1
|
Xiao Y, Bao F, Xu X, Yu K, Wu B, Gao Y, Zhang J. The influence of precipitation timing and amount on soil microbial community in a temperate desert ecosystem. Front Microbiol 2023; 14:1249036. [PMID: 37744930 PMCID: PMC10512721 DOI: 10.3389/fmicb.2023.1249036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Global climate change may lead to changes in precipitation patterns. This may have a significant impact on the microbial communities present in the soil. However, the way these communities respond to seasonal variations in precipitation, particularly in the context of increased precipitation amounts, is not yet well understood. Methods To explore this issue, a five-year (2012-2016) field study was conducted at the northeast boundary of the Ulan Buh Desert, examining the effects of increased precipitation during different periods of the growing season on both bacterial and fungal communities. The study included five precipitation pattern treatments: a control group (C), as well as groups receiving 50 and 100% of the local mean annual precipitation amount (145 mm) during either the early growing season (E50 and E100) or the late growing season (L50 and L100). The taxonomic composition of the soil bacterial and fungal communities was analyzed using Illumina sequencing. Results After 5 years, the bacterial community composition had significantly changed in all treatment groups, with soil bacteria proving to be more sensitive to changes in precipitation timing than to increased precipitation amounts within the desert ecosystem. Specifically, the alpha diversity of bacterial communities in the late growing season plots (L50 and L100) decreased significantly, while no significant changes were observed in the early growing season plots (E50 and E100). In contrast, fungal community composition remained relatively stable in response to changes in precipitation patterns. Predictions of bacterial community function suggested that the potential functional taxa in the bacterial community associated with the cycling of carbon and nitrogen were significantly altered in the late growing season (L50 and L100). Discussion These findings emphasize the importance of precipitation timing in regulating microbial communities and ecosystem functions in arid regions experiencing increased precipitation amounts.
Collapse
Affiliation(s)
- Yao Xiao
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming, China
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing, China
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
| | - Fang Bao
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing, China
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
| | - Xiaotian Xu
- Beijing Academy of Forestry and Pomology Sciences, Beijing, China
| | - Ke Yu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Bo Wu
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing, China
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
| | - Ying Gao
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing, China
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
| | - Junzhong Zhang
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Province, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming, China
- Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming, China
| |
Collapse
|
2
|
Li X, An J, Hou X. Effects of Six Consecutive Years of Irrigation and Phosphorus Fertilization on Alfalfa Yield. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112227. [PMID: 37299206 DOI: 10.3390/plants12112227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/16/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Alfalfa (Medicago satiua L.) is a major forage legume in semi-arid regions such as North China Plain and is the material foundation for the development of herbivorous animal husbandry. How to improve the yield of alfalfa per unit area from a technical perspective and achieve high-yield cultivation of alfalfa is the focus of research by scientific researchers and producers. To evaluate the effects of irrigation and P fertilization as well as the P residual effect on alfalfa yield, we conducted a six-year (2008-2013) field experiment in loamy sand soil. There were four irrigation levels (W0: 0 mm, W1: 25 mm, W2: 50 mm, W3: 75 mm per time, four times a year) and three P fertilization levels (F0: 0 kg P2O5 ha-1, F1: 52.5 kg P2O5 ha-1, F2: 105 kg P2O5 ha-1 per time, twice a year). The highest dry matter yield (DMY) was obtained in the W2F2 treatment, with an annual mean of 13,961.1 kg ha-1. During 2009-2013, the DMY of first and second-cut alfalfa increased significantly with increasing irrigation levels, whereas the opposite pattern was observed in fourth-cut alfalfa. Regression analysis revealed that the optimal amount of water supply (sum of seasonal irrigation and rainfall during the growing season) to obtain maximum DMY was between 725 and 755 mm. Increasing P fertilization contributed to significantly higher DMY in each cut of alfalfa during 2010-2013 but not in the first two growing seasons. The mean annual DMY of W0F2, W1F2, W2F2, and W3F2 treatments was 19.7%, 25.6%, 30.7%, and 24.1% higher than that of W0F0 treatment, respectively. When no P fertilizer was applied in F2 plots in 2013, soil availability and total P concentrations, annual alfalfa DMY, and plant nutrient contents did not differ significantly compared with those in fertilized F2 plots. Results of this study suggest that moderate irrigation with lower annual P fertilization is a more environmentally sound management practice while maintaining alfalfa productivity in the semi-arid study area.
Collapse
Affiliation(s)
- Xinle Li
- Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou 015200, China
| | - Jingyuan An
- Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou 015200, China
| | - Xiangyang Hou
- College of Grassland Science, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
3
|
Ma P, Zhao J, Zhang H, Zhang L, Luo T. Increased precipitation leads to earlier green-up and later senescence in Tibetan alpine grassland regardless of warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162000. [PMID: 36739031 DOI: 10.1016/j.scitotenv.2023.162000] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
It is debatable whether warming or increased precipitation primarily drives the changes of spring and autumn phenology in alpine grasslands at high elevations like the Tibetan Plateau. We aim to test the hypothesis that increased precipitation and soil moisture rather than warming significantly advance spring green-up dates (GUD) of dominant species in a semiarid alpine grassland, while both increases of temperature and precipitation delay their autumn senescence dates (SD). We conducted a 2-year manipulative experiment with infrared warming (ambient, +2 °C) and precipitation increase for each of rainfall events (ambient, +15 %, +30 %) during the growing season in a Tibetan alpine grassland. GUD and SD of three dominant species and the relevant soil temperature (ST) and moisture (SM) were observed. Rainy season onset as well as Pre-GUD or Pre-SD (30 days before GUD or SD) mean air-temperature (T-30d) and precipitation (P-30d) and relevant soil temperature (ST-30d) and moisture (SM-30d) were calculated for each experimental treatment. GUD dates of the three dominant species were advanced by increased precipitation rather than by warming, which showed a robust positive correlation with rainy season onset. SD dates were independently delayed by both increases of temperature and precipitation. There was no interactive effect of warming and increased precipitation on GUD and SD across species and years. In general, GUD had a significant negative correlation with Pre-GUD P-30d (SM-30d) but not with Pre-GUD T-30d (ST-30d), while SD showed a significant positive correlation with Pre-SD T-30d and P-30d or Pre-SD ST-30d and SM-30d. Our data support the hypothesis, indicating that spring and autumn phenology of monsoon-adapted alpine vegetation are more sensitive to precipitation change than to warming. The prolonged growing season length under increased temperature and precipitation is more depended on the delay of autumn senescence than the advance of spring green-up.
Collapse
Affiliation(s)
- Pengfei Ma
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingxue Zhao
- College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Haoze Zhang
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Zhang
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Tianxiang Luo
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
4
|
Yuan Z, Tong S, Bao G, Chen J, Yin S, Li F, Sa C, Bao Y. Spatiotemporal variation of autumn phenology responses to preseason drought and temperature in alpine and temperate grasslands in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160373. [PMID: 36414072 DOI: 10.1016/j.scitotenv.2022.160373] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
We investigate the spatiotemporal patterns and environmental controls of the end of the vegetation growing season (EOS) in autumn across the alpine and temperate grasslands of China from 2001 through 2020, focusing on whether the EOS is likely a "dryness effect" due to drought or a "coolness effect" caused by cold temperature in autumn. The results show that the EOS date is earlier (∼6 days earlier on average) in alpine grasslands than in temperate grasslands. During 2001-2020, a slight non-significant delay of 1.0 day/decade is observed for the regional averaged EOS, which is mostly induced by the delayed EOS in 64.4 % of the study region. Preseason temperature (1-2 months before the EOS) exerts a positive control on the EOS in most of the alpine grasslands and some regions of the eastern part of the temperate grasslands, while drought with a mean length of 3.2 months before the EOS exerts positive effects on the EOS in the central, southwestern, and western parts of the temperate grasslands and in the northeastern part of the alpine grasslands. The positive effects of temperature and drought are very likely phenomena reflecting that the EOS is the "coolness effect" associated with lower temperatures in autumn and the "dryness effect" due to drought, especially meteorological drought without consideration of soil moisture, in late summer and/or early autumn, respectively. Our findings are supported by an analysis of the spatial patterns of the cold degree days (CDD) and EOS sensitivity to the CDD. However, the negative effects of drought are also found in eastern temperate grasslands, likely caused by decreased temperature accompanied by increased moisture. The results presented here highlight the importance of incorporating the impacts of droughts on EOS variability, as well as their interactive effects with temperature, into current vegetation autumn phenology models for grasslands.
Collapse
Affiliation(s)
- Zhihui Yuan
- College of Geographical Science, Inner Mongolia Normal University, Hohhot 010022, China; Inner Mongolia Key Laboratory of Remote Sensing and Geographic Information Systems, Inner Mongolia Normal University, Hohhot 010022, China; Department of Natural Resources, Wulanchabu 012000, China
| | - Siqin Tong
- College of Geographical Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Gang Bao
- College of Geographical Science, Inner Mongolia Normal University, Hohhot 010022, China; Inner Mongolia Key Laboratory of Remote Sensing and Geographic Information Systems, Inner Mongolia Normal University, Hohhot 010022, China.
| | - Jiquan Chen
- Department of Geography, Environment, and Spatial Sciences, Michigan State University, East Lansing, MI 48823, USA
| | - Shan Yin
- College of Geographical Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Fei Li
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| | - Chula Sa
- College of Geographical Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Yuhai Bao
- College of Geographical Science, Inner Mongolia Normal University, Hohhot 010022, China; Inner Mongolia Key Laboratory of Remote Sensing and Geographic Information Systems, Inner Mongolia Normal University, Hohhot 010022, China
| |
Collapse
|
5
|
Bao F, Xin Z, Liu M, Li J, Gao Y, Lu Q, Wu B. Contrasting Regulators of the Onset and End of the Seed Release Phenology of a Temperate Desert Shrub Nitraria tangutorum. PLANTS (BASEL, SWITZERLAND) 2022; 12:88. [PMID: 36616216 PMCID: PMC9823625 DOI: 10.3390/plants12010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Seed release is crucial in the reproductive cycle of many desert plant species, but their responses to precipitation changes are still unclear. To clarify the response patterns, we conducted a long-term in situ water addition experiment with five treatments, including natural precipitation (control) plus an extra 25%, 50%, 75%, and 100% of the local mean annual precipitation (145 mm), in a temperate desert in northwestern China. Both the onset and end of the seed release phenophase of the locally dominant shrub, Nitraria tangutorum, were observed from 2012 to 2018. The results showed that both the onset and end time of seed release, especially the end time, were significantly affected by water addition treatment. On average, the end time of seed release was advanced by 3.9 d, 7.3 d, 10.8 d, and 3.8 d under +25%, +50%, +75%, and +100% water addition treatments, respectively, over the seven-year study, compared with the control. The changes in the onset time were relatively small (only several hours), and the duration of seed release was shortened by 4.0 d, 7.5 d, 10.8 d, and 2.0 d under +25%, +50%, +75%, and +100% water addition treatments, respectively. The onset and end time of seed release varied greatly between the years. Preceding fruit ripening and summer temperature jointly regulated the inter-annual variation of the onset time of seed release, while the cumulative summer precipitation played a key role in driving the inter-annual variation of the end time. The annual mean temperature controlled the inter-annual variation of the seed release duration, and these interactions were all non-linear.
Collapse
Affiliation(s)
- Fang Bao
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory for Desert Ecosystem and Global Change, Chinese Academy of Forestry, Beijing 100091, China
- Gansu Minqin Desert Ecosystem National Observation Research Station, Wuwei 733300, China
| | - Zhiming Xin
- Experimental Center of Desert Forestry, Chinese Academy of Forestry, Bayannaoer 015200, China
| | - Minghu Liu
- Experimental Center of Desert Forestry, Chinese Academy of Forestry, Bayannaoer 015200, China
| | - Jiazhu Li
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China
| | - Ying Gao
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China
| | - Qi Lu
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China
- Experimental Center of Desert Forestry, Chinese Academy of Forestry, Bayannaoer 015200, China
| | - Bo Wu
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory for Desert Ecosystem and Global Change, Chinese Academy of Forestry, Beijing 100091, China
- Gansu Minqin Desert Ecosystem National Observation Research Station, Wuwei 733300, China
| |
Collapse
|
6
|
Preceding Phenological Events Rather than Climate Drive the Variations in Fruiting Phenology in the Desert Shrub Nitraria tangutorum. PLANTS 2022; 11:plants11121578. [PMID: 35736729 PMCID: PMC9227467 DOI: 10.3390/plants11121578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022]
Abstract
Fruit setting and ripening are crucial in the reproductive cycle of many desert plant species, but their response to precipitation changes is still unclear. To clarify the response patterns, a long-term in situ water addition experiment with five treatments, namely natural precipitation (control) plus an extra 25%, 50%, 75%, and 100% of the local mean annual precipitation (145 mm), was conducted in a temperate desert in northwestern China. A whole series of fruiting events including the onset, peak, and end of fruit setting and the onset, peak, and end of fruit ripening of a locally dominant shrub, Nitraria tangutorum, were observed from 2012 to 2018. The results show that (1) water addition treatments had no significant effects on all six fruiting events in almost all years, and the occurrence time of almost all fruiting events remained relatively stable compared with leaf phenology and flowering phenology after the water addition treatments; (2) the occurrence times of all fruiting events were not correlated to the amounts of water added in the treatments; (3) there are significant inter-annual variations in each fruiting event. However, neither temperature nor precipitation play key roles, but the preceding flowering events drive their inter-annual variation.
Collapse
|
7
|
Bao F, Xin Z, Li J, Liu M, Cao Y, Lu Q, Gao Y, Wu B. Effects of the Simulated Enhancement of Precipitation on the Phenology of Nitraria tangutorum under Extremely Dry and Wet Years. PLANTS 2021; 10:plants10071474. [PMID: 34371677 PMCID: PMC8309252 DOI: 10.3390/plants10071474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/06/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022]
Abstract
Plant phenology is the most sensitive biological indicator that responds to climate change. Many climate models predict that extreme precipitation events will occur frequently in the arid areas of northwest China in the future, with an increase in the quantity and unpredictability of rain. Future changes in precipitation will inevitably have a profound impact on plant phenology in arid areas. A recent study has shown that after the simulated enhancement of precipitation, the end time of the leaf unfolding period of Nitraria tangutorum advanced, and the end time of leaf senescence was delayed. Under extreme climatic conditions, such as extremely dry or wet years, it is unclear whether the influence of the simulated enhancement of precipitation on the phenology of N. tangutorum remains stable. To solve this problem, this study systematically analyzed the effects of the simulated enhancement of precipitation on the start, end and duration of four phenological events of N. tangutorum, including leaf budding, leaf unfolding, leaf senescence and leaf fall under extremely dry and wet conditions. The aim of this study was to clarify the similarities and differences of the effects of the simulated enhancement of precipitation on the start, end and duration of each phenological period of N. tangutorum in an extremely dry and an extremely wet year to reveal the regulatory effect of extremely dry and excessive amounts of precipitation on the phenology of N. tangutorum. (1) After the simulated enhancement of precipitation, the start and end times of the spring phenology (leaf budding and leaf unfolding) of N. tangutorum advanced during an extremely dry and an extremely wet year, but the duration of phenology was shortened during an extremely wet year and prolonged during an extremely drought-stricken year. The amplitude of variation increased with the increase in simulated precipitation. (2) After the simulated enhancement of precipitation, the start and end times of the phenology (leaf senescence and leaf fall) of N. tangutorum during the autumn advanced in an extremely wet year but was delayed during an extremely dry year, and the duration of phenology was prolonged in both extremely dry and wet years. The amplitude of variation increased with the increase in simulated precipitation. (3) The regulation mechanism of extremely dry or wet years on the spring phenology of N. tangutorum lay in the different degree of influence on the start and end times of leaf budding and leaf unfolding. However, the regulation mechanism of extremely dry or wet years on the autumn phenology of N. tangutorum lay in different reasons. Water stress caused by excessive water forced N. tangutorum to start its leaf senescence early during an extremely wet year. In contrast, the alleviation of drought stress after watering during the senescence of N. tangutorum caused a delay in the autumn phenology during an extremely dry year.
Collapse
Affiliation(s)
- Fang Bao
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China; (J.L.); (Y.C.); (Q.L.); (Y.G.)
- Key Laboratory for Desert Ecosystem and Global Change, Chinese Academy of Forestry, Beijing 100091, China
- Correspondence: (F.B.); (B.W.)
| | - Zhiming Xin
- Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou 015200, China; (Z.X.); (M.L.)
- Inner Mongolia Dengkou Desert Ecosystem National Observation Research Station, Dengkou 015200, China
| | - Jiazhu Li
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China; (J.L.); (Y.C.); (Q.L.); (Y.G.)
- Key Laboratory for Desert Ecosystem and Global Change, Chinese Academy of Forestry, Beijing 100091, China
| | - Minghu Liu
- Experimental Center of Desert Forestry, Chinese Academy of Forestry, Dengkou 015200, China; (Z.X.); (M.L.)
| | - Yanli Cao
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China; (J.L.); (Y.C.); (Q.L.); (Y.G.)
- Key Laboratory for Desert Ecosystem and Global Change, Chinese Academy of Forestry, Beijing 100091, China
| | - Qi Lu
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China; (J.L.); (Y.C.); (Q.L.); (Y.G.)
| | - Ying Gao
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China; (J.L.); (Y.C.); (Q.L.); (Y.G.)
- Key Laboratory for Desert Ecosystem and Global Change, Chinese Academy of Forestry, Beijing 100091, China
| | - Bo Wu
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China; (J.L.); (Y.C.); (Q.L.); (Y.G.)
- Key Laboratory for Desert Ecosystem and Global Change, Chinese Academy of Forestry, Beijing 100091, China
- Correspondence: (F.B.); (B.W.)
| |
Collapse
|