1
|
Tang Y, Wang X, Wang Y, Xie J, Zhang R, Liu T, Jia S, Bao X. Heterologous expression of physic nut JcHDZ25 confers tolerance to drought stress in transgenic rice. BMC Genomics 2025; 26:366. [PMID: 40217467 PMCID: PMC11992789 DOI: 10.1186/s12864-025-11566-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/03/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND The HD-Zip family of plant-specific transcription factors coordinates developmental processes and abiotic stress adaptation, including drought tolerance in bioenergy crops such as physic nut. Although HD-Zip proteins are known regulators of stress responses, the functional roles of physic nut HD-Zip genes in drought adaptation remain uncharacterized. RESULTS In this study, we functionally characterized JcHDZ25, a drought-inducible HD-Zip I gene from physic nut, which is predominantly expressed in roots and upregulated by ABA and drought. Subcellular localization and transcriptional activity assays confirmed that JcHDZ25 localized to the nucleus and exhibited intrinsic transcriptional activation. Transgenic rice overexpressing JcHDZ25 displayed enhanced drought tolerance and ABA sensitivity compared to wild-type plants. Under drought stress, JcHDZ25-overexpressing lines showed significantly higher proline content, elevated SOD and CAT activities, and reduced electrolyte leakage and MDA accumulation relative to wild-type controls. Furthermore, transgenic plants showed higher expression of abiotic stress-responsive genes (OsAPX2, OsCATA, OsLEA3, OsP5 CS, OsDREB2 A, OsADC1) and ABA pathway-related genes (OsNCED3, OsRD29 A) under drought stress compared to wild-type plants. CONCLUSIONS JcHDZ25 positively regulates drought tolerance in rice possibly through an ABA-dependent transcriptional regulation, providing mechanistic insights into physic nut's drought adaptation and highlighting its potential as a genetic resource for engineering stress-resilient crops.
Collapse
Affiliation(s)
- Yuehui Tang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China.
| | - Xiaohui Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Yaoyao Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Jiatong Xie
- State Key Laboratary of Crop Stress Adaptation and Improvement, Henan University, Zhengzhou, Henan, China
| | - Ruoyu Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Tengfei Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Sainan Jia
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | - Xinxin Bao
- School of Journalism and Communication, Zhoukou Normal University, Henan, Zhoukou, China
| |
Collapse
|
2
|
Li X, Zhang MS, Zhao LQ, Ling-Hu QQ, Xu G. The study on interacting factors and functions of GASA6 in Jatropha curcas L. BMC PLANT BIOLOGY 2023; 23:99. [PMID: 36800929 PMCID: PMC9938578 DOI: 10.1186/s12870-023-04067-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The gibberellic acid-stimulated Arabidopsis (GASA) gene encodes a class of cysteine-rich functional proteins and is ubiquitous in plants. Most GASA proteins are influence the signal transmission of plant hormones and regulate plant growth and development, however, their function in Jatropha curcas is still unknown. RESULTS In this study, we cloned JcGASA6, a member of the GASA family, from J. curcas. The JcGASA6 protein has a GASA-conserved domain and is located in the tonoplast. The three-dimensional structure of the JcGASA6 protein is highly consistent with the antibacterial protein Snakin-1. Additionally, the results of the yeast one-hybrid (Y1H) assay showed that JcGASA6 was activated by JcERF1, JcPYL9, and JcFLX. The results of the Y2H assay showed that both JcCNR8 and JcSIZ1 could interact with JcGASA6 in the nucleus. The expression of JcGASA6 increased continuously during male flower development, and the overexpression of JcGASA6 was associated with filament elongation of the stamens in tobacco. CONCLUSION JcGASA6, a member of the GASA family in J. curcas, play an important role in growth regulation and floral development (especially in male flower). It is also involved in the signal transduction of hormones, such as ABA, ET, GA, BR, and SA. Also, JcGASA6 is a potential antimicrobial protein determined by its three-dimensional structure.
Collapse
Affiliation(s)
- Xue Li
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, 550025, Guizhou, China
- School of Chinese Medicinal Resource, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
- School of Life Sciences/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, Guizhou, China
| | - Ming-Sheng Zhang
- School of Life Sciences/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, Guizhou, China
| | | | - Qian-Qian Ling-Hu
- School of Life Sciences/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, Guizhou, China
| | - Gang Xu
- School of Chinese Medicinal Resource, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
3
|
Peng Q, Liu C, Zou Z, Zhang M. Ectopic expression of Jatropha curcas JcTAW1 improves the vegetative growth, yield, and drought resistance of tobacco. BMC PLANT BIOLOGY 2023; 23:77. [PMID: 36737681 PMCID: PMC9898971 DOI: 10.1186/s12870-023-04085-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Jatropha curcas is a promising alternative bio-energy resource. However, underrun limited its broad application in the industry. Luckily, TAW1 is a high-productivity promoting gene that increases the lateral branches by prolonging the identification of inflorescence meristems to generate more spikes and flowers. RESULTS In the current study, we introduced the Jatropha JcTAW1 gene into tobacco to depict its functional profile. Ectopically expressed JcTAW1 increased the lateral branches and ultimate yield of the transgenic tobacco plants. Moreover, the JcTAW1 lines had significantly higher plant height, longer roots, and better drought resistance than those of wild-type (W.T.). We performed RNA sequencing and weighted gene co-expression network analysis to determine which biological processes were affected by JcTAW1. The results showed that biological processes such as carbon metabolism, cell wall biosynthesis, and ionization transport were extensively promoted by the ectopic expression of JcTAW1. Seven hub genes were identified. Therein, two up-regulated genes affect glucose metabolism and cell wall biosynthesis, five down-regulated genes are involved in DNA repair and negative regulation of TOR (target-of-rapamycin) signaling which was identified as a central regulator to promote cell proliferation and growth. CONCLUSIONS Our study verified a new promising candidate for Jatropha productive breeding and discovered several new features of JcTAW1. Except for boosting flowering, JcTAW1 was found to promote stem and root growth. Additionally, transcriptome analysis indicated that JcTAW1 might promote glucose metabolism while suppressing the DNA repair system.
Collapse
Affiliation(s)
- Qingyan Peng
- First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chang Liu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Life Sciences, Yunnan Normal University, Kunming, Yunnan, China
| | - Zhurong Zou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Life Sciences, Yunnan Normal University, Kunming, Yunnan, China.
| | - Mengru Zhang
- First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
4
|
Jin Q, Yang Z, Yang W, Gao X, Liu C. Genome-Wide Identification and Analysis of Lbd Transcription Factor Genes in Jatropha curcas and Related Species. PLANTS 2022; 11:plants11182397. [PMID: 36145796 PMCID: PMC9504267 DOI: 10.3390/plants11182397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022]
Abstract
Lateral organ boundaries domain (LBD) proteins are plant-specific transcription factors that play important roles in organ development and stress response. However, the function of LBD genes has not been reported in Euphorbiaceae. In this paper, we used Jatropha curcas as the main study object and added rubber tree (Hevea brasiliensis), cassava (Manihot esculenta Crantz) and castor (Ricinus communis L.) to take a phylogenetic analysis of LBD genes. Of LBD, 33, 58, 54 and 30 members were identified in J. curcas, rubber tree, cassava and castor, respectively. The phylogenetic analysis showed that LBD members of Euphorbiaceae could be classified into two major classes and seven subclasses (Ia-Ie,IIa-IIb), and LBD genes of Euphorbiaceae tended to cluster in the same branch. Further analysis showed that the LBD genes of Euphorbiaceae in the same clade usually had similar protein motifs and gene structures, and tissue expression patterns showed that they also have similar expression profiles. JcLBDs in class Ia and Ie are mainly expressed in male and female flowers, and there are multiple duplication genes with similar expression profiles in these clades. It was speculated that they are likely to play important regulatory roles in flower development. Our study provided a solid foundation for further investigation of the role of LBD genes in the sexual differentiaion of J. curcas.
Collapse
Affiliation(s)
- Qi Jin
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Zitian Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Wenjing Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Xiaoyang Gao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Changning Liu
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- Correspondence:
| |
Collapse
|
5
|
Wu Z, Huang L, Huang F, Lu G, Wei S, Liu C, Deng H, Liang G. Temporal transcriptome analysis provides molecular insights into flower development in red-flesh pitaya. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
6
|
Zhao ML, Zhou ZF, Chen MS, Xu CJ, Xu ZF. An ortholog of the MADS-box gene SEPALLATA3 regulates stamen development in the woody plant Jatropha curcas. PLANTA 2022; 255:111. [PMID: 35478059 DOI: 10.1007/s00425-022-03886-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Overexpression of JcSEP3 causes defective stamen development in Jatropha curcas, in which brassinosteroid and gibberellin signaling pathways may be involved. SEPALLATAs (SEPs), the class E genes of the ABCE model, are required for floral organ determination. In this study, we investigated the role of the JcSEP3 gene in floral organ development in the woody plant Jatropha curcas. Transgenic Jatropha plants overexpressing JcSEP3 displayed abnormal phenotypes such as deficient anthers and pollen, as well as free stamen filaments, whereas JcSEP3-RNA interference (RNAi) transgenic plants had no obvious phenotypic changes, suggesting that JcSEP3 is redundant with other JcSEP genes in Jatropha. Moreover, we compared the transcriptomes of wild-type plants, JcSEP3-overexpressing, and JcSEP3-RNAi transgenic plants. In the JcSEP3-overexpressing transgenic plants, we discovered 25 upregulated genes involved in anther and pollen development, as well as 12 induced genes in brassinosteroid (BR) and gibberellin (GA) signaling pathways. These results suggest that JcSEP3 directly or indirectly regulates stamen development, concomitant with the regulation of BR and GA signaling pathways. Our findings help to understand the roles of SEP genes in stamen development in perennial woody plants.
Collapse
Affiliation(s)
- Mei-Li Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Zhi-Fang Zhou
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Mao-Sheng Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China.
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China.
| | - Chuan-Jia Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Zeng-Fu Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|