrometry. Chem Pharm Bull (Tokyo) 2022; 70:12-18. [PMID: 34980727 DOI: 10.1248/cpb.c21-00765] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Due to the globalization of food production and distribution, the food chain has become increasingly complex, making it more difficult to evaluate unexpected food changes. Therefore, establishing sensitive, robust, and cost-effective analytical platforms to efficiently extract and analyze the food-chemicals in complex food matrices is essential, however, challenging. LC/MS-based metabolomics is the key to obtain a broad overview of human metabolism and understand novel food science. Various metabolomics approaches (e.g., targeted and/or untargeted) and sample preparation techniques in food analysis have their own advantages and limitations. Selecting an analytical platform that matches the characteristics of the analytes is important for food analysis. This review highlighted the recent trends and applications of metabolomics based on "foodomics" by LC-MS and provides the perspectives and insights into the methodology and various sample preparation techniques in food analysis.
Collapse
Affiliation(s)
- Yoshio Muguruma
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University
| | - Mari Nunome
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University
| | - Koichi Inoue
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University
| |
Collapse
|
39
|
Rico S, Garrido J, Sánchez C, Ferreiro-Vera C, Codesido V, Vidal N. A Temporary Immersion System to Improve Cannabis sativa Micropropagation. FRONTIERS IN PLANT SCIENCE 2022; 13:895971. [PMID: 35812929 PMCID: PMC9262383 DOI: 10.3389/fpls.2022.895971] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/12/2022] [Indexed: 05/08/2023]
Abstract
The aim of this study was to propagate axillary shoots of Cannabis sativa L. using liquid medium in temporary immersion bioreactors. The effect of immersion frequency (3 or 6 immersions per day), explant type (apical or basal sections), explant number (8, 10, and 16 explants), mineral medium (Murashige and Skoog half-strength nitrates, β-A and β-H, all supplemented with 2-μM metatopoline), sucrose supplementation (2, 0.5, and 0% sucrose), culture duration (4 and 6 weeks), and bioreactor type (RITA® and Plantform™) were investigated. As a result, we propose a protocol for the proliferation of cannabis apical segments in RITA® or Plantform™ bioreactors. The explants (8 per RITA® and 24 per Plantform™) are immersed for 1 min, 3 times per day in β-A medium supplemented with 2-μM metatopoline and 0.5% of sucrose and subcultured every 4 weeks. This is the first study using temporary immersion systems in C. sativa production, and our results provide new opportunities for the mass propagation of this species.
Collapse
Affiliation(s)
- Saleta Rico
- Misión Biológica de Galicia- Sede Santiago de Compostela, MBG-CSIC, Departamento Producción Vegetal, Santiago de Compostela, Spain
| | - José Garrido
- Phytoplant Research S.L.U, Departamento Hibridación y Cultivo, Rabanales 21-Parque Científico Tecnológico de Córdoba, Calle Astrónoma Cecilia Payne, Córdoba, Spain
| | - Conchi Sánchez
- Misión Biológica de Galicia- Sede Santiago de Compostela, MBG-CSIC, Departamento Producción Vegetal, Santiago de Compostela, Spain
| | - Carlos Ferreiro-Vera
- Phytoplant Research S.L.U, Departamento Hibridación y Cultivo, Rabanales 21-Parque Científico Tecnológico de Córdoba, Calle Astrónoma Cecilia Payne, Córdoba, Spain
| | - Verónica Codesido
- Phytoplant Research S.L.U, Departamento Hibridación y Cultivo, Rabanales 21-Parque Científico Tecnológico de Córdoba, Calle Astrónoma Cecilia Payne, Córdoba, Spain
| | - Nieves Vidal
- Misión Biológica de Galicia- Sede Santiago de Compostela, MBG-CSIC, Departamento Producción Vegetal, Santiago de Compostela, Spain
- *Correspondence: Nieves Vidal
| |
Collapse
|
40
|
Razlog R, Kruger CA, Abrahamse H. Enhancement of Conventional and Photodynamic Therapy for Treatment of Cervical Cancer with Cannabidiol. Integr Cancer Ther 2022; 21:15347354221092706. [PMID: 35481367 PMCID: PMC9087227 DOI: 10.1177/15347354221092706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/15/2021] [Accepted: 03/22/2022] [Indexed: 01/10/2023] Open
Abstract
Cervical cancer (CC) is the fourth most diagnosed cancer in women worldwide. Conventional treatments include surgery, chemo- and radiotherapy, however these are invasive and may cause severe side effects. Furthermore, approximately 70% of late-stage CC patients experience metastasis, due to treatment resistance and limitations. Thus, there is a dire need to investigate alternative therapeutic combination therapies. Photodynamic therapy (PDT) is an alternative CC treatment modality that has been clinically proven to treat primary CC, as well as to limit secondary metastasis. Since PDT is a non-invasive localized treatment, with fewer side effects and lessened resistance to dose repeats, it is considered far more advantageous. However, more clinical trials are required to refine its delivery and dosing, as well as improve its ability to activate specific immune responses to eradicate secondary CC spread. Cannabidiol (CBD) isolates have been shown to exert in vitro CC anticancer effects, causing apoptosis post treatment, as well as inducing specific immune responses, which obstruct tumor invasion and angiogenesis, and so hinder CC metastatic spread. This review paper discusses the current conventional and alternative PDT treatment modalities for CC, as well as their limitations over the last 10 years. It has a particular focus on the combinative administration of CBD with these treatments in order to prevent CC secondary migration and so possibly encourage future research studies to focus on this synergistic effect to eradicate CC.
Collapse
Affiliation(s)
- Radmila Razlog
- Department of Complementary Medicine,
Faculty of Health Sciences, University of Johannesburg, Doornfontein, Johannesburg,
South Africa
| | - Cherie Ann Kruger
- Laser Research Centre, Faculty of
Health Sciences, University of Johannesburg, Doornfontein, Johannesburg, South
Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of
Health Sciences, University of Johannesburg, Doornfontein, Johannesburg, South
Africa
| |
Collapse
|
41
|
Rodriguez-Morrison V, Llewellyn D, Zheng Y. Cannabis Inflorescence Yield and Cannabinoid Concentration Are Not Increased With Exposure to Short-Wavelength Ultraviolet-B Radiation. FRONTIERS IN PLANT SCIENCE 2021; 12:725078. [PMID: 34795683 PMCID: PMC8593374 DOI: 10.3389/fpls.2021.725078] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/13/2021] [Indexed: 05/25/2023]
Abstract
Before ultraviolet (UV) radiation can be used as a horticultural management tool in commercial Cannabis sativa (cannabis) production, the effects of UV on cannabis should be vetted scientifically. In this study we investigated the effects of UV exposure level on photosynthesis, growth, inflorescence yield, and secondary metabolite composition of two indoor-grown cannabis cultivars: 'Low Tide' (LT) and 'Breaking Wave' (BW). After growing vegetatively for 2 weeks under a canopy-level photosynthetic photon flux density (PPFD) of ≈225 μmol⋅m-2⋅s-1 in an 18-h light/6-h dark photoperiod, plants were grown for 9 weeks in a 12-h light/12-h dark "flowering" photoperiod under a canopy-level PPFD of ≈400 μmol⋅m-2⋅s-1. Supplemental UV radiation was provided daily for 3.5 h at UV photon flux densities ranging from 0.01 to 0.8 μmol⋅m-2⋅s-1 provided by light-emitting diodes (LEDs) with a peak wavelength of 287 nm (i.e., biologically-effective UV doses of 0.16 to 13 kJ⋅m-2⋅d-1). The severity of UV-induced morphology (e.g., whole-plant size and leaf size reductions, leaf malformations, and stigma browning) and physiology (e.g., reduced leaf photosynthetic rate and reduced Fv/Fm) symptoms intensified as UV exposure level increased. While the proportion of the total dry inflorescence yield that was derived from apical tissues decreased in both cultivars with increasing UV exposure level, total dry inflorescence yield only decreased in LT. The total equivalent Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) concentrations also decreased in LT inflorescences with increasing UV exposure level. While the total terpene content in inflorescences decreased with increasing UV exposure level in both cultivars, the relative concentrations of individual terpenes varied by cultivar. The present study suggests that using UV radiation as a production tool did not lead to any commercially relevant benefits to cannabis yield or inflorescence secondary metabolite composition.
Collapse
Affiliation(s)
| | | | - Youbin Zheng
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
42
|
Deep learning strategies for active secondary metabolites biosynthesis from fungi: Harnessing artificial manipulation and application. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
43
|
Cannabinoids vs. whole metabolome: Relevance of cannabinomics in analyzing Cannabis varieties. Anal Chim Acta 2021; 1184:339020. [PMID: 34625242 DOI: 10.1016/j.aca.2021.339020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/30/2021] [Accepted: 08/30/2021] [Indexed: 11/23/2022]
Abstract
Cannabis sativa has a long history of domestication both for its bioactive compounds and its fibers. This has produced hundreds of varieties, usually characterized in the literature by chemotypes, with Δ9-THC and CBD content as the main markers. However, chemotyping could also be done based on minor compounds (phytocannabinoids and others). In this work, a workflow, which we propose to name cannabinomics, combines mass spectrometry of the whole metabolome and statistical analysis to help differentiate C. sativa varieties and deciphering their characteristic markers. By applying this cannabinomics approach to the data obtained from 20 varieties of C. sativa (classically classified as chemotype I, II, or III), we compared the results with those obtained by a targeted quantification of 11 phytocannabinoids. Cannabinomics can be considered as a complementary tool for phenotyping and genotyping, allowing the identification of minor compounds playing a key role as markers of differentiation.
Collapse
|
44
|
Tanney CAS, Backer R, Geitmann A, Smith DL. Cannabis Glandular Trichomes: A Cellular Metabolite Factory. FRONTIERS IN PLANT SCIENCE 2021; 12:721986. [PMID: 34616415 PMCID: PMC8488169 DOI: 10.3389/fpls.2021.721986] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/16/2021] [Indexed: 06/01/2023]
Abstract
Cannabis has been legalized for recreational use in several countries and medical use is authorized in an expanding list of countries; markets are growing internationally, causing an increase in demand for high quality products with well-defined properties. The key compounds of Cannabis plants are cannabinoids, which are produced by stalked glandular trichomes located on female flowers. These trichomes produce resin that contains cannabinoids, such as tetrahydrocannabinolic acid and cannabidiolic acid, and an array of other secondary metabolites of varying degrees of commercial interest. While growers tend to focus on improving whole flower yields, our understanding of the "goldmines" of the plant - the trichomes - is limited despite their being the true source of revenue for a multi-billion-dollar industry. This review aims to provide an overview of our current understanding of cannabis glandular trichomes and their metabolite products in order to identify current gaps in knowledge and to outline future research directions.
Collapse
Affiliation(s)
| | | | | | - Donald L. Smith
- Department of Plant Science, Macdonald Campus, McGill University, Montreal, QC, Canada
| |
Collapse
|
45
|
Abstract
Although cannabis is legalized and accepted as an agricultural commodity in many places around the world, a significant lack of public germplasm repositories remains an unresolved problem in the cannabis industry. The acquisition, preservation, and evaluation of germplasm, including landraces and ancestral populations, is key to unleashing the full potential of cannabis in the global marketplace. We argue here that accessible germplasm resources are crucial for long-term economic viability, preserving genetic diversity, breeding, innovation, and long-term sustainability of the crop. We believe that cannabis restrictions require a second look to allow genebanks to play a fuller and more effective role in conservation, sustainable use, and exchange of cannabis genetic resources.
Collapse
|
46
|
Desaulniers Brousseau V, Wu BS, MacPherson S, Morello V, Lefsrud M. Cannabinoids and Terpenes: How Production of Photo-Protectants Can Be Manipulated to Enhance Cannabis sativa L. Phytochemistry. FRONTIERS IN PLANT SCIENCE 2021; 12:620021. [PMID: 34135916 PMCID: PMC8200639 DOI: 10.3389/fpls.2021.620021] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/07/2021] [Indexed: 05/02/2023]
Abstract
Cannabis sativa L. is cultivated for its secondary metabolites, of which the cannabinoids have documented health benefits and growing pharmaceutical potential. Recent legal cannabis production in North America and Europe has been accompanied by an increase in reported findings for optimization of naturally occurring and synthetic cannabinoid production. Of the many environmental cues that can be manipulated during plant growth in controlled environments, cannabis cultivation with different lighting spectra indicates differential production and accumulation of medically important cannabinoids, including Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD), and cannabigerol (CBG), as well as terpenes and flavonoids. Ultraviolet (UV) radiation shows potential in stimulating cannabinoid biosynthesis in cannabis trichomes and pre-harvest or post-harvest UV treatment merits further exploration to determine if plant secondary metabolite accumulation could be enhanced in this manner. Visible LED light can augment THC and terpene accumulation, but not CBD. Well-designed experiments with light wavelengths other than blue and red light will provide more insight into light-dependent regulatory and molecular pathways in cannabis. Lighting strategies such as subcanopy lighting and varied light spectra at different developmental stages can lower energy consumption and optimize cannabis PSM production. Although evidence demonstrates that secondary metabolites in cannabis may be modulated by the light spectrum like other plant species, several questions remain for cannabinoid production pathways in this fast-paced and growing industry. In summarizing recent research progress on light spectra and secondary metabolites in cannabis, along with pertinent light responses in model plant species, future research directions are presented.
Collapse
Affiliation(s)
| | | | | | | | - Mark Lefsrud
- Department of Bioresource Engineering, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
47
|
Hesami M, Baiton A, Alizadeh M, Pepe M, Torkamaneh D, Jones AMP. Advances and Perspectives in Tissue Culture and Genetic Engineering of Cannabis. Int J Mol Sci 2021; 22:5671. [PMID: 34073522 PMCID: PMC8197860 DOI: 10.3390/ijms22115671] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/20/2023] Open
Abstract
For a long time, Cannabis sativa has been used for therapeutic and industrial purposes. Due to its increasing demand in medicine, recreation, and industry, there is a dire need to apply new biotechnological tools to introduce new genotypes with desirable traits and enhanced secondary metabolite production. Micropropagation, conservation, cell suspension culture, hairy root culture, polyploidy manipulation, and Agrobacterium-mediated gene transformation have been studied and used in cannabis. However, some obstacles such as the low rate of transgenic plant regeneration and low efficiency of secondary metabolite production in hairy root culture and cell suspension culture have restricted the application of these approaches in cannabis. In the current review, in vitro culture and genetic engineering methods in cannabis along with other promising techniques such as morphogenic genes, new computational approaches, clustered regularly interspaced short palindromic repeats (CRISPR), CRISPR/Cas9-equipped Agrobacterium-mediated genome editing, and hairy root culture, that can help improve gene transformation and plant regeneration, as well as enhance secondary metabolite production, have been highlighted and discussed.
Collapse
Affiliation(s)
- Mohsen Hesami
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.); (A.B.); (M.P.)
| | - Austin Baiton
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.); (A.B.); (M.P.)
| | - Milad Alizadeh
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Marco Pepe
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.); (A.B.); (M.P.)
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec City, QC G1V 0A6, Canada;
| | | |
Collapse
|
48
|
Sommano SR, Chittasupho C, Ruksiriwanich W, Jantrawut P. The Cannabis Terpenes. Molecules 2020; 25:E5792. [PMID: 33302574 PMCID: PMC7763918 DOI: 10.3390/molecules25245792] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 01/20/2023] Open
Abstract
Terpenes are the primary constituents of essential oils and are responsible for the aroma characteristics of cannabis. Together with the cannabinoids, terpenes illustrate synergic and/or entourage effect and their interactions have only been speculated in for the last few decades. Hundreds of terpenes are identified that allude to cannabis sensory attributes, contributing largely to the consumer's experiences and market price. They also enhance many therapeutic benefits, especially as aromatherapy. To shed light on the importance of terpenes in the cannabis industry, the purpose of this review is to morphologically describe sources of cannabis terpenes and to explain the biosynthesis and diversity of terpene profiles in different cannabis chemovars.
Collapse
Affiliation(s)
- Sarana Rose Sommano
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50100, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand; (C.C.); (W.R.); (P.J.)
| | - Chuda Chittasupho
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand; (C.C.); (W.R.); (P.J.)
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Warintorn Ruksiriwanich
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand; (C.C.); (W.R.); (P.J.)
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pensak Jantrawut
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand; (C.C.); (W.R.); (P.J.)
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
49
|
Bassolino L, Buti M, Fulvio F, Pennesi A, Mandolino G, Milc J, Francia E, Paris R. In Silico Identification of MYB and bHLH Families Reveals Candidate Transcription Factors for Secondary Metabolic Pathways in Cannabis sativa L. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1540. [PMID: 33187168 PMCID: PMC7697600 DOI: 10.3390/plants9111540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022]
Abstract
Plant secondary metabolic pathways are finely regulated by the activity of transcription factors, among which members of the bHLH and MYB subfamilies play a main role. Cannabis sativa L. is a unique officinal plant species with over 600 synthesized phytochemicals having diverse scale-up industrial and pharmaceutical usage. Despite comprehensive knowledge of cannabinoids' metabolic pathways, very little is known about their regulation, while the literature on flavonoids' metabolic pathways is still scarce. In this study, we provide the first genome-wide analysis of bHLH and MYB families in C. sativa reference cultivar CBDRx and identification of candidate coding sequences for these transcription factors. Cannabis sativa bHLHs and MYBs were then classified into functional subfamilies through comparative phylogenetic analysis with A. thaliana transcription factors. Analyses of gene structure and motif distribution confirmed that CsbHLHs and CsMYBs belonging to the same evolutionary clade share common features at both gene and amino acidic level. Candidate regulatory genes for key metabolic pathways leading to flavonoid and cannabinoid synthesis in Cannabis were also retrieved. Furthermore, a candidate gene approach was used to identify structural enzyme-coding genes for flavonoid and cannabinoid synthesis. Taken as a whole, this work represents a valuable resource of candidate genes for further investigation of the C. sativa cannabinoid and flavonoid metabolic pathways for genomic studies and breeding programs.
Collapse
Affiliation(s)
- Laura Bassolino
- CREA-Research Centre for Cereal and Industrial Crops, 40128 Bologna, Italy; (F.F.); (A.P.); (G.M.)
| | - Matteo Buti
- Department of Agriculture, Food, Environment and Forestry, University of Florence, 50144 Firenze, Italy;
| | - Flavia Fulvio
- CREA-Research Centre for Cereal and Industrial Crops, 40128 Bologna, Italy; (F.F.); (A.P.); (G.M.)
| | - Alessandro Pennesi
- CREA-Research Centre for Cereal and Industrial Crops, 40128 Bologna, Italy; (F.F.); (A.P.); (G.M.)
| | - Giuseppe Mandolino
- CREA-Research Centre for Cereal and Industrial Crops, 40128 Bologna, Italy; (F.F.); (A.P.); (G.M.)
| | - Justyna Milc
- Department of Life Sciences, Centre BIOGEST-SITEIA, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy; (J.M.); (E.F.)
| | - Enrico Francia
- Department of Life Sciences, Centre BIOGEST-SITEIA, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy; (J.M.); (E.F.)
| | - Roberta Paris
- CREA-Research Centre for Cereal and Industrial Crops, 40128 Bologna, Italy; (F.F.); (A.P.); (G.M.)
| |
Collapse
|
50
|
Brighenti V, Protti M, Anceschi L, Zanardi C, Mercolini L, Pellati F. Emerging challenges in the extraction, analysis and bioanalysis of cannabidiol and related compounds. J Pharm Biomed Anal 2020; 192:113633. [PMID: 33039911 DOI: 10.1016/j.jpba.2020.113633] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023]
Abstract
Cannabidiol (CBD) is a bioactive terpenophenolic compound isolated from Cannabis sativa L. It is known to possess several properties of pharmaceutical interest, such as antioxidant, anti-inflammatory, anti-microbial, neuroprotective and anti-convulsant, being it active as a multi-target compound. From a therapeutic point of view, CBD is most commonly used for seizure disorder in children. CBD is present in both medical and fiber-type C. sativa plants, but, unlike Δ9-tetrahydrocannabinol (THC), it is a non-psychoactive compound. Non-psychoactive or fiber-type C. sativa (also known as hemp) differs from the medical one, since it contains only low levels of THC and high levels of CBD and related non-psychoactive cannabinoids. In addition to medical Cannabis, which is used for many different therapeutic purposes, a great expansion of the market of hemp plant material and related products has been observed in recent years, due to its usage in many fields, including food, cosmetics and electronic cigarettes liquids (commonly known as e-liquids). In this view, this work is focused on recent advances on sample preparation strategies and analytical methods for the chemical analysis of CBD and related compounds in both C. sativa plant material, its derived products and biological samples. Since sample preparation is considered to be a crucial step in the development of reliable analytical methods for the determination of natural compounds in complex matrices, different extraction methods are discussed. As regards the analysis of CBD and related compounds, the application of both separation and non-separation methods is discussed in detail. The advantages, disadvantages and applicability of the different methodologies currently available are evaluated. The scientific interest in the development of portable devices for the reliable analysis of CBD in vegetable and biological samples is also highlighted.
Collapse
Affiliation(s)
- Virginia Brighenti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Michele Protti
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Lisa Anceschi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy; Doctorate School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Via G. Campi 103/287, 41125 Modena, Italy
| | - Chiara Zanardi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Laura Mercolini
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy.
| | - Federica Pellati
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy.
| |
Collapse
|