1
|
Fan S, Jia L, Wu J, Zhao Y. Harnessing the Potential of CRISPR/Cas in Targeted Alfalfa Improvement for Stress Resilience. Int J Mol Sci 2025; 26:3311. [PMID: 40244221 PMCID: PMC11989513 DOI: 10.3390/ijms26073311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Alfalfa (Medicago sativa), recognized as the most valuable legume feed crop, faces significant challenges in enhancing both qualitative and quantitative production amidst the pressures of climate change. This review highlights these challenges, including the underutilization of genomic and genetic resources, while proposing potential solutions through genome editing. Our focus is on leveraging CRISPR/Cas technology in conjunction with decades of advancements in conventional breeding to expedite the improvement of alfalfa. By adopting this approach, we aim to overcome the limitations of traditional alfalfa improvement approaches and accelerate the development of improved cultivars capable of thriving in changing climates. Key candidate traits for CRISPR/Cas genome editing, as reviewed in the latest literature, include nutrient use efficiency, freezing tolerance, and resistance to pests and diseases. We dissect literature on potential gene pathways associated with these traits, providing molecular breeders with valuable insights for utilizing CRISPR/Cas genome editing. Furthermore, we propose editing modalities to expedite the development of stress-resilient, genome-edited alfalfa that can effectively cope with climate change.
Collapse
Affiliation(s)
- Shugao Fan
- School of Hydraulic and Civil Engineering, Ludong University, Yantai 264025, China; (S.F.); (J.W.)
| | - Linyan Jia
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China;
| | - Jiawei Wu
- School of Hydraulic and Civil Engineering, Ludong University, Yantai 264025, China; (S.F.); (J.W.)
| | - Ying Zhao
- School of Hydraulic and Civil Engineering, Ludong University, Yantai 264025, China; (S.F.); (J.W.)
| |
Collapse
|
2
|
Pei Y, Cao W, Kong X, Wang S, Sun Z, Zuo Y, Hu Z. CRISPR/Cas9-mediated efficient PlCYP81Q38 mutagenesis in Phryma leptostachya. PLANTA 2025; 261:73. [PMID: 40029441 DOI: 10.1007/s00425-025-04657-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/20/2025] [Indexed: 03/05/2025]
Abstract
MAIN CONCLUSION Combined with hairy root transformation, the CRISPR/Cas9 system was established to initiate targeted mutagenesis of PlCYP81Q38, which influenced lignan accumulation in Phryma leptostachya. Phryma leptostachya is a traditional Chinese medicinal herb renowned for its applications in both conventional medicine and natural botanical insecticides, with lignans as the main active ingredients. During the biosynthesis of lignans, PlCYP81Q38, a P450 protein, is assumed to play a crucial role and is accountable for the production of sesamin from (+)-pinoresinol. As a cutting-edge genome editing tool, the CRISPR/Cas9 system is widely employed across diverse species for gene functional research but yet to be harnessed in P. leptostachya. This study utilized the CRISPR/Cas9 system in conjunction with hairy root transformation to initiate targeted mutagenesis in PlCYP81Q38 gene. Employing binary vectors, pYLCRISPR/Cas9Pubi-H, complemented by dual single-stranded guided RNAs (sgRNAs), enabled precise editing at two gene sites and the deletion of large fragments. This editing system resulted in mutagenesis rates surpassing 79%, achieving a notable rate of 61.9% fragment deletion mutants. Liquid chromatography/tandem mass spectrometry confirmed the impact on lignan biosynthesis by PlCYP81Q38-targeted mutagenesis, resulting in the accumulation of pinoresinol and disrupted production of sesamin, 6-demethoxy-leptostachyol acetate, and leptostachyol acetate. Furthermore, the knockout of PlCYP81Q38 up-regulated its upstream pathway genes, such as dirigent gene, cinnamoyl-CoA reductase genes, cinnamyl-alcohol dehydrogenase genes, and p-coumarate 3-hydroxylase genes, identified through gene co-expression analysis. Collectively, mediated by the CRISPR/Cas9 platform, the new biotechnology for targeted genome editing within P. leptostachya, our findings affirm the significant roles of PlCYP81Q38 in the lignan biosynthesis pathway and highlight the potential of CRISPR/Cas9 in exploring the functional genome and secondary metabolite biosynthesis of this plant species.
Collapse
Affiliation(s)
- Yakun Pei
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest a&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory for Botanical Pesticide R&d of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Wenhan Cao
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest a&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory for Botanical Pesticide R&d of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Xiangchenxi Kong
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest a&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory for Botanical Pesticide R&d of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Shaokang Wang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest a&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory for Botanical Pesticide R&d of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Zhongjuan Sun
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest a&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory for Botanical Pesticide R&d of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Yayun Zuo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest a&F University, Yangling, 712100, Shaanxi, China
- Key Laboratory for Botanical Pesticide R&d of Shaanxi Province, Yangling, 712100, Shaanxi, China
| | - Zhaonong Hu
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest a&F University, Yangling, 712100, Shaanxi, China.
- Key Laboratory for Botanical Pesticide R&d of Shaanxi Province, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
3
|
Ye Q, Zhou C, Lin H, Luo D, Jain D, Chai M, Lu Z, Liu Z, Roy S, Dong J, Wang ZY, Wang T. Medicago2035: Genomes, functional genomics, and molecular breeding. MOLECULAR PLANT 2025; 18:219-244. [PMID: 39741417 DOI: 10.1016/j.molp.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/22/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025]
Abstract
Medicago, a genus in the Leguminosae or Fabaceae family, includes the most globally significant forage crops, notably alfalfa (Medicago sativa). Its close diploid relative Medicago truncatula serves as an exemplary model plant for investigating legume growth and development, as well as symbiosis with rhizobia. Over the past decade, advances in Medicago genomics have significantly deepened our understanding of the molecular regulatory mechanisms that underlie various traits. In this review, we comprehensively summarize research progress on Medicago genomics, growth and development (including compound leaf development, shoot branching, flowering time regulation, inflorescence development, floral organ development, and seed dormancy), resistance to abiotic and biotic stresses, and symbiotic nitrogen fixation with rhizobia, as well as molecular breeding. We propose avenues for molecular biology research on Medicago in the coming decade, highlighting those areas that have yet to be investigated or that remain ambiguous.
Collapse
Affiliation(s)
- Qinyi Ye
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao 266237, China.
| | - Hao Lin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Dong Luo
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi Grass Station, Guangxi University, Nanning 530004, China
| | - Divya Jain
- College of Agriculture, Tennessee State University, Nashville, TN 37209, USA
| | - Maofeng Chai
- Shandong Key Laboratory for Germplasm Innovation of Saline-Alkaline Tolerant Grasses and Trees, Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhichao Lu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Zhipeng Liu
- College of Pastoral Agriculture Science and Technology, State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, China.
| | - Sonali Roy
- College of Agriculture, Tennessee State University, Nashville, TN 37209, USA.
| | - Jiangli Dong
- College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Zeng-Yu Wang
- Shandong Key Laboratory for Germplasm Innovation of Saline-Alkaline Tolerant Grasses and Trees, Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China.
| | - Tao Wang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Bilal M, Geng J, Chen L, García-Caparros P, Hu T. Genome editing for grass improvement and future agriculture. HORTICULTURE RESEARCH 2025; 12:uhae293. [PMID: 39906167 PMCID: PMC11789526 DOI: 10.1093/hr/uhae293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/06/2024] [Indexed: 02/06/2025]
Abstract
Grasses, including turf and forage, cover most of the earth's surface; predominantly important for land, water, livestock feed, soil, and water conservation, as well as carbon sequestration. Improved production and quality of grasses by modern molecular breeding is gaining more research attention. Recent advances in genome-editing technologies are helping to revolutionize plant breeding and also offering smart and efficient acceleration on grass improvement. Here, we reviewed all recent researches using (CRISPR)/CRISPR-associated protein (Cas)-mediated genome editing tools to enhance the growth and quality of forage and turf grasses. Furthermore, we highlighted emerging approaches aimed at advancing grass breeding program. We assessed the CRISPR-Cas effectiveness, discussed the challenges associated with its application, and explored future perspectives primarily focusing on turf and forage grasses. Despite the promising potential of genome editing in grasses, its current efficiency remains limited due to several bottlenecks, such as the absence of comprehensive reference genomes, the lack of efficient gene delivery tools, unavailability of suitable vector and delivery for grass species, high polyploidization, and multiple homoeoalleles, etc. Despite these challenges, the CRISPR-Cas system holds great potential to fully harness its benefits in grass breeding and genetics, aiming to improve and sustain the quantity and quality of turf and forage grasses.
Collapse
Affiliation(s)
- Muhammad Bilal
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Jie Geng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Lin Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Pedro García-Caparros
- Agronomy Department of Superior School Engineering, University of Almería, Almeria, Spain
| | - Tao Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| |
Collapse
|
5
|
Zhou L, Zeng X, Yang Y, Li R, Zhao Z. Applications and Prospects of CRISPR/Cas9 Technology in the Breeding of Major Tropical Crops. PLANTS (BASEL, SWITZERLAND) 2024; 13:3388. [PMID: 39683180 DOI: 10.3390/plants13233388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024]
Abstract
China is a major producer of tropical crops globally, boasting rich varieties and diverse functions. Tropical crops account for two-thirds of the plant species in this country. Many crops and their products, such as oil palm, rubber, banana, sugarcane, cassava, and papaya are well known to people. Most of these products are irreplaceable and possess special functions. They not only supply important raw materials for people's daily life and for industrial and agricultural production but also contribute to the economic growth in the tropical and subtropical regions of China. However, the modern molecular breeding of these crops is severely hampered by their biological characteristics and genetic complexity. Issues such as polyploidy, heterozygosity, vegetative propagation, long juvenile periods, and large plant sizes result in time consuming, low efficiency, and slow progress in conventional breeding of the major tropical crops. The development of genome-editing technologies has brought a new way in tropical crops breeding. As an emerging gene-editing technology, the CRISPR-Cas9 system has been widely used in plants, adopted for its higher targeting efficiency, versatility, and ease of usage. This approach has been applied in oil palm, rubber, banana, sugarcane, cassava, and papaya. This review summarized the delivery patterns, mutation detection, and application of the CRISPR-Cas9 system in tropical crop breeding, discussed the existing problems, and addressed prospects for future applications in this field, providing references to relevant studies.
Collapse
Affiliation(s)
- Lixia Zhou
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Xianhai Zeng
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Yaodong Yang
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Rui Li
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China
| | - Zhihao Zhao
- National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
6
|
Song Y, Sun X, Guo X, Ding X, Chen J, Tang H, Zhang Z, Dong W. Shading increases the susceptibility of alfalfa (Medicago sativa) to Pst. DC3000 by inhibiting the expression of MsIFS1. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109191. [PMID: 39406004 DOI: 10.1016/j.plaphy.2024.109191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/06/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024]
Abstract
Shade is a stressful factor for most plants, leading to both morphological and physiological changes, and often resulting in increased susceptibility to diseases and pathogen attacks. Our study revealed that the isoflavonoid synthesis pathway was inhibited in alfalfa under shade, resulting in a significant reduction in disease resistance. Overexpression of MsIFS1, a switch regulator in isoflavonoid synthesis, led to a notable increase in endogenous isoflavonoids and enhanced resistance to Pseudomonas syringae pv. tomato DC3000 (Pst. DC3000). Conversely, MsIFS1-RNAi had the opposite effect. Yeast one-hybrid (Y1H) assays revealed that the shade-responsive transcription factor MsWRKY41 could directly bind to the MsIFS1 promoter. This interaction was confirmed through Dual-Luciferase Reporter (Dual-LUC) and Chromatin Immunoprecipitation coupled with quantitative PCR (ChIP-qPCR) assays, both in vitro and in vivo. Overexpression of MsWRKY41 not only enhanced alfalfa's resistance to Pst. DC3000 but also promoted the accumulation of isoflavonoids. Additionally, yeast two-hybrid (Y2H) assays showed that neither MsWRKY41 nor MsIFS1 physically interacted with the Type III effector (T3SE) HopZ1 secreted by Pst. DC3000, suggesting that the MsWRKY41-MsIFS1 module is not a direct target of HopZ1. These findings provide valuable theoretical insights and genetic resources for the development of shade-tolerant alfalfa with enhanced disease resistance.
Collapse
Affiliation(s)
- Yuguang Song
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, PR China
| | - Xueying Sun
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, PR China
| | - Xinying Guo
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, PR China
| | - Xinru Ding
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, PR China
| | - Jifeng Chen
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, PR China
| | - Haoyan Tang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, PR China
| | - Zhaoran Zhang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, PR China
| | - Wei Dong
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, PR China.
| |
Collapse
|
7
|
Wang Z, Wan L, Ren J, Zhang N, Zeng H, Wei J, Tang M. Improving the Genome Editing Efficiency of CRISPR/Cas9 in Melon and Watermelon. Cells 2024; 13:1782. [PMID: 39513889 PMCID: PMC11544962 DOI: 10.3390/cells13211782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
CRISPR/Cas9 is a powerful genome editing tool for trait improvement in various crops; however, enhancing mutation efficiency using CRISPR/Cas9 in watermelon and melon remains challenging. We designed four CRISPR systems with different sgRNA expression cassettes to target the phytoene desaturase (PDS) gene in melon. The constructed vectors were delivered to host plants using Agrobacterium-mediated transformation. Phenotypic and genotypic analyses of the edited melon seedlings revealed that the CRISPR systems with tRNA and Csy4 spacers driven by the Pol II-type promoter significantly improved mutation efficiency, reaching 25.20% and 42.82%, respectively. Notably, 78.95% of the mutations generated by the Csy4 system involved large-fragment deletions (LDs) between the two target sites. In watermelon, the Csy4 system achieved a PDS editing efficiency of 41.48%, with 71.43% of the edited seedlings showing LD between the two target sites. Sequencing analysis indicated that the edited melon seedlings exhibited heterozygous, three-allele mutation and chimeric events; the edited watermelon seedlings included 2/14 homozygous mutations. Compared to the commonly used Pol III promoter, using the Pol II promoter to drive sgRNA expression cassettes containing Csy4 showed the best improvement in CRISPR/Cas9 editing efficiency in melon; this system was also effective in watermelon.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mi Tang
- Institute of Crop, Wuhan Academy of Agricultural Sciences, Wuhan 430065, China; (Z.W.); (L.W.)
| |
Collapse
|
8
|
Song Y, Tang H, Zhang Z, Sun X, Ding X, Guo X, Wang Q, Chen J, Dong W. A Novel MsEOBI-MsPAL1 Module Enhances Salinity Stress Tolerance, Floral Scent Emission and Seed Yield in Alfalfa. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39360571 DOI: 10.1111/pce.15183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/05/2024] [Accepted: 09/15/2024] [Indexed: 10/04/2024]
Abstract
Alfalfa (Medicago sativa L.) is an important and widely cultivated forage legume, yet its yield is constrained by salinity stress. In this study, we characterized an R2R3-MYB transcription factor MsEOBI in alfalfa. Its salt tolerance function and regulatory pathways were investigated. The nuclear-localized MsEOBI functions as a transcriptional activator, enhancing salinity tolerance by promoting the biosynthesis of flavonoids and lignin, as well as facilitating the scavenging of reactive oxygen species (ROS). Additionally, MsEOBI promotes pollinator attraction and increases seed yield by activating the biosynthesis of volatile phenylpropanoids. Yeast one-hybrid (Y1H), dual-luciferase reporter and chromatin immunoprecipitation coupled with quantitative PCR (ChIP-qPCR) assays demonstrated that MsEOBI directly binds to the promoter regions of MsPAL1, a key gene in the phenylpropanoid pathway, thereby activating its expression. Overexpression of MsPAL1 enhances salinity tolerance in alfalfa. These findings elucidate the role of the MsEOBI-MsPAL1 regulatory module and provide valuable genetic resources for the future breeding of salt-tolerant alfalfa varieties.
Collapse
Affiliation(s)
- Yuguang Song
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, People's Republic of China
| | - Haoyan Tang
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, People's Republic of China
| | - Zhaoran Zhang
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, People's Republic of China
| | - Xueying Sun
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, People's Republic of China
| | - Xinru Ding
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, People's Republic of China
| | - Xinying Guo
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, People's Republic of China
| | - Qi Wang
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, People's Republic of China
| | - Jifeng Chen
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, People's Republic of China
| | - Wei Dong
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, People's Republic of China
| |
Collapse
|
9
|
Conner JA, Guimaraes LA, Zhang Z, Marasigan K, Chu Y, Korani W, Ozias‐Akins P. Multiplexed silencing of 2S albumin genes in peanut. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2438-2440. [PMID: 38715243 PMCID: PMC11332220 DOI: 10.1111/pbi.14357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/06/2024] [Accepted: 03/29/2024] [Indexed: 08/20/2024]
Affiliation(s)
- Joann A. Conner
- Department of Horticulture and Institute of Plant Breeding, Genetics and GenomicsUniversity of GeorgiaTiftonGeorgiaUSA
| | - Larissa Arrais Guimaraes
- Department of Horticulture and Institute of Plant Breeding, Genetics and GenomicsUniversity of GeorgiaTiftonGeorgiaUSA
| | - Zhifen Zhang
- Department of Horticulture and Institute of Plant Breeding, Genetics and GenomicsUniversity of GeorgiaTiftonGeorgiaUSA
| | - Kathleen Marasigan
- Department of Horticulture and Institute of Plant Breeding, Genetics and GenomicsUniversity of GeorgiaTiftonGeorgiaUSA
| | - Ye Chu
- Department of Horticulture and Institute of Plant Breeding, Genetics and GenomicsUniversity of GeorgiaTiftonGeorgiaUSA
| | - Walid Korani
- HudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
| | - Peggy Ozias‐Akins
- Department of Horticulture and Institute of Plant Breeding, Genetics and GenomicsUniversity of GeorgiaTiftonGeorgiaUSA
| |
Collapse
|
10
|
Prasad K, Gadeela H, Bommineni PR, Reddy PS, Tyagi W, Yogendra K. CRISPR/Cas9-mediated mutagenesis of phytoene desaturase in pigeonpea and groundnut. Funct Integr Genomics 2024; 24:57. [PMID: 38478115 DOI: 10.1007/s10142-024-01336-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 05/01/2024]
Abstract
The CRISPR/Cas9 technology, renowned for its ability to induce precise genetic alterations in various crop species, has encountered challenges in its application to grain legume crops such as pigeonpea and groundnut. Despite attempts at gene editing in groundnut, the low rates of transformation and editing have impeded its widespread adoption in producing genetically modified plants. This study seeks to establish an effective CRISPR/Cas9 system in pigeonpea and groundnut through Agrobacterium-mediated transformation, with a focus on targeting the phytoene desaturase (PDS) gene. The PDS gene is pivotal in carotenoid biosynthesis, and its disruption leads to albino phenotypes and dwarfism. Two constructs (one each for pigeonpea and groundnut) were developed for the PDS gene, and transformation was carried out using different explants (leaf petiolar tissue for pigeonpea and cotyledonary nodes for groundnut). By adjusting the composition of the growth media and refining Agrobacterium infection techniques, transformation efficiencies of 15.2% in pigeonpea and 20% in groundnut were achieved. Mutation in PDS resulted in albino phenotype, with editing efficiencies ranging from 4 to 6%. Sequence analysis uncovered a nucleotide deletion (A) in pigeonpea and an A insertion in groundnut, leading to a premature stop codon and, thereby, an albino phenotype. This research offers a significant foundation for the swift assessment and enhancement of CRISPR/Cas9-based genome editing technologies in legume crops.
Collapse
Affiliation(s)
- Kalyani Prasad
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Harika Gadeela
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Pradeep Reddy Bommineni
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Palakolanu Sudhakar Reddy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Wricha Tyagi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Kalenahalli Yogendra
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India.
| |
Collapse
|
11
|
Wolabu TW, Mahmood K, Chen F, Torres-Jerez I, Udvardi M, Tadege M, Cong L, Wang Z, Wen J. Mutating alfalfa COUMARATE 3-HYDROXYLASE using multiplex CRISPR/Cas9 leads to reduced lignin deposition and improved forage quality. FRONTIERS IN PLANT SCIENCE 2024; 15:1363182. [PMID: 38504900 PMCID: PMC10948404 DOI: 10.3389/fpls.2024.1363182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/21/2024] [Indexed: 03/21/2024]
Abstract
Alfalfa (Medicago sativa L.) forage quality is adversely affected by lignin deposition in cell walls at advanced maturity stages. Reducing lignin content through RNA interference or antisense approaches has been shown to improve alfalfa forage quality and digestibility. We employed a multiplex CRISPR/Cas9-mediated gene-editing system to reduce lignin content and alter lignin composition in alfalfa by targeting the COUMARATE 3-HYDROXYLASE (MsC3H) gene, which encodes a key enzyme in lignin biosynthesis. Four guide RNAs (gRNAs) targeting the first exon of MsC3H were designed and clustered into a tRNA-gRNA polycistronic system and introduced into tetraploid alfalfa via Agrobacterium-mediated transformation. Out of 130 transgenic lines, at least 73 lines were confirmed to contain gene-editing events in one or more alleles of MsC3H. Fifty-five lines were selected for lignin content/composition analysis. Amongst these lines, three independent tetra-allelic homozygous lines (Msc3h-013, Msc3h-121, and Msc3h-158) with different mutation events in MsC3H were characterized in detail. Homozygous mutation of MsC3H in these three lines significantly reduced the lignin content and altered lignin composition in stems. Moreover, these lines had significantly lower levels of acid detergent fiber and neutral detergent fiber as well as higher levels of total digestible nutrients, relative feed values, and in vitro true dry matter digestibility. Taken together, these results showed that CRISPR/Cas9-mediated editing of MsC3H successfully reduced shoot lignin content, improved digestibility, and nutritional values without sacrificing plant growth and biomass yield. These lines could be used in alfalfa breeding programs to generate elite transgene-free alfalfa cultivars with reduced lignin and improved forage quality.
Collapse
Affiliation(s)
- Tezera W. Wolabu
- Institute for Agricultural Bioscience, Oklahoma State University, Ardmore, OK, United States
| | - Kashif Mahmood
- Institute for Agricultural Bioscience, Oklahoma State University, Ardmore, OK, United States
| | - Fang Chen
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, United States
| | - Ivone Torres-Jerez
- Institute for Agricultural Bioscience, Oklahoma State University, Ardmore, OK, United States
| | - Michael Udvardi
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Million Tadege
- Institute for Agricultural Bioscience, Oklahoma State University, Ardmore, OK, United States
| | - Lili Cong
- College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Zengyu Wang
- College of Grassland Science, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Jiangqi Wen
- Institute for Agricultural Bioscience, Oklahoma State University, Ardmore, OK, United States
| |
Collapse
|
12
|
Zhang Y, Zhang Y, Wang C, Xiao J, Huang M, Zhuo L, Zhang D. Enhancement of salt tolerance of alfalfa: Physiological and molecular responses of transgenic alfalfa plants expressing Syntrichia caninervis-derived ScABI3. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108335. [PMID: 38190765 DOI: 10.1016/j.plaphy.2024.108335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
Alfalfa (Medicago sativa L.), a perennial forage plant, is a rich source of nutrients such as vitamins, minerals, and proteins. Salt stress, however, impedes its growth. The plant-specific transcription factor abscisic acid insensitive 3 (ABI3) has a critical contribution to the control of abscisic acid (ABA) signaling pathway and abiotic stress response. The gene ScABI3 from Syntrichia caninervis, a moss species tolerant to desiccation, could be considered a potential candidate gene to modify alfalfa's nutritional and growth aspects. However, it remains unclear how ScABI3 affects the salt stress response of transgenic alfalfa. Therefore, we elucidated the role and molecular mechanism of ScABI3 from S. caninervis as an ABA signaling factor in transgenic alfalfa. Our findings demonstrate that ScABI3 overexpression in transgenic alfalfa improves salt tolerance by promoting relative water content, antioxidant enzyme activity, and photosynthetic parameters. Furthermore, the key genes of plant hormone signaling and the classical salt tolerance pathway were activated in ScABI3 transgenic lines under salt stress. Based on these results, ScABI3 could be considered a potentially critical candidate gene to alleviate salt stress in alfalfa. The present study provides valuable insights for developing transgenic crop breeding strategies for saline-alkaline soils.
Collapse
Affiliation(s)
- Yigong Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Yi Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Chun Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Jiangyuan Xiao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Mingqi Huang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Lu Zhuo
- College of Life Sciences, Shihezi University, Shihezi 832003, China.
| | - Daoyuan Zhang
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China.
| |
Collapse
|
13
|
Wolabu TW, Mahmood K, Jerez IT, Cong L, Yun J, Udvardi M, Tadege M, Wang Z, Wen J. Multiplex CRISPR/Cas9-mediated mutagenesis of alfalfa FLOWERING LOCUS Ta1 (MsFTa1) leads to delayed flowering time with improved forage biomass yield and quality. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1383-1392. [PMID: 36964962 PMCID: PMC10281603 DOI: 10.1111/pbi.14042] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 05/20/2023]
Abstract
Alfalfa (Medicago sativa L.) is a perennial flowering plant in the legume family that is widely cultivated as a forage crop for its high yield, forage quality and related agricultural and economic benefits. Alfalfa is a photoperiod sensitive long-day (LD) plant that can accomplish its vegetative and reproductive phases in a short period of time. However, rapid flowering can compromise forage biomass yield and quality. Here, we attempted to delay flowering in alfalfa using multiplex CRISPR/Cas9-mediated mutagenesis of FLOWERING LOCUS Ta1 (MsFTa1), a key floral integrator and activator gene. Four guide RNAs (gRNAs) were designed and clustered in a polycistronic tRNA-gRNA system and introduced into alfalfa by Agrobacterium-mediated transformation. Ninety-six putative mutant lines were identified by gene sequencing and characterized for delayed flowering time and related desirable agronomic traits. Phenotype assessment of flowering time under LD conditions identified 22 independent mutant lines with delayed flowering compared to the control. Six independent Msfta1 lines containing mutations in all four copies of MsFTa1 accumulated significantly higher forage biomass yield, with increases of up to 78% in fresh weight and 76% in dry weight compared to controls. Depending on the harvesting schemes, many of these lines also had reduced lignin, acid detergent fibre (ADF) and neutral detergent fibre (NDF) content and significantly higher crude protein (CP) and mineral contents compared to control plants, especially in the stems. These CRISPR/Cas9-edited Msfta1 mutants could be introduced in alfalfa breeding programmes to generate elite transgene-free alfalfa cultivars with improved forage biomass yield and quality.
Collapse
Affiliation(s)
- Tezera W. Wolabu
- Institute for Agricultural BiosciencesOklahoma State UniversityOklahomaArdmoreUSA
| | - Kashif Mahmood
- Institute for Agricultural BiosciencesOklahoma State UniversityOklahomaArdmoreUSA
| | - Ivone Torres Jerez
- Institute for Agricultural BiosciencesOklahoma State UniversityOklahomaArdmoreUSA
| | - Lili Cong
- College of Grassland ScienceQingdao Agricultural UniversityQingdaoShandongChina
| | - Jianfei Yun
- Institute for Agricultural BiosciencesOklahoma State UniversityOklahomaArdmoreUSA
| | - Michael Udvardi
- Queensland Alliance for Agriculture and Food InnovationThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Million Tadege
- Institute for Agricultural BiosciencesOklahoma State UniversityOklahomaArdmoreUSA
| | - Zengyu Wang
- College of Grassland ScienceQingdao Agricultural UniversityQingdaoShandongChina
| | - Jiangqi Wen
- Institute for Agricultural BiosciencesOklahoma State UniversityOklahomaArdmoreUSA
| |
Collapse
|
14
|
Sánchez-Gómez C, Posé D, Martín-Pizarro C. Genome Editing by CRISPR/Cas9 in Polyploids. Methods Mol Biol 2023; 2545:459-473. [PMID: 36720828 DOI: 10.1007/978-1-0716-2561-3_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
CRISPR/Cas system has been widely used for genome editing in the past few years. Even though it has been performed in many polyploid species to date, its efficient accomplishment in these organisms is still a challenge. The presence of multiple homoeologous genes as targets for their editing requires more rigorous work and specific needs to assess successful genome editing. Here, we describe a general stepwise protocol to select target sites, design sgRNAs, indicate vector requirements, and screen CRISPR/Cas9-mediated genome editing in polyploid species.
Collapse
Affiliation(s)
- Carlos Sánchez-Gómez
- Departamento de Mejora Genética y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga - Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
| | - David Posé
- Departamento de Mejora Genética y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga - Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
| | - Carmen Martín-Pizarro
- Departamento de Mejora Genética y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Universidad de Málaga - Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain.
| |
Collapse
|
15
|
May D, Paldi K, Altpeter F. Targeted mutagenesis with sequence-specific nucleases for accelerated improvement of polyploid crops: Progress, challenges, and prospects. THE PLANT GENOME 2023:e20298. [PMID: 36692095 DOI: 10.1002/tpg2.20298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Many of the world's most important crops are polyploid. The presence of more than two sets of chromosomes within their nuclei and frequently aberrant reproductive biology in polyploids present obstacles to conventional breeding. The presence of a larger number of homoeologous copies of each gene makes random mutation breeding a daunting task for polyploids. Genome editing has revolutionized improvement of polyploid crops as multiple gene copies and/or alleles can be edited simultaneously while preserving the key attributes of elite cultivars. Most genome-editing platforms employ sequence-specific nucleases (SSNs) to generate DNA double-stranded breaks at their target gene. Such DNA breaks are typically repaired via the error-prone nonhomologous end-joining process, which often leads to frame shift mutations, causing loss of gene function. Genome editing has enhanced the disease resistance, yield components, and end-use quality of polyploid crops. However, identification of candidate targets, genotyping, and requirement of high mutagenesis efficiency remain bottlenecks for targeted mutagenesis in polyploids. In this review, we will survey the tremendous progress of SSN-mediated targeted mutagenesis in polyploid crop improvement, discuss its challenges, and identify optimizations needed to sustain further progress.
Collapse
Affiliation(s)
- David May
- Agronomy Department, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, USA
| | - Katalin Paldi
- Agronomy Department, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, USA
| | - Fredy Altpeter
- Agronomy Department, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, USA
- Plant Cellular and Molecular Biology Program, Genetics Institute, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL, USA
| |
Collapse
|
16
|
Subedi U, Burton Hughes K, Chen G, Hannoufa A, Singer SD. Eliciting Targeted Mutations in Medicago sativa Using CRISPR/Cas9-Mediated Genome Editing: A Potential Tool for the Improvement of Disease Resistance. Methods Mol Biol 2023; 2659:219-239. [PMID: 37249896 DOI: 10.1007/978-1-0716-3159-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) has become a breeding tool of choice for eliciting targeted genetic alterations in crop species as a means of improving a wide range of agronomic traits, including disease resistance, in recent years. With the recent development of CRISPR/Cas9 technology in Medicago sativa (alfalfa), which is an important perennial forage legume grown worldwide, its use for the enhancement of pathogen resistance is almost certainly on the horizon. In this chapter, we present detailed procedures for the generation of a single nonhomologous end-joining-derived indel at a precise genomic locus of alfalfa via CRISPR/Cas9. This method encompasses crucial steps in this process, including guide RNA design, binary CRISPR vector construction, Agrobacterium-mediated transformation of alfalfa explants, and molecular assessments of transformed genotypes for transgene and edit identification.
Collapse
Affiliation(s)
- Udaya Subedi
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Kimberley Burton Hughes
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Abdelali Hannoufa
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Stacy D Singer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada.
| |
Collapse
|
17
|
Ul Haq SI, Zheng D, Feng N, Jiang X, Qiao F, He JS, Qiu QS. Progresses of CRISPR/Cas9 genome editing in forage crops. JOURNAL OF PLANT PHYSIOLOGY 2022; 279:153860. [PMID: 36371870 DOI: 10.1016/j.jplph.2022.153860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) mediated-genome editing has evolved into a powerful tool that is widely used in plant species to induce editing in the genome for analyzing gene function and crop improvement. CRISPR/Cas9 is an RNA-guided genome editing tool consisting of a Cas9 nuclease and a single-guide RNA (sgRNA). The CRISPR/Cas9 system enables more accurate and efficient genome editing in crops. In this review, we summarized the advances of the CRISPR/Cas9 technology in plant genome editing and its applications in forage crops. We described briefly about the development of CRISPR/Cas9 technology in plant genome editing. We assessed the progress of CRISPR/Cas9-mediated targeted-mutagenesis in various forage crops, including alfalfa, Medicago truncatula, Hordeum vulgare, Sorghum bicolor, Setaria italica and Panicum virgatum. The potentials and challenges of CRISPR/Cas9 in forage breeding were discussed.
Collapse
Affiliation(s)
- Syed Inzimam Ul Haq
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Naijie Feng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Xingyu Jiang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Feng Qiao
- Academy of Plateau Science and Sustainability, School of Life Sciences, Qinghai Normal University, Xining, Qinghai, 810016, China
| | - Jin-Sheng He
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, 730000, China; Academy of Plateau Science and Sustainability, School of Life Sciences, Qinghai Normal University, Xining, Qinghai, 810016, China; College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.
| |
Collapse
|
18
|
Singh G, Gudi S, Amandeep, Upadhyay P, Shekhawat PK, Nayak G, Goyal L, Kumar D, Kumar P, Kamboj A, Thada A, Shekhar S, Koli GK, DP M, Halladakeri P, Kaur R, Kumar S, Saini P, Singh I, Ayoubi H. Unlocking the hidden variation from wild repository for accelerating genetic gain in legumes. FRONTIERS IN PLANT SCIENCE 2022; 13:1035878. [PMID: 36438090 PMCID: PMC9682257 DOI: 10.3389/fpls.2022.1035878] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/17/2022] [Indexed: 11/02/2023]
Abstract
The fluctuating climates, rising human population, and deteriorating arable lands necessitate sustainable crops to fulfil global food requirements. In the countryside, legumes with intriguing but enigmatic nitrogen-fixing abilities and thriving in harsh climatic conditions promise future food security. However, breaking the yield plateau and achieving higher genetic gain are the unsolved problems of legume improvement. Present study gives emphasis on 15 important legume crops, i.e., chickpea, pigeonpea, soybean, groundnut, lentil, common bean, faba bean, cowpea, lupin, pea, green gram, back gram, horse gram, moth bean, rice bean, and some forage legumes. We have given an overview of the world and India's area, production, and productivity trends for all legume crops from 1961 to 2020. Our review article investigates the importance of gene pools and wild relatives in broadening the genetic base of legumes through pre-breeding and alien gene introgression. We have also discussed the importance of integrating genomics, phenomics, speed breeding, genetic engineering and genome editing tools in legume improvement programmes. Overall, legume breeding may undergo a paradigm shift once genomics and conventional breeding are integrated in the near future.
Collapse
Affiliation(s)
- Gurjeet Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Santosh Gudi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Amandeep
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Priyanka Upadhyay
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Pooja Kanwar Shekhawat
- Division of Crop Improvement, Plant Breeding and Genetics, Indian Council of Agricultural Research (ICAR)-Central Soil Salinity Research Institute, Karnal, Haryana, India
- Department of Plant Breeding and Genetics, Sri Karan Narendra Agriculture University, Jobner, Rajasthan, India
| | - Gyanisha Nayak
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, India
| | - Lakshay Goyal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Deepak Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
| | - Pradeep Kumar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Akashdeep Kamboj
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Antra Thada
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, India
| | - Shweta Shekhar
- Department of Plant Molecular Biology and Biotechnology, Indira Gandhi Krishi Vishwavidyalaya, Raipur, Chhattisgarh, India
| | - Ganesh Kumar Koli
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
| | - Meghana DP
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Priyanka Halladakeri
- Department of Genetics and Plant Breeding, Anand Agricultural University, Anand, Gujarat, India
| | - Rajvir Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Sumit Kumar
- Department of Agronomy, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Pawan Saini
- CSB-Central Sericultural Research & Training Institute (CSR&TI), Ministry of Textiles, Govt. of India, Jammu- Kashmir, Pampore, India
| | - Inderjit Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Habiburahman Ayoubi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
19
|
Identification and Functional Evaluation of Three Polyubiquitin Promoters from Hevea brasiliensis. FORESTS 2022. [DOI: 10.3390/f13060952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hevea brasiliensis is an economically important tree species that provides the only commercial source of natural rubber. The replacement of the CaMV35S promoter by endogenous polyubiquitin promoters may be a viable way to improve the genetic transformation of this species. However, no endogenous polyubiquitin promoters in Hevea have been reported yet. Here, we identified three Hevea polyubiquitin genes HbUBI10.1, HbUBI10.2 and HbUBI10.3, which encode ubiquitin monomers having nearly identical amino acid sequences to that of AtUBQ10. The genomic fragments upstream of these HbUBI genes, including the signature leading introns, were amplified as putative HbUBI promoters. In silico analysis showed that a number of cis-acting elements which are conserved within strong constitutive polyubiquitin promoters were presented in these HbUBI promoters. Transcriptomic data revealed that HbUBI10.1 and HbUBI10.2 had a constitutive expression in Hevea plants. Semi-quantitative RT-PCR showed that these three HbUBI genes were expressed higher than the GUS gene driven by CaMV35S in transgenic Hevea leaves. All three HbUBI promoters exhibited the capability to direct GFP expression in both transient and stable transformation assays, although they produced lower protoplast transformation efficiencies than the CaMV35S promoter. These HbUBI promoters will expand the availability of promoters for driving the transgene expression in Hevea genetic engineering.
Collapse
|
20
|
The biological feasibility and social context of gene-edited, caffeine-free coffee. Food Sci Biotechnol 2022; 31:635-655. [PMID: 35646415 PMCID: PMC9133285 DOI: 10.1007/s10068-022-01082-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022] Open
Abstract
Coffee, especially the species Coffea arabica and Coffea canephora, is one of the world’s most consumed beverages. The consumer demand for caffeine-free coffee is currently being met through chemical decaffeination processes. However, this method leads to loss of beverage quality. In this review, the feasibility of using gene editing to produce caffeine-free coffee plants is reviewed. The genes XMT (7-methylxanthosine methyltransferase) and DXMT (3,7-dimethylxanthine methyltransferase) were identified as candidate target genes for knocking out caffeine production in coffee plants. The possible effect of the knock-out of the candidate genes was assessed. Using Agrobacterium tumefaciens-mediated introduction of the CRISPR-Cas system to Knock out XMT or DXMT would lead to blocking caffeine biosynthesis. The use of CRISPR-Cas to genetically edit consumer products is not yet widely accepted, which may lead to societal hurdles for introducing gene-edited caffeine-free coffee cultivars onto the market. However, increased acceptance of CRISPR-Cas/gene editing on products with a clear benefit for consumers offers better prospects for gene editing efforts for caffeine-free coffee.
Collapse
|
21
|
Rasheed A, Barqawi AA, Mahmood A, Nawaz M, Shah AN, Bay DH, Alahdal MA, Hassan MU, Qari SH. CRISPR/Cas9 is a powerful tool for precise genome editing of legume crops: a review. Mol Biol Rep 2022; 49:5595-5609. [PMID: 35585381 DOI: 10.1007/s11033-022-07529-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/15/2022] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
Abstract
Legumes are an imperative source of food and proteins across the globe. They also improve soil fertility through symbiotic nitrogen fixation (SNF). Genome editing (GE) is now a novel way of developing desirable traits in legume crops. Genome editing tools like clustered regularly interspaced short palindromic repeats (CRISPR) system permits a defined genome alteration to improve crop performance. This genome editing tool is reliable, cost-effective, and versatile, and it has to deepen in terms of use compared to other tools. Recently, many novel variations have drawn the attention of plant geneticists, and efforts are being made to develop trans-gene-free cultivars for ensuring biosafety measures. This review critically elaborates on the recent development in genome editing of major legumes crops. We hope this updated review will provide essential informations for the researchers working on legumes genome editing. In general, the CRISPR/Cas9 novel GE technique can be integrated with other techniques like omics approaches and next-generation tools to broaden the range of gene editing and develop any desired legumes traits. Regulatory ethics of CRISPR/Cas9 are also discussed.
Collapse
Affiliation(s)
- Adnan Rasheed
- Key Laboratory of Crops Physiology, Ecology and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, 330045, Nanchang, China
| | - Aminah A Barqawi
- Department of Chemistry, Al-Leith University College, Umm Al Qura University, Makkah, Saudi Arabia
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture Faisalabad, 38040, Faisalabad, Pakistan
| | - Muhammad Nawaz
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Punjab, Pakistan
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Punjab, Pakistan.
| | - Daniyah H Bay
- Department of Biology, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Maryam A Alahdal
- Biology Department Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, 330045, Nanchang, China
| | - Sameer H Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, 21955, Makkah, Saudi Arabia.
| |
Collapse
|
22
|
Niu J, Chen Z, Yu S, Wang Q. Ascorbic acid regulates nitrogen, energy, and gas exchange metabolisms of alfalfa in response to high-nitrate stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:24085-24097. [PMID: 34820759 DOI: 10.1007/s11356-021-17672-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
The effects of exogenous ascorbic acid (AsA) on the growth parameters, nitrogen metabolism, energy status, and photosynthetic gas exchange in alfalfa under high-nitrate stress were studied. The seedlings treated with the control, 200 mmol L-1 nitrates (HN) or 200 mmol L-1 nitrate + 0.1 mmol L-1 AsA (HN + AsA), were sampled on days 0 and 10 after treatments. AsA was sprayed on the leaves, while HN was conducted by watering. Both of them were performed once every other day for three times in total. The results revealed that in the HN treatment, the growth parameters were the lowest; total phosphorus (TP), nitrogen-related enzyme activities, soluble protein (SP), adenosine triphosphate (ATP), and energy charge (EC) were reduced; and photosynthetic rate (Photo), conductance to H2O (Cond), transpiration rate (Trmmol), instantaneous water use efficiency (WUE), and apparent CO2 use efficiency (CUE) were also inhibited; and total nitrogen (TN), nitrate-nitrogen (NO3¯-N), ammonium-nitrogen (NH4+-N), adenosine diphosphate (ADP), adenosine monophosphate (AMP), and intercellular CO2 concentration (Ci) were increased compared with the control. However, these parameters changed conversely in the HN + AsA treatment. In addition, there was a good curve regression equation relationship between TN and NO3¯-N, TN and NH4+-N, NO3¯-N and NH4+-N, respectively. It indicates that AsA improves the growth parameters, nitrogen-related enzyme activities, energy metabolism, and photosynthesis, whereas it inhibits the toxicity of excess NO3¯-N and NH4+-N accumulations, thereby promoting the growth of alfalfa under high-nitrate stress. These metabolisms are closely related to each other during the regulatory process in alfalfa. Hence, AsA has potential to be applied to improve the growth of alfalfa under high-nitrate stress.
Collapse
Affiliation(s)
- Junpeng Niu
- College of Grassland Agriculture, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi, China
| | - Zhao Chen
- College of Grassland Agriculture, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi, China
| | - Su Yu
- College of Grassland Agriculture, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi, China
| | - Quanzhen Wang
- College of Grassland Agriculture, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi, China.
| |
Collapse
|
23
|
Ma L, Zhang Y, Wen H, Liu W, Zhou Y, Wang X. Silencing of MsD14 Resulted in Enhanced Forage Biomass through Increasing Shoot Branching in Alfalfa ( Medicago sativa L.). PLANTS (BASEL, SWITZERLAND) 2022; 11:939. [PMID: 35406919 PMCID: PMC9003486 DOI: 10.3390/plants11070939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Branching is one of the key determinants of plant architecture that dramatically affects crop yield. As alfalfa is the most important forage crop, understanding the genetic basis of branching in this plant can facilitate breeding for a high biomass yield. In this study, we characterized the strigolactone receptor gene MsD14 in alfalfa and demonstrated that MsD14 was predominantly expressed in flowers, roots, and seedpods. Furthermore, we found that MsD14 expression could significantly respond to strigolactone in alfalfa seedlings, and its protein was located in the nucleus, cytoplasm, and cytomembrane. Most importantly, transformation assays demonstrated that silencing of MsD14 in alfalfa resulted in increased shoot branching and forage biomass. Significantly, MsD14 could physically interact with AtMAX2 and MsMAX2 in the presence of strigolactone, suggesting a similarity between MsD14 and AtD14. Together, our results revealed the conserved D14-MAX2 module in alfalfa branching regulation and provided candidate genes for alfalfa high-yield molecular breeding.
Collapse
Affiliation(s)
- Lin Ma
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.M.); (H.W.)
| | - Yongchao Zhang
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China; (Y.Z.); (W.L.)
| | - Hongyu Wen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.M.); (H.W.)
| | - Wenhui Liu
- Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China; (Y.Z.); (W.L.)
| | - Yu Zhou
- Institute of Characteristic Crops Research, Chongqing Academy of Agricultural Sciences, Chongqing 402160, China;
| | - Xuemin Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.M.); (H.W.)
| |
Collapse
|
24
|
Schrauf GE, Voda L, Zelada AM, García AM, Giordano A, Roa PP, Guitian J, Rebori J, Ghio S, Couso L, Castro L, Musacchio E, Rush P, Nagel J, Wang ZY, Cogan N, Spangenberg G. Development of Protocols for Regeneration and Transformation of Apomitic and Sexual Forms of Dallisgrass ( Paspalum dilatatum Poir.). FRONTIERS IN PLANT SCIENCE 2022; 12:787549. [PMID: 35281698 PMCID: PMC8914168 DOI: 10.3389/fpls.2021.787549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Paspalum dilatatum (common name dallisgrass), a productive C4 grass native to South America, is an important pasture grass found throughout the temperate warm regions of the world. It is characterized by its tolerance to frost and water stress and a higher forage quality than other C4 forage grasses. P. dilatatum includes tetraploid (2n = 40), sexual, and pentaploid (2n = 50) apomictic forms, but is predominantly cultivated in an apomictic monoculture, which implies a high risk that biotic and abiotic stresses could seriously affect the grass productivity. The obtention of reproducible and efficient protocols of regeneration and transformation are valuable tools to obtain genetic modified grasses with improved agronomics traits. In this review, we present the current regeneration and transformation methods of both apomictic and sexual cultivars of P. dilatatum, discuss their strengths and limitations, and focus on the perspectives of genetic modification for producing new generation of forages. The advances in this area of research lead us to consider Paspalum dilatatum as a model species for the molecular improvement of C4 perennial forage species.
Collapse
Affiliation(s)
- Gustavo E. Schrauf
- Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
- Criadero “Cultivos del Sur” FAUBA, Buenos Aires, Argentina
| | - Lisandro Voda
- Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
- Criadero “Cultivos del Sur” FAUBA, Buenos Aires, Argentina
- BASF Argentina S.A., Buenos Aires, Argentina
| | - Alicia M. Zelada
- Laboratorio de Agrobiotecnología, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana María García
- Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Andrea Giordano
- Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pablo Peralta Roa
- Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
- Criadero “Cultivos del Sur” FAUBA, Buenos Aires, Argentina
| | - Juan Guitian
- Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
- Criadero “Cultivos del Sur” FAUBA, Buenos Aires, Argentina
| | - Juan Rebori
- Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sergio Ghio
- Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
- Criadero “Cultivos del Sur” FAUBA, Buenos Aires, Argentina
| | - Luciana Couso
- Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
- Criadero “Cultivos del Sur” FAUBA, Buenos Aires, Argentina
| | - Lautaro Castro
- Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
- Criadero “Cultivos del Sur” FAUBA, Buenos Aires, Argentina
| | - Eduardo Musacchio
- Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
- Criadero “Cultivos del Sur” FAUBA, Buenos Aires, Argentina
| | - Pablo Rush
- Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
- Criadero “Cultivos del Sur” FAUBA, Buenos Aires, Argentina
| | - Jutta Nagel
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Zeng Yu Wang
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Noel Cogan
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Germán Spangenberg
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
- Agriculture Victoria, Hamilton, VIC, Australia
| |
Collapse
|
25
|
Bottero E, Gómez C, Stritzler M, Tajima H, Frare R, Pascuan C, Blumwald E, Ayub N, Soto G. Generation of a multi-herbicide-tolerant alfalfa by using base editing. PLANT CELL REPORTS 2022; 41:493-495. [PMID: 34994854 DOI: 10.1007/s00299-021-02827-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
We present the first report on base editing in alfalfa. Specifically, we showed edited alfalfa with tolerance to both sulfonylurea- and imidazolinone-type herbicides.
Collapse
Affiliation(s)
- Emilia Bottero
- Instituto de Agrobiotecnología y Biología Molecular, CONICET-INTA, Buenos Aires, Argentina
- Instituto de Genética "Edwald Alfredo Favret", INTA, De los Reseros S/N, C25 (1712), Castelar, Argentina
| | - Cristina Gómez
- Instituto de Agrobiotecnología y Biología Molecular, CONICET-INTA, Buenos Aires, Argentina
- Instituto de Genética "Edwald Alfredo Favret", INTA, De los Reseros S/N, C25 (1712), Castelar, Argentina
| | - Margarita Stritzler
- Instituto de Agrobiotecnología y Biología Molecular, CONICET-INTA, Buenos Aires, Argentina
- Instituto de Genética "Edwald Alfredo Favret", INTA, De los Reseros S/N, C25 (1712), Castelar, Argentina
| | - Hiromi Tajima
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Romina Frare
- Instituto de Agrobiotecnología y Biología Molecular, CONICET-INTA, Buenos Aires, Argentina
- Instituto de Genética "Edwald Alfredo Favret", INTA, De los Reseros S/N, C25 (1712), Castelar, Argentina
| | - Cecilia Pascuan
- Instituto de Agrobiotecnología y Biología Molecular, CONICET-INTA, Buenos Aires, Argentina
- Instituto de Genética "Edwald Alfredo Favret", INTA, De los Reseros S/N, C25 (1712), Castelar, Argentina
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Nicolás Ayub
- Instituto de Agrobiotecnología y Biología Molecular, CONICET-INTA, Buenos Aires, Argentina
- Instituto de Genética "Edwald Alfredo Favret", INTA, De los Reseros S/N, C25 (1712), Castelar, Argentina
| | - Gabriela Soto
- Instituto de Agrobiotecnología y Biología Molecular, CONICET-INTA, Buenos Aires, Argentina.
- Instituto de Genética "Edwald Alfredo Favret", INTA, De los Reseros S/N, C25 (1712), Castelar, Argentina.
| |
Collapse
|
26
|
Singer SD, Burton Hughes K, Subedi U, Dhariwal GK, Kader K, Acharya S, Chen G, Hannoufa A. The CRISPR/Cas9-Mediated Modulation of SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE 8 in Alfalfa Leads to Distinct Phenotypic Outcomes. FRONTIERS IN PLANT SCIENCE 2022; 12:774146. [PMID: 35095953 PMCID: PMC8793889 DOI: 10.3389/fpls.2021.774146] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/10/2021] [Indexed: 05/04/2023]
Abstract
Alfalfa (Medicago sativa L.) is the most widely grown perennial leguminous forage and is an essential component of the livestock industry. Previously, the RNAi-mediated down-regulation of alfalfa SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE 8 (MsSPL8) was found to lead to increased branching, regrowth and biomass, as well as enhanced drought tolerance. In this study, we aimed to further characterize the function of MsSPL8 in alfalfa using CRISPR/Cas9-induced mutations in this gene. We successfully generated alfalfa genotypes with small insertions/deletions (indels) at the target site in up to three of four MsSPL8 alleles in the first generation. The efficiency of editing appeared to be tightly linked to the particular gRNA used. The resulting genotypes displayed consistent morphological alterations, even with the presence of up to two wild-type MsSPL8 alleles, including reduced leaf size and early flowering. Other phenotypic effects appeared to be dependent upon mutational dosage, with those plants with the highest number of mutated MsSPL8 alleles also exhibiting significant decreases in internode length, plant height, shoot and root biomass, and root length. Furthermore, MsSPL8 mutants displayed improvements in their ability to withstand water-deficit compared to empty vector control genotypes. Taken together, our findings suggest that allelic mutational dosage can elicit phenotypic gradients in alfalfa, and discrepancies may exist in terms of MsSPL8 function between alfalfa genotypes, growth conditions, or specific alleles. In addition, our results provide the foundation for further research exploring drought tolerance mechanisms in a forage crop.
Collapse
Affiliation(s)
- Stacy D. Singer
- Lethbridge Research and Development Center, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Kimberley Burton Hughes
- Lethbridge Research and Development Center, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Udaya Subedi
- Lethbridge Research and Development Center, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Gaganpreet Kaur Dhariwal
- Lethbridge Research and Development Center, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Kazi Kader
- Lethbridge Research and Development Center, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Surya Acharya
- Lethbridge Research and Development Center, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada
| | - Abdelali Hannoufa
- London Research and Development Center, Agriculture and Agri-Food Canada, London, ON, Canada
| |
Collapse
|
27
|
Kumar M, Ayzenshtat D, Marko A, Bocobza S. Optimization of T-DNA configuration with UBIQUITIN10 promoters and tRNA-sgRNA complexes promotes highly efficient genome editing in allotetraploid tobacco. PLANT CELL REPORTS 2022; 41:175-194. [PMID: 34623476 DOI: 10.1007/s00299-021-02796-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE Combination of UBIQUITIN10 promoter-directed CAS9 and tRNA-gRNA complexes in gene-editing assay induces 80% mutant phenotype with a knockout of the four allelic copies in the T0 generation of allotetraploid tobaccos. While gene-editing methodologies, such as CRISPR-Cas9, have been developed and successfully used in many plant species, their use remains challenging, because they most often rely on stable or transient transgene expression. Regrettably, in all plant species, transformation causes epigenetic effects such as gene silencing and variable transgene expression. Here, UBIQUITIN10 promoters from several plant species were characterized and showed their capacity to direct high levels of transgene expression in transient and stable transformation assays, which in turn was used to improve the selection process of regenerated transformants. Furthermore, we compared various sgRNAs delivery systems and showed that the combination of UBIQUITIN10 promoters and tRNA-sgRNA complexes produced 80% mutant phenotype with a complete knockout of the four allelic copies, while the remaining 20% exhibited weaker phenotype, which suggested partial allelic knockout, in the T0 generation of the allotetraploid Nicotiana tabacum. These data provide valuable information to optimize future designs of gene editing constructs for plant research and crop improvement and open the way for valuable gene editing projects in non-model Solanaceae species.
Collapse
MESH Headings
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Plant/genetics
- DNA, Plant/metabolism
- Gene Editing/methods
- Genome, Plant
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Promoter Regions, Genetic/genetics
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Tetraploidy
- Nicotiana/genetics
- Ubiquitins/genetics
- Ubiquitins/metabolism
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Dana Ayzenshtat
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Adar Marko
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Rishon LeZion, Israel
| | - Samuel Bocobza
- Department of Ornamental Plants and Agricultural Biotechnology, The Institute of Plant Sciences, The Volcani Center, ARO, Rishon LeZion, Israel.
| |
Collapse
|
28
|
Jozefkowicz C, Gómez C, Odorizzi A, Iantcheva A, Ratet P, Ayub N, Soto G. Expanding the Benefits of Tnt1 for the Identification of Dominant Mutations in Polyploid Crops: A Single Allelic Mutation in the MsNAC39 Gene Produces Multifoliated Alfalfa. FRONTIERS IN PLANT SCIENCE 2021; 12:805032. [PMID: 35046986 PMCID: PMC8763170 DOI: 10.3389/fpls.2021.805032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Most major crops are polyploid species and the production of genetically engineered cultivars normally requires the introgression of transgenic or gene-edited traits into elite germplasm. Thus, a main goal of plant research is the search of systems to identify dominant mutations. In this article, we show that the Tnt1 element can be used to identify dominant mutations in allogamous tetraploid cultivated alfalfa. Specifically, we show that a single allelic mutation in the MsNAC39 gene produces multifoliate leaves (mfl) alfalfa plants, a pivot trait of breeding programs of this forage species. Finally, we discuss the potential application of a combination of preliminary screening of beneficial dominant mutants using Tnt1 mutant libraries and genome editing via the CRISPR/Cas9 system to identify target genes and to rapidly improve both autogamous and allogamous polyploid crops.
Collapse
Affiliation(s)
- Cintia Jozefkowicz
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Buenos Aires, Argentina
- Instituto de Genética (IGEAF), Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
| | - Cristina Gómez
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Buenos Aires, Argentina
- Instituto de Genética (IGEAF), Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
| | - Ariel Odorizzi
- Estación Experimental Agropecuaria Manfredi, Instituto Nacional de Tecnología Agropecuaria (INTA), Córdoba, Argentina
| | | | - Pascal Ratet
- Université Paris-Saclay, INRAE, CNRS, Université d’Évry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris Saclay (IPS2), Orsay, France
| | - Nicolás Ayub
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Buenos Aires, Argentina
- Instituto de Genética (IGEAF), Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
| | - Gabriela Soto
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Buenos Aires, Argentina
- Instituto de Genética (IGEAF), Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires, Argentina
| |
Collapse
|
29
|
Xia X, Cheng X, Li R, Yao J, Li Z, Cheng Y. Advances in application of genome editing in tomato and recent development of genome editing technology. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2727-2747. [PMID: 34076729 PMCID: PMC8170064 DOI: 10.1007/s00122-021-03874-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/25/2021] [Indexed: 05/07/2023]
Abstract
Genome editing, a revolutionary technology in molecular biology and represented by the CRISPR/Cas9 system, has become widely used in plants for characterizing gene function and crop improvement. Tomato, serving as an excellent model plant for fruit biology research and making a substantial nutritional contribution to the human diet, is one of the most important applied plants for genome editing. Using CRISPR/Cas9-mediated targeted mutagenesis, the re-evaluation of tomato genes essential for fruit ripening highlights that several aspects of fruit ripening should be reconsidered. Genome editing has also been applied in tomato breeding for improving fruit yield and quality, increasing stress resistance, accelerating the domestication of wild tomato, and recently customizing tomato cultivars for urban agriculture. In addition, genome editing is continuously innovating, and several new genome editing systems such as the recent prime editing, a breakthrough in precise genome editing, have recently been applied in plants. In this review, these advances in application of genome editing in tomato and recent development of genome editing technology are summarized, and their leaving important enlightenment to plant research and precision plant breeding is also discussed.
Collapse
Affiliation(s)
- Xuehan Xia
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Xinhua Cheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Rui Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Juanni Yao
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Yulin Cheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China.
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
30
|
Chen Z, Cao X, Niu J. Effects of Melatonin on Morphological Characteristics, Mineral Nutrition, Nitrogen Metabolism, and Energy Status in Alfalfa Under High-Nitrate Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:694179. [PMID: 34267772 PMCID: PMC8276172 DOI: 10.3389/fpls.2021.694179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/03/2021] [Indexed: 05/27/2023]
Abstract
Melatonin is an indoleamine small molecular substance that has been shown to play an important role in the growth, development, and stress response of plants. The effects of melatonin on the morphological characteristics, mineral nutrition, nitrogen metabolism, and energy status in alfalfa (Medicago sativa L.) under high-nitrate stress were studied. The alfalfa plants were treated with water (CK), 200 mmol L-1 nitrates (HN), or 200 mmol L-1 nitrates + 0.1 mmol L-1 melatonin (HN+MT), and then were sampled for measurements on days 0 and 10, respectively. The results showed that the HN treatment resulted in a decrease in the morphological characteristics (such as shoot height, leaf length, leaf width, leaf area, and biomass), phosphorus, soluble protein (SP), nitrogen-related enzymes activities and gene relative expression, adenosine triphosphate (ATP), and energy charge (EC). It also caused an increase in nitrogen, sodium, potassium, calcium, nitrate-nitrogen ( NO 3 - -N), ammonium-nitrogen ( NH 4 + -N), adenosine diphosphate (ADP), and adenosine monophosphate (AMP). However, these parameters were conversely changed in the HN+MT treatment. Besides, these parameters were closely related to each other, and were divided into two principal components. It reveals that melatonin plays an important role in modulating the morphology, mineral nutrition, nitrogen metabolism and energy status, thereby alleviating the adverse effects of high-nitrate stress and improving the growth of alfalfa.
Collapse
|
31
|
Zhu F, Ye Q, Chen H, Dong J, Wang T. Multigene editing reveals that MtCEP1/2/12 redundantly control lateral root and nodule number in Medicago truncatula. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3661-3676. [PMID: 33640986 PMCID: PMC8096600 DOI: 10.1093/jxb/erab093] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 02/25/2021] [Indexed: 05/26/2023]
Abstract
The multimember CEP (C-terminally Encoded Peptide) gene family is a complex group that is involved in various physiological activities in plants. Previous studies demonstrated that MtCEP1 and MtCEP7 control lateral root formation or nodulation, but these studies were based only on gain of function or artificial miRNA (amiRNA)/RNAi approaches, never knockout mutants. Moreover, an efficient multigene editing toolkit is not currently available for Medicago truncatula. Our quantitative reverse transcription-PCR data showed that MtCEP1, 2, 4, 5, 6, 7, 8, 9, 12, and 13 were up-regulated under nitrogen starvation conditions and that MtCEP1, 2, 7, 9, and 12 were induced by rhizobial inoculation. Treatment with synthetic MtCEP peptides of MtCEP1, 2, 4, 5, 6, 8, and 12 repressed lateral root emergence and promoted nodulation in the R108 wild type but not in the cra2 mutant. We optimized CRISPR/Cas9 [clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9] genome editing system for M. truncatula, and thus created single mutants of MtCEP1, 2, 4, 6, and 12 and the double mutants Mtcep1/2C and Mtcep5/8C; however, these mutants did not exhibit significant differences from R108. Furthermore, a triple mutant Mtcep1/2/12C and a quintuple mutant Mtcep1/2/5/8/12C were generated and exhibited more lateral roots and fewer nodules than R108. Overall, MtCEP1, 2, and 12 were confirmed to be redundantly important in the control of lateral root number and nodulation. Moreover, the CRISPR/Cas9-based multigene editing protocol provides an additional tool for research on the model legume M. truncatula, which is highly efficient at multigene mutant generation.
Collapse
Affiliation(s)
- Fugui Zhu
- State Key Laboratory of Agrobiotechnology, College of Grassland Sciences, China Agricultural University, Beijing, China
| | - Qinyi Ye
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hong Chen
- State Key Laboratory of Agrobiotechnology, College of Grassland Sciences, China Agricultural University, Beijing, China
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
32
|
Eid A, Mohan C, Sanchez S, Wang D, Altpeter F. Multiallelic, Targeted Mutagenesis of Magnesium Chelatase With CRISPR/Cas9 Provides a Rapidly Scorable Phenotype in Highly Polyploid Sugarcane. Front Genome Ed 2021; 3:654996. [PMID: 34713257 PMCID: PMC8525377 DOI: 10.3389/fgeed.2021.654996] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Genome editing with sequence-specific nucleases, such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), is revolutionizing crop improvement. Developing efficient genome-editing protocols for highly polyploid crops, including sugarcane (x = 10-13), remains challenging due to the high level of genetic redundancy in these plants. Here, we report the efficient multiallelic editing of magnesium chelatase subunit I (MgCh) in sugarcane. Magnesium chelatase is a key enzyme for chlorophyll biosynthesis. CRISPR/Cas9-mediated targeted co-mutagenesis of 49 copies/alleles of magnesium chelatase was confirmed via Sanger sequencing of cloned PCR amplicons. This resulted in severely reduced chlorophyll contents, which was scorable at the time of plant regeneration in the tissue culture. Heat treatment following the delivery of genome editing reagents elevated the editing frequency 2-fold and drastically promoted co-editing of multiple alleles, which proved necessary to create a phenotype that was visibly distinguishable from the wild type. Despite their yellow leaf color, the edited plants were established well in the soil and did not show noticeable growth retardation. This approach will facilitate the establishment of genome editing protocols for recalcitrant crops and support further optimization, including the evaluation of alternative RNA-guided nucleases to overcome the limitations of the protospacer adjacent motif (PAM) site or to develop novel delivery strategies for genome editing reagents.
Collapse
Affiliation(s)
- Ayman Eid
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, United States
| | - Chakravarthi Mohan
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, United States
| | - Sara Sanchez
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, United States
| | - Duoduo Wang
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, United States
| | - Fredy Altpeter
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, United States
- Genetics Institute, University of Florida, Gainesville, FL, United States
- Plant Molecular and Cellular Biology Program, Institute of Food and Agricultural Sciences, Gainesville, FL, United States
| |
Collapse
|
33
|
Genome editing in fruit, ornamental, and industrial crops. Transgenic Res 2021; 30:499-528. [PMID: 33825100 DOI: 10.1007/s11248-021-00240-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/25/2021] [Indexed: 01/24/2023]
Abstract
The advent of genome editing has opened new avenues for targeted trait enhancement in fruit, ornamental, industrial, and all specialty crops. In particular, CRISPR-based editing systems, derived from bacterial immune systems, have quickly become routinely used tools for research groups across the world seeking to edit plant genomes with a greater level of precision, higher efficiency, reduced off-target effects, and overall ease-of-use compared to ZFNs and TALENs. CRISPR systems have been applied successfully to a number of horticultural and industrial crops to enhance fruit ripening, increase stress tolerance, modify plant architecture, control the timing of flower development, and enhance the accumulation of desired metabolites, among other commercially-important traits. As editing technologies continue to advance, so too does the ability to generate improved crop varieties with non-transgenic modifications; in some crops, direct transgene-free edits have already been achieved, while in others, T-DNAs have successfully been segregated out through crossing. In addition to the potential to produce non-transgenic edited crops, and thereby circumvent regulatory impediments to the release of new, improved crop varieties, targeted gene editing can speed up trait improvement in crops with long juvenile phases, reducing inputs resulting in faster market introduction to the market. While many challenges remain regarding optimization of genome editing in ornamental, fruit, and industrial crops, the ongoing discovery of novel nucleases with niche specialties for engineering applications may form the basis for additional and potentially crop-specific editing strategies.
Collapse
|
34
|
Du J, Lu S, Chai M, Zhou C, Sun L, Tang Y, Nakashima J, Kolape J, Wen Z, Behzadirad M, Zhong T, Sun J, Zhang Y, Wang Z. Functional characterization of PETIOLULE-LIKE PULVINUS (PLP) gene in abscission zone development in Medicago truncatula and its application to genetic improvement of alfalfa. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:351-364. [PMID: 32816361 PMCID: PMC7868985 DOI: 10.1111/pbi.13469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 05/05/2023]
Abstract
Alfalfa (Medicago sativa L.) is one of the most important forage crops throughout the world. Maximizing leaf retention during the haymaking process is critical for achieving superior hay quality and maintaining biomass yield. Leaf abscission process affects leaf retention. Previous studies have largely focused on the molecular mechanisms of floral organ, pedicel and seed abscission but scarcely touched on leaf and petiole abscission. This study focuses on leaf and petiole abscission in the model legume Medicago truncatula and its closely related commercial species alfalfa. By analysing the petiolule-like pulvinus (plp) mutant in M. truncatula at phenotypic level (breakstrength and shaking assays), microscopic level (scanning electron microscopy and cross-sectional analyses) and molecular level (expression level and expression pattern analyses), we discovered that the loss of function of PLP leads to an absence of abscission zone (AZ) formation and PLP plays an important role in leaflet and petiole AZ differentiation. Microarray analysis indicated that PLP affects abscission process through modulating genes involved in hormonal homeostasis, cell wall remodelling and degradation. Detailed analyses led us to propose a functional model of PLP in regulating leaflet and petiole abscission. Furthermore, we cloned the PLP gene (MsPLP) from alfalfa and produced RNAi transgenic alfalfa plants to down-regulate the endogenous MsPLP. Down-regulation of MsPLP results in altered pulvinus structure with increased leaflet breakstrength, thus offering a new approach to decrease leaf loss during alfalfa haymaking process.
Collapse
Affiliation(s)
- Juan Du
- Noble Research InstituteArdmoreOKUSA
- Institute for Agricultural BiosciencesOklahoma State UniversityArdmoreOKUSA
- College of Grassland Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Shaoyun Lu
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Maofeng Chai
- Noble Research InstituteArdmoreOKUSA
- Grassland Agri‐Husbandry Research CenterCollege of Grassland ScienceQingdao Agricultural UniversityQingdaoChina
| | - Chuanen Zhou
- School of Life ScienceShandong UniversityQingdaoChina
| | - Liang Sun
- Noble Research InstituteArdmoreOKUSA
| | | | | | - Jaydeep Kolape
- Noble Research InstituteArdmoreOKUSA
- Morrison Microscopy Core Research FacilityCenter for BiotechnologyUniversity of Nebraska‐LincolnNEUSA
| | - Zhaozhu Wen
- Noble Research InstituteArdmoreOKUSA
- College of AgricultureHunan Agricultural UniversityHunanChina
| | - Marjan Behzadirad
- Institute for Agricultural BiosciencesOklahoma State UniversityArdmoreOKUSA
| | - Tianxiu Zhong
- College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
| | - Juan Sun
- Grassland Agri‐Husbandry Research CenterCollege of Grassland ScienceQingdao Agricultural UniversityQingdaoChina
| | - Yunwei Zhang
- College of Grassland Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Zeng‐Yu Wang
- Noble Research InstituteArdmoreOKUSA
- Grassland Agri‐Husbandry Research CenterCollege of Grassland ScienceQingdao Agricultural UniversityQingdaoChina
| |
Collapse
|
35
|
Eid A, Mohan C, Sanchez S, Wang D, Altpeter F. Multiallelic, Targeted Mutagenesis of Magnesium Chelatase With CRISPR/Cas9 Provides a Rapidly Scorable Phenotype in Highly Polyploid Sugarcane. Front Genome Ed 2021. [PMID: 34713257 DOI: 10.3389/fgeed.2021.65499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
Genome editing with sequence-specific nucleases, such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), is revolutionizing crop improvement. Developing efficient genome-editing protocols for highly polyploid crops, including sugarcane (x = 10-13), remains challenging due to the high level of genetic redundancy in these plants. Here, we report the efficient multiallelic editing of magnesium chelatase subunit I (MgCh) in sugarcane. Magnesium chelatase is a key enzyme for chlorophyll biosynthesis. CRISPR/Cas9-mediated targeted co-mutagenesis of 49 copies/alleles of magnesium chelatase was confirmed via Sanger sequencing of cloned PCR amplicons. This resulted in severely reduced chlorophyll contents, which was scorable at the time of plant regeneration in the tissue culture. Heat treatment following the delivery of genome editing reagents elevated the editing frequency 2-fold and drastically promoted co-editing of multiple alleles, which proved necessary to create a phenotype that was visibly distinguishable from the wild type. Despite their yellow leaf color, the edited plants were established well in the soil and did not show noticeable growth retardation. This approach will facilitate the establishment of genome editing protocols for recalcitrant crops and support further optimization, including the evaluation of alternative RNA-guided nucleases to overcome the limitations of the protospacer adjacent motif (PAM) site or to develop novel delivery strategies for genome editing reagents.
Collapse
Affiliation(s)
- Ayman Eid
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, United States
| | - Chakravarthi Mohan
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, United States
| | - Sara Sanchez
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, United States
| | - Duoduo Wang
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, United States
| | - Fredy Altpeter
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
- Department of Energy Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, United States
- Genetics Institute, University of Florida, Gainesville, FL, United States
- Plant Molecular and Cellular Biology Program, Institute of Food and Agricultural Sciences, Gainesville, FL, United States
| |
Collapse
|
36
|
Donovan S, Mao Y, Orr DJ, Carmo-Silva E, McCormick AJ. CRISPR-Cas9-Mediated Mutagenesis of the Rubisco Small Subunit Family in Nicotiana tabacum. Front Genome Ed 2020; 2:605614. [PMID: 34713229 PMCID: PMC8525408 DOI: 10.3389/fgeed.2020.605614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/27/2020] [Indexed: 12/29/2022] Open
Abstract
Engineering the small subunit of the key CO2-fixing enzyme Rubisco (SSU, encoded by rbcS) in plants currently poses a significant challenge, as many plants have polyploid genomes and SSUs are encoded by large multigene families. Here, we used CRISPR-Cas9-mediated genome editing approach to simultaneously knock-out multiple rbcS homologs in the model tetraploid crop tobacco (Nicotiana tabacum cv. Petit Havana). The three rbcS homologs rbcS_S1a, rbcS_S1b and rbcS_T1 account for at least 80% of total rbcS expression in tobacco. In this study, two multiplexing guide RNAs (gRNAs) were designed to target homologous regions in these three genes. We generated tobacco mutant lines with indel mutations in all three genes, including one line with a 670 bp deletion in rbcS-T1. The Rubisco content of three selected mutant lines in the T1 generation was reduced by ca. 93% and mutant plants accumulated only 10% of the total biomass of wild-type plants. As a second goal, we developed a proof-of-principle approach to simultaneously introduce a non-native rbcS gene while generating the triple SSU knockout by co-transformation into a wild-type tobacco background. Our results show that CRISPR-Cas9 is a viable tool for the targeted mutagenesis of rbcS families in polyploid species and will contribute to efforts aimed at improving photosynthetic efficiency through expression of superior non-native Rubisco enzymes in plants.
Collapse
Affiliation(s)
- Sophie Donovan
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Yuwei Mao
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Douglas J. Orr
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | | | - Alistair J. McCormick
- SynthSys and Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
37
|
Abstract
Broad-leaved trees are widely distributed from tropical to temperate zones in China, reference collections of phytoliths from these taxa are crucial for the precise reconstruction of paleoenvironments and the study of early plant resource exploitation. However, not much has been published on the phytoliths produced by modern broad-leaved trees. In this study, we collected samples of 110 species that cover the common species distributed in Northern and Southern China, and extracted phytoliths from leaves, twigs and fruits, in order to investigate the phytoliths types and production in these species. We found that only 58 species were phytoliths producers, and that 23 distinct phytoliths morphotypes could be recognized. The results showed that phytoliths types and production in Northern and Southern China could be similar in the two regions. Through analyzing previously published data and our data, Elongate brachiate geniculate, Polygonal tabular, Elongate facetate, Tracheary annulate/facetate geniculate and Tracheary annulate/facetate claviform have been proposed to be the potential diagnostic types for broad-leaved trees in general. This study provided a preliminary reference of phytoliths in modern broad-leaved trees, and could be used in the identification of phytoliths in sediments and archaeological contexts.
Collapse
|