1
|
Duan L, Wang J, Li H, Li J, Tong H, Du C, Zhang H. Reproductive strategies of two color morphs of Paeonia delavayi. FRONTIERS IN PLANT SCIENCE 2025; 16:1531186. [PMID: 40177018 PMCID: PMC11961923 DOI: 10.3389/fpls.2025.1531186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/21/2025] [Indexed: 04/05/2025]
Abstract
The diversity in floral coloration results from a complex reproductive system, which has evolved in response to multiple pollinators and is intricately linked to the development of pollination mechanisms. To investigate how floral trait variations influence reproduction in Paeonia delavayi, we conducted pollination experiments, observed insect visitation, measured floral traits, estimated petal and anther colors as perceived by pollinators and analyzed floral scent for two floral morphs (red and yellow) at two distinct sites. P. delavayi depended on insect pollinators for seed production. Multiple comparisons revealed that seed yields and seed sets under natural pollination were significantly higher than those under artificial pollination (homogamy and geitonogamy) and anemophilous pollination. However, there was no significant difference in seed yields(LWS, p = 0.487; XGLL, p = 0.702) and seed set (LWS, p = 0.077; XGLL, p = 0.251) between two floral morphs under natural pollination. Both morphs shared common pollinators, primarily honeybees, bumblebees, and syrphid flies. Major pollinators visited the yellow morph more frequently than the red morph, although there was no significant difference in the duration time of visits between the two morphs. Studies utilizing insect vision models, based on color reflection spectra, revealed that major pollinators could distinguish differences in petal and anther colors between the two morphs. However, there is variation in how pollinators perceive their flower colors. On the one hand, the yellow morphs contrast against the leaves background, enhancing their visual attractiveness to bees and flies. On the other hand, the red-flowered morph compensates for its visual disadvantage through olfactory cues, ensuring successful reproduction despite lower visual attractiveness. This study highlights the intricate interplay between visual and olfactory signals in plant-pollinator interactions, emphasizing their combined influence on reproductive outcomes.
Collapse
Affiliation(s)
- Lijun Duan
- College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, China
- College of Life Science and Technology, Hubei Engineering University, Xiaogan, China
| | - Juan Wang
- College of Forestry, Southwest Forestry University, Kunming, China
| | - Haiqing Li
- College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, China
| | - Jin Li
- Institute of Forestry Industry, Yunnan, Academy of Forestry and Grassland, Kunming, China
| | - Haizhen Tong
- College of Biological and Food Engineering, Southwest Forestry University, Kunming, China
| | - Chun Du
- College of Forestry, Southwest Forestry University, Kunming, China
| | - Huaibi Zhang
- New Zealand Institute for Plant & Food Research Limited, Palmerston North, New Zealand
| |
Collapse
|
2
|
Zhang QY, Chen Z, Sun H, Niu Y. Intraspecific floral colour variation in three Pedicularis species. PLANT DIVERSITY 2024; 46:274-279. [PMID: 38807915 PMCID: PMC11128843 DOI: 10.1016/j.pld.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 05/30/2024]
Abstract
Flower constancy describes the phenomenon that pollinators tend to successively visit flowers of a single species during foraging, reducing reproductive interference in natural communities. The extent of flower constancy is largely determined by the floral traits of co-flowering species. Both higher inter-specific and lower intraspecific differences of floral traits should contribute to a higher level of flower constancy. However, previous studies mainly focused on interspecific difference, and the intraspecific variation (consistency) of floral traits received much less attention. We hypothesise that selection may favour lower intraspecific floral trait variation in communities composed of multiple co-flowering congeners. We investigated the floral colour variation of three focal Pedicularis species that share pollinators in 19 communities composed of either single or multiple Pedicularis species. Colour was quantified using image-based colour analysis as perceived by pollinators. We found that most of the intrapopulation floral colour variation was below the colour discrimination threshold of bumblebees, implying strongly constrained by the visual selection by pollinators. Contrary to the hypothesis, there is no significant difference in intraspecific floral colour variation between different community contexts. It may be due to the relatively large interspecific floral colour differences of most co-flowering species. The influence of community context on intraspecific variation may be reflected in floral traits other than colours.
Collapse
Affiliation(s)
- Qiu-Yu Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Hang Sun
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Yang Niu
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| |
Collapse
|
3
|
Costa A, Moré M, Sérsic AN, Cocucci AA, Drewniak ME, Izquierdo JV, Coetzee A, Pauw A, Traveset A, Paiaro V. Floral colour variation of Nicotiana glauca in native and non-native ranges: Testing the role of pollinators' perception and abiotic factors. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:403-410. [PMID: 36744723 DOI: 10.1111/plb.13509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Invasive plants displaying disparate pollination environments and abiotic conditions in native and non-native ranges provide ideal systems to test the role of different ecological factors driving flower colour variation. We quantified corolla reflectance of the ornithophilous South American Nicotiana glauca in native populations, where plants are pollinated by hummingbirds, and in populations from two invaded regions: South Africa, where plants are pollinated by sunbirds, and the Balearic island of Mallorca, where plants reproduce by selfing. Using visual modelling we examined how corolla reflectance could be perceived by floral visitors present in each region. Through Mantel tests we assessed a possible association between flower colour and different abiotic factors. Corolla reflectance variation (mainly along medium to long wavelengths, i.e. human green-yellow to red colours) was greater among studied regions than within them. Flower colour was more similar between South America and South Africa, which share birds as pollinators. Within invaded regions, corolla reflectance variation was lower in South Africa, where populations could not be distinguished from each other by sunbirds, than in Spain, where populations could be distinguished from each other by their occasional visitors. Differences in corolla colour among populations were partially associated with differences in temperature. Our findings suggest that shifts in flower colour of N. glauca across native and invaded ranges could be shaped by changes in both pollination environment and climatic factors. This is the first study on plant invasions considering visual perception of different pollinators and abiotic drivers of flower colour variation.
Collapse
Affiliation(s)
- A Costa
- Instituto Multidisciplinario de Biología Vegetal (CONICET-UNC), Córdoba, Argentina
| | - M Moré
- Instituto Multidisciplinario de Biología Vegetal (CONICET-UNC), Córdoba, Argentina
| | - A N Sérsic
- Instituto Multidisciplinario de Biología Vegetal (CONICET-UNC), Córdoba, Argentina
| | - A A Cocucci
- Instituto Multidisciplinario de Biología Vegetal (CONICET-UNC), Córdoba, Argentina
| | - M E Drewniak
- Instituto Multidisciplinario de Biología Vegetal (CONICET-UNC), Córdoba, Argentina
| | - J V Izquierdo
- Instituto Multidisciplinario de Biología Vegetal (CONICET-UNC), Córdoba, Argentina
| | - A Coetzee
- Fitz Patrick Institute of African Ornithology, DSI-NRF Centre of Excellence, University of Cape Town, Rondebosch, South Africa
| | - A Pauw
- Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
| | - A Traveset
- Instituto Mediterráneo de Estudios Avanzados (CSIC, UIB), Mallorca, Balearic Islands, Spain
| | - V Paiaro
- Instituto Multidisciplinario de Biología Vegetal (CONICET-UNC), Córdoba, Argentina
| |
Collapse
|
4
|
Narbona E, del Valle JC, Arista M, Buide ML, Ortiz PL. Major Flower Pigments Originate Different Colour Signals to Pollinators. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.743850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Flower colour is mainly due to the presence and type of pigments. Pollinator preferences impose selection on flower colour that ultimately acts on flower pigments. Knowing how pollinators perceive flowers with different pigments becomes crucial for a comprehensive understanding of plant-pollinator communication and flower colour evolution. Based on colour space models, we studied whether main groups of pollinators, specifically hymenopterans, dipterans, lepidopterans and birds, differentially perceive flower colours generated by major pigment groups. We obtain reflectance data and conspicuousness to pollinators of flowers containing one of the pigment groups more frequent in flowers: chlorophylls, carotenoids and flavonoids. Flavonoids were subsequently classified in UV-absorbing flavonoids, aurones-chalcones and the anthocyanins cyanidin, pelargonidin, delphinidin, and malvidin derivatives. We found that flower colour loci of chlorophylls, carotenoids, UV-absorbing flavonoids, aurones-chalcones, and anthocyanins occupied different regions of the colour space models of these pollinators. The four groups of anthocyanins produced a unique cluster of colour loci. Interestingly, differences in colour conspicuousness among the pigment groups were almost similar in the bee, fly, butterfly, and bird visual space models. Aurones-chalcones showed the highest chromatic contrast values, carotenoids displayed intermediate values, and chlorophylls, UV-absorbing flavonoids and anthocyanins presented the lowest values. In the visual model of bees, flowers with UV-absorbing flavonoids (i.e., white flowers) generated the highest achromatic contrasts. Ours findings suggest that in spite of the almost omnipresence of floral anthocyanins in angiosperms, carotenoids and aurones-chalcones generates higher colour conspicuousness for main functional groups of pollinators.
Collapse
|
5
|
van der Kooi CJ. How Much Pigment Should Flowers Have? Flowers With Moderate Pigmentation Have Highest Color Contrast. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.731626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Floral pigments are a core component of flower colors, but how much pigment a flower should have to yield a strong visual signal to pollinators is unknown. Using an optical model and taking white, blue, yellow and red flowers as case studies, I investigate how the amount of pigment determines a flower’s color contrast. Modeled reflectance spectra are interpreted using established insect color vision models. Contrast as a function of the amount of pigment shows a pattern of diminishing return. Low pigment amounts yield pale colors, intermediate amounts yield high contrast, and extreme amounts of pigment do not further increase, and sometimes even decrease, a flower’s color contrast. An intermediate amount of floral pigment thus yields the highest visibility, a finding that is corroborated by previous behavioral experiments on bees. The implications for studies on plant-pollinator signaling, intraspecific flower color variation and the costs of flower color are discussed.
Collapse
|
6
|
Garcia JE, Rohr DH, Dyer AG. Colour Discrimination From Perceived Differences by Birds. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.639513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The ability of visual generalists to see and perceive displayed colour signals is essential to understanding decision making in natural environments. Whilst modelling approaches have typically considered relatively simple physiological explanations of how colour may be processed, data on key bee species reveals that colour is a complex multistage perception largely generated by opponent neural representations in a brain. Thus, a biologically meaningful unit of colour information must consider the psychophysics responses of an animal engaged in colour decision making. We extracted previously collected psychophysics data for a Violet-Sensitive (VS) bird, the pigeon (Columba livia), and used a non-linear function that reliably represents the behavioural choices of hymenopteran and dipteran pollinators to produce the first behaviourally validated and biologically meaningful representation of how VS birds use colour information in a probabilistic way. The function describes how similar or dis-similar spectral information can lead to different choice behaviours in birds, even though all such spectral information is above discrimination threshold. This new representation of bird vision will enable enhanced modelling representations of how bird vision can sense and use colour information in complex environments.
Collapse
|