1
|
Vicente L, Alvarenga P, Peña D, Fernández D, Albarrán Á, Rato-Nunes JM, López-Piñeiro A. Controlling As, Cd, and Pb bioaccumulation in rice under different levels of alternate wetting and drying irrigation with biochar amendment: A 3-year field study. CHEMOSPHERE 2025; 372:144114. [PMID: 39827621 DOI: 10.1016/j.chemosphere.2025.144114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/07/2024] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
One challenging task to produce rice that comply with the increasing demanding regulations, is to reduce, simultaneously, grain bioaccumulation of As, Cd, and Pb. A 3-year field experiment was conducted in a Mediterranean environment, to evaluate the effects on As, Cd, and Pb bioaccumulation in rice grain, of the adoption of two levels of alternate wetting and drying (AWD) irrigation conditions: moderate and intensive (reflooding at -20 kPa and -70 kPa soil matric water potential, respectively), relative to the traditional permanent flood irrigation. Plots were prepared with or without a one-time holm oak biochar application (35 Mg ha-1), in the first year of the study. Arsenic bioaccumulation decreased in rice grain in the AWD systems, both total and inorganic (AsInorg), with the lower values reached in the intensive AWD irrigation (0.131-0.151 mg kg-1 dry weight), when the drying conditions were more intense. For As, biochar contributed to a further reduction in the bioaccumulation in the first two years but lost its efficacy with the field aging after three years of its application. However, the transition to AWD irrigation led to a significant increase in Cd bioaccumulation in rice grain (21-fold increase in the more intensive system, whose values reached up to 0.127 mg kg-1), which can be counteracted by biochar application, to values statistically similar to those of permanent flooding. Contrariwise, the effects on Pb bioaccumulation were not so significant, but decreased with the transition to ADW irrigation, and with biochar application, relatively to the non-amended counterparts. Therefore, the implementation of intensive AWD with biochar represents a potentially fruitful strategy to enhance food safety of rice production, controlling, simultaneously, As, Cd, and Pb bioaccumulation. Nevertheless, new approaches need to be developed to attend the limits established for AsInorg to produce food for infants, even in uncontaminated soils.
Collapse
Affiliation(s)
- Luis Vicente
- Área de Edafología y Química Agrícola, Facultad de Ciencias - IACYS, Universidad de Extremadura, Avda de Elvas s/n, Badajoz, 06071, Spain
| | - Paula Alvarenga
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, 1349-017, Portugal.
| | - David Peña
- Área de Edafología y Química Agrícola, Escuela de Ingenierías Agrarias - IACYS, Universidad de Extremadura, Ctra de Cáceres, Badajoz, 06007, Spain
| | - Damián Fernández
- Área de Producción Vegetal, Escuela de Ingenierías Agrarias - IACYS, Universidad de Extremadura, Ctra de Cáceres, Badajoz, 06007, Spain
| | - Ángel Albarrán
- Área de Producción Vegetal, Escuela de Ingenierías Agrarias - IACYS, Universidad de Extremadura, Ctra de Cáceres, Badajoz, 06007, Spain
| | - José Manuel Rato-Nunes
- Instituto Politécnico de Portalegre, Escola Superior Biociencias de Elvas, Avenida 14 de Janeiro nº21, Elvas, 7350-092, Portugal
| | - Antonio López-Piñeiro
- Área de Edafología y Química Agrícola, Facultad de Ciencias - IACYS, Universidad de Extremadura, Avda de Elvas s/n, Badajoz, 06071, Spain
| |
Collapse
|
2
|
Huang G, Yu G, Li H, Yu H, Huang Z, Tang L, Yang P, Zhong Z, Hu G, Zhang P, Tong H. Recent Advances in Transcriptome Analysis Within the Realm of Low Arsenic Rice Breeding. PLANTS (BASEL, SWITZERLAND) 2025; 14:606. [PMID: 40006866 PMCID: PMC11859722 DOI: 10.3390/plants14040606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/13/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025]
Abstract
Arsenic (As), a toxic element, is widely distributed in soil and irrigation water. Rice (Oryza sativa L.), the staple food in Southern China, exhibits a greater propensity for As uptake compared to other crops. Arsenic pollution in paddy fields not only impairs rice growth but also poses a serious threat to food security and human health. Nevertheless, the molecular mechanism underlying the response to As toxicity has not been completely revealed until now. Transcriptome analysis represents a powerful tool for revealing the mechanisms conferring phenotype formation and is widely employed in crop breeding. Consequently, this review focuses on the recent advances in transcriptome analysis within the realm of low As breeding in rice. It particularly highlights the applications of transcriptome analysis in identifying genes responsive to As toxicity, revealing gene interaction regulatory modules and analyzing secondary metabolite biosynthesis pathways. Furthermore, the molecular mechanisms underlying rice As tolerance are updated, and the recent outcomes in low As breeding are summarized. Finally, the challenges associated with applying transcriptome analysis to low-As breeding are deliberated upon, and future research directions are envisioned, with the aim of providing references to expedite high-yield and low-arsenic breeding in rice.
Collapse
Affiliation(s)
- Guanrong Huang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (G.H.); (H.L.); (H.Y.); (Z.H.); (L.T.); (P.Y.); (Z.Z.); (G.H.)
| | - Guoping Yu
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China;
| | - Huijuan Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (G.H.); (H.L.); (H.Y.); (Z.H.); (L.T.); (P.Y.); (Z.Z.); (G.H.)
| | - Haipeng Yu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (G.H.); (H.L.); (H.Y.); (Z.H.); (L.T.); (P.Y.); (Z.Z.); (G.H.)
| | - Zengying Huang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (G.H.); (H.L.); (H.Y.); (Z.H.); (L.T.); (P.Y.); (Z.Z.); (G.H.)
| | - Lu Tang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (G.H.); (H.L.); (H.Y.); (Z.H.); (L.T.); (P.Y.); (Z.Z.); (G.H.)
| | - Pengfei Yang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (G.H.); (H.L.); (H.Y.); (Z.H.); (L.T.); (P.Y.); (Z.Z.); (G.H.)
| | - Zhengzheng Zhong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (G.H.); (H.L.); (H.Y.); (Z.H.); (L.T.); (P.Y.); (Z.Z.); (G.H.)
| | - Guocheng Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (G.H.); (H.L.); (H.Y.); (Z.H.); (L.T.); (P.Y.); (Z.Z.); (G.H.)
| | - Peng Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (G.H.); (H.L.); (H.Y.); (Z.H.); (L.T.); (P.Y.); (Z.Z.); (G.H.)
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China;
| | - Hanhua Tong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (G.H.); (H.L.); (H.Y.); (Z.H.); (L.T.); (P.Y.); (Z.Z.); (G.H.)
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China;
| |
Collapse
|
3
|
Shu L, Yang G, Liu S, Huang N, Wang R, Yang M, Chen C. A comprehensive review on arsenic exposure and risk assessment in infants and young children diets: Health implications and mitigation interventions in a global perspective. Compr Rev Food Sci Food Saf 2025; 24:e70063. [PMID: 39731717 DOI: 10.1111/1541-4337.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/29/2024] [Accepted: 10/23/2024] [Indexed: 12/30/2024]
Abstract
The early stages of human development are critical for growth, and exposure to arsenic, particularly through the placenta and dietary sources, poses significant health risks. Despite extensive research, significant gaps remain in our comprehension of regional disparities in arsenic exposure and its cumulative impacts during these developmental stages. We hypothesize that infants in certain regions are at greater risk of arsenic exposure and its associated health complications. This review aims to fill these gaps by providing a comprehensive synthesis of epidemiological evidence related to arsenic exposure during early life, with an emphasis on the underlying mechanisms of arsenic toxicity that contribute to adverse health outcomes, including neurodevelopmental impairments, immune dysfunction, cardiovascular diseases, and cancer. Further, by systematically comparing dietary arsenic exposure in infants across Asia, the Americas, and Europe, our findings reveal that infants in Bangladesh, Pakistan, and India, exposed to levels significantly exceeding the health reference value range of 0.3-8 µg/kg/day, are particularly vulnerable to dietary inorganic arsenic. This comparative analysis not only highlights geographic disparities in exposure but also underscores the variability in regulatory frameworks. Finally, the review identifies early life as a critical window for dietary arsenic exposure and offers evidence-based recommendations for mitigating arsenic contamination in infant foods. These strategies include improved agricultural practices, dietary modifications, stricter regulatory limits on arsenic in infant products, and encouragement of low-arsenic dietary alternatives. Our work establishes the framework for future research and policy development aimed at reducing the burden of arsenic exposure from source to table and effectively addressing this significant public health challenge.
Collapse
Affiliation(s)
- Lin Shu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | | | - Shufang Liu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Nan Huang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ruike Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengxue Yang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chen Chen
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
4
|
Abu-Ali L, Maguffin SC, Rohila JS, McClung AM, Reid MC. Effects of alternate wetting and drying on oxyanion-forming and cationic trace elements in rice paddy soils: impacts on arsenic, cadmium, and micronutrients in rice. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:8135-8151. [PMID: 37548848 DOI: 10.1007/s10653-023-01702-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/18/2023] [Indexed: 08/08/2023]
Abstract
Rice is a global dietary staple and its traditional cultivation under flooded soil conditions leads to accumulation of arsenic (As) in rice grains. Alternate wetting and drying (AWD) is a widely advocated water management practice to achieve lower As concentrations in rice, water savings, and decreased methane emissions. It is not yet clear whether AWD leads to tradeoffs between concentrations of As and micronutrient elements (e.g., zinc, manganese, molybdenum) in rice grain. We analyzed pore water chemistry and rice grain composition data from a field experiment conducted in Arkansas, USA, in 2017 and 2018 to test the hypothesis that AWD will have diverging effects on oxyanion-forming (arsenic, molybdenum) vs. cationic (cadmium, zinc, manganese, copper) trace elements. This was hypothesized to occur via decreases in soil pH and/or precipitation of iron oxide minerals during oxidizing conditions under AWD. Solubility of all trace elements, except zinc, increased in more reducing conditions. Consistent with our hypothesis, AWD tended to increase grain concentrations of cationic elements while decreasing grain concentrations of oxyanionic elements. Decreases in total As in rice grains under AWD were mainly driven by changes in dimethylarsinic concentrations, with negligible changes in inorganic As. Linear mixed-effects modeling showed that effects of AWD on grain composition were more significant in 2017 compared to 2018. These differences may be related to the timing of dry-downs in the developmental stage of rice plants, with dry-downs during the heading stage of rice development leading to larger impacts on grain composition of certain elements. We also observed significant interannual variability in grain elemental composition from continuously-flooded fields and postulate the warmer temperatures in 2018 may have played a role in these differences.
Collapse
Affiliation(s)
- Lena Abu-Ali
- School of Civil & Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Scott C Maguffin
- Department of Earth and Atmospheric Sciences, SUNY-Oneonta, Oneonta, NY, USA
| | - Jai S Rohila
- USDA-ARS, Dale Bumpers National Rice Research Center, Stuttgart, AR, USA
| | - Anna M McClung
- USDA-ARS, Dale Bumpers National Rice Research Center, Stuttgart, AR, USA
| | - Matthew C Reid
- School of Civil & Environmental Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
5
|
Carrijo DR, LaHue GT, Parikh SJ, Chaney RL, Linquist BA. Mitigating the accumulation of arsenic and cadmium in rice grain: A quantitative review of the role of water management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156245. [PMID: 35644407 DOI: 10.1016/j.scitotenv.2022.156245] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/22/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Arsenic exposure through rice consumption is a growing concern. Compared to Continuous Flooding (CF), irrigation practices that dry the soil at least once during the growing season [referred to here as Alternate Wetting and Drying (AWD)] can decrease As accumulation in grain; however, this can simultaneously increase grain Cd to potentially unsafe levels. We modelled grain As and Cd from field studies comparing AWD and CF to identify optimal AWD practices to minimize the accumulation of As and Cd in grain. The severity of soil drying during AWD drying event(s), quantified as soil water potential (SWP), was the main factor leading to a reduction in grain total As and inorganic As, compared to CF. However, lower SWP levels were necessary to decrease grain inorganic As, compared to total As. Therefore, if the goal is to decrease grain inorganic As, the soil needs to be dried further than it would for decreasing total As alone. The main factor driving grain Cd accumulation was when AWD was practiced during the season. Higher grain Cd levels were observed when AWD occurred during the early reproductive stage. Further, higher Cd levels were observed when AWD spanned multiple rice growth stages, compared to one stage. If Cd levels are concerning, the minimum trade-off between total As and Cd accumulation in rice grain occurred when AWD was implemented at a SWP of -47 kPa during one stage other than the early reproductive. While these results are not meant to be comprehensive of all the interactions affecting the As and Cd dynamics in rice systems, they can be used as a first guide for implementing AWD practices with the goal of minimizing the accumulation of As and Cd in rice grain.
Collapse
Affiliation(s)
- Daniela R Carrijo
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| | - Gabriel T LaHue
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| | - Sanjai J Parikh
- Department of Land, Air and Water Resources, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| | - Rufus L Chaney
- Chaney Environmental, 10910 Dresden Dr, Beltsville, MD 20705, USA
| | - Bruce A Linquist
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
6
|
Singh S, Srivastava S. Recent advances in arsenic mitigation in rice through biotechnological approaches. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:305-313. [PMID: 35654740 DOI: 10.1080/15226514.2022.2080803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Arsenic (As) is a major threat to the environment and human health due to its toxicity and carcinogenicity. Occurrence of alarming concentrations of As in water and soil leads to its bioaccumulation in crops which is a major health concern globally. Rice (Oryza sativa) is a staple food for a large population staying in As contaminated areas so, it is of utmost importance to reduce As levels in rice, especially grains. Amongst several strategies in practice, biotechnology may provide an effective option to reduce As accumulation in rice grains. Genetic engineering can be a viable approach to exploit potential genes playing roles in As metabolism pathway in plants. Besides, developing low As accumulating rice varieties through breeding is also an important area. Identifying genotypic variation in rice is a crucial step toward the development of a safe rice cultivar for growing in As-affected areas. Significant genotypic variation has been found in rice varieties for As accumulation in grains and that is attributable to differential expression of transporters, radial oxygen loss, and other regulators of As stress. This review provides recent updates on the research advances leading to transgenic and breeding approaches adopted to reduce As levels in rice, especially grains.
Collapse
Affiliation(s)
- Shraddha Singh
- Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sudhakar Srivastava
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
7
|
Pinson SRM, Heuschele DJ, Edwards JD, Jackson AK, Sharma S, Barnaby JY. Relationships Among Arsenic-Related Traits, Including Rice Grain Arsenic Concentration and Straighthead Resistance, as Revealed by Genome-Wide Association. Front Genet 2022; 12:787767. [PMID: 35371188 PMCID: PMC8974240 DOI: 10.3389/fgene.2021.787767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
There is global concern that rice grains and foods can contain harmful amounts of arsenic (As), motivating breeders to produce cultivars that restrict As accumulation in grains to protect human health. Arsenic is also toxic to plants, with straighthead disorder (StHD), causing panicle sterility, being observed in rice. The genetic variation in StHD resistance suggests that plants have evolved mechanisms that reduce As toxicity, possibly via regulation of As uptake, transport, or detoxification/sequestration. Because these mechanisms could also underlie the wide (3- to 100-fold) differences in grain As concentration (grain-As) observed among diverse rice genotypes, it was hypothesized that some genes reduce both grain-As content and StHD susceptibility and may be detectable as co-located StDH and As quantitative trait loci (QTL). We used a machine-learning Bayesian network approach plus high-resolution genome-wide association study (GWAS) to identify QTL for grain-As and StHD resistance within the USDA Rice Minicore Collection (RMC). Arsenic enters roots through phosphorus (P) and silica (Si) transporters, As detoxification involves sulfur (S), and cell signaling to activate stress tolerance mechanisms is impacted by Si, calcium (Ca), and copper (Cu). Therefore, concentrations of Si, P, S, Ca, and Cu were included in this study to elucidate physiological mechanisms underlying grain-As and StHD QTL. Multiple QTL (from 9 to 33) were identified for each of the investigated As-associated traits. Although the QTL for StHD, Si, and grain-As did not overlap as heavily as our hypothesis predicted (4/33 StHD and 4/15 As QTL co-located), they do provide useful guidance to future research. Furthermore, these are the first StHD and Si QTL to be identified using high-density mapping, resulting in their being mapped to shorter, more precise genomic regions than previously reported QTL. The candidate genes identified provide guidance for future research, such as gene editing or mutation studies to further investigate the role of antioxidants and ROS scavenging to StHD resistance, as indicated by candidate genes around the commonly reported qStHD8-2 QTL. Other genes indicated for future study for improving grain-As and StHD include several multidrug and toxic compound extrusion (MATE) genes, F-box genes, and NIPs not documented to date to transport As.
Collapse
Affiliation(s)
- Shannon R M Pinson
- Dale Bumpers National Rice Research Center, United States Department of Agriculture-Agricultural Research Service, Stuttgart, AR, United States
| | - D Jo Heuschele
- Plant Science Research Unit, United States Department of Agriculture-Agricultural Research Service, St. Paul, CO, United States
| | - Jeremy D Edwards
- Dale Bumpers National Rice Research Center, United States Department of Agriculture-Agricultural Research Service, Stuttgart, AR, United States
| | - Aaron K Jackson
- Dale Bumpers National Rice Research Center, United States Department of Agriculture-Agricultural Research Service, Stuttgart, AR, United States
| | - Santosh Sharma
- Dale Bumpers National Rice Research Center, United States Department of Agriculture-Agricultural Research Service, Stuttgart, AR, United States
| | - Jinyoung Y Barnaby
- Dale Bumpers National Rice Research Center, United States Department of Agriculture-Agricultural Research Service, Stuttgart, AR, United States
| |
Collapse
|
8
|
Murugaiyan V, Ali J, Frei M, Zeibig F, Pandey A, Wairich A, Wu LB, Murugaiyan J, Li Z. Identification of Promising Genotypes Through Systematic Evaluation for Arsenic Tolerance and Exclusion in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2021; 12:753063. [PMID: 34777432 PMCID: PMC8589031 DOI: 10.3389/fpls.2021.753063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Rice remains a major staple food source for the rapidly growing world population. However, regular occurrences of carcinogenic arsenic (As) minerals in waterlogged paddy topsoil pose a great threat to rice production and consumers across the globe. Although As contamination in rice has been well recognized over the past two decades, no suitable rice germplasm had been identified to exploit in adaptive breeding programs. Therefore, this current study identified suitable rice germplasm for As tolerance and exclusion based on a variety of traits and investigated the interlinkages of favorable traits during different growth stages. Fifty-three different genotypes were systematically evaluated for As tolerance and accumulation. A germination screening assay was carried out to identify the ability of individual germplasm to germinate under varying As stress. Seedling-stage screening was conducted in hydroponics under varying As stress to identify tolerant and excluder genotypes, and a field experiment was carried out to identify genotypes accumulating less As in grain. Irrespective of the rice genotypes, plant health declined significantly with increasing As in the treatment. However, genotype-dependent variation in germination, tolerance, and As accumulation was observed among the genotypes. Some genotypes (WTR1-BRRI dhan69, NPT-IR68552-55-3-2, OM997, and GSR IR1-5-Y4-S1-Y1) showed high tolerance by excluding As in the shoot system. Arsenic content in grain ranged from 0.12 mg kg-1 in Huang-Hua-Zhan (indica) from China to 0.48 mg kg-1 in IRAT 109 (japonica) from Brazil. This current study provides novel insights into the performance of rice genotypes under varying As stress during different growth stages for further use in ongoing breeding programs for the development of As-excluding rice varieties for As-polluted environments.
Collapse
Affiliation(s)
- Varunseelan Murugaiyan
- Rice Breeding Platform, International Rice Research Institute (IRRI), Los Baños, Philippines
- Institute of Crop Sciences and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Jauhar Ali
- Rice Breeding Platform, International Rice Research Institute (IRRI), Los Baños, Philippines
| | - Michael Frei
- Institute of Crop Sciences and Resource Conservation (INRES), University of Bonn, Bonn, Germany
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Frederike Zeibig
- Rice Breeding Platform, International Rice Research Institute (IRRI), Los Baños, Philippines
- Institute of Crop Sciences and Resource Conservation (INRES), University of Bonn, Bonn, Germany
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Ambika Pandey
- Rice Breeding Platform, International Rice Research Institute (IRRI), Los Baños, Philippines
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Andriele Wairich
- Institute of Crop Sciences and Resource Conservation (INRES), University of Bonn, Bonn, Germany
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Lin-Bo Wu
- Institute of Crop Sciences and Resource Conservation (INRES), University of Bonn, Bonn, Germany
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | | | - Zhikang Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| |
Collapse
|
9
|
|