1
|
Ernst E, Abramson B, Acosta K, Hoang PTN, Mateo-Elizalde C, Schubert V, Pasaribu B, Albert PS, Hartwick N, Colt K, Aylward A, Ramu U, Birchler JA, Schubert I, Lam E, Michael TP, Martienssen RA. Duckweed genomes and epigenomes underlie triploid hybridization and clonal reproduction. Curr Biol 2025; 35:1828-1847.e9. [PMID: 40174586 PMCID: PMC12015598 DOI: 10.1016/j.cub.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/03/2025] [Accepted: 03/11/2025] [Indexed: 04/04/2025]
Abstract
The Lemnaceae (duckweeds) are the world's smallest but fastest-growing flowering plants. Prolific clonal propagation facilitates continuous micro-cropping for plant-based protein and starch production and holds tremendous promise for sequestration of atmospheric CO2. Here, we present chromosomal assemblies, annotations, and phylogenomic analysis of Lemna genomes that uncover candidate genes responsible for the unique metabolic and developmental traits of the family, such as anatomical reduction, adaxial stomata, lack of stomatal closure, and carbon sequestration via crystalline calcium oxalate. Lemnaceae have selectively lost genes required for RNA interference, including Argonaute genes required for reproductive isolation (the triploid block) and haploid gamete formation. Triploid hybrids arise commonly among Lemna, and we have found mutations in highly conserved meiotic crossover genes that could support polyploid meiosis. Further, mapping centromeres by chromatin immunoprecipitation suggests their epigenetic origin despite divergence of underlying tandem repeats and centromeric retrotransposons. Syntenic comparisons with Wolffia and Spirodela reveal that diversification of these genera coincided with the "Azolla event" in the mid-Eocene, during which aquatic macrophytes reduced high atmospheric CO2 levels to those of the current ice age. Facile regeneration of transgenic fronds from tissue culture, aided by reduced epigenetic silencing, makes Lemna a powerful biotechnological platform, as exemplified by recent engineering of high-oil Lemna that outperforms oil-seed crops.
Collapse
Affiliation(s)
- Evan Ernst
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| | - Bradley Abramson
- Plant Molecular and Cellular Biology Laboratory, the Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Kenneth Acosta
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA
| | - Phuong T N Hoang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstraße 3, D-06466 Stadt Seeland, Germany; Biology Faculty, Dalat University, 1 Phu Dong Thien Vuong, Dalat City 670000, Vietnam
| | - Cristian Mateo-Elizalde
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstraße 3, D-06466 Stadt Seeland, Germany
| | - Buntora Pasaribu
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA; Department of Marine Sciences, Faculty of Fisheries and Marine Sciences, Universitas Padjadjaran, Bandung Sumedang Highway KM 21, Jatinangor 40600, Indonesia
| | - Patrice S Albert
- Biological Sciences, University of Missouri, Columbia, 105 Tucker Hall, Columbia, MO 65211, USA
| | - Nolan Hartwick
- Plant Molecular and Cellular Biology Laboratory, the Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Kelly Colt
- Plant Molecular and Cellular Biology Laboratory, the Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Anthony Aylward
- Plant Molecular and Cellular Biology Laboratory, the Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Umamaheswari Ramu
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA
| | - James A Birchler
- Biological Sciences, University of Missouri, Columbia, 105 Tucker Hall, Columbia, MO 65211, USA
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Corrensstraße 3, D-06466 Stadt Seeland, Germany
| | - Eric Lam
- Department of Plant Biology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Todd P Michael
- Plant Molecular and Cellular Biology Laboratory, the Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA.
| | - Robert A Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
2
|
Stepanenko A, Braglia L, Fuchs J, Schubert V, Hoang PTN, Lee Y, Chen G, Gianì S, Morello L, Schubert I. Genome diversity and evolution of the duckweed section Alatae comprising diploids, polyploids, and interspecific hybrids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70158. [PMID: 40269405 PMCID: PMC12018649 DOI: 10.1111/tpj.70158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/31/2025] [Accepted: 04/03/2025] [Indexed: 04/25/2025]
Abstract
The section Alatae of genus Lemna of the monocotyledonous aquatic duckweed family (Lemnaceae) consists of rather diverse accessions with unknown phylogeny and unclear taxonomic assignment. In contrast to other duckweeds, some Alatae accessions, in addition to mainly vegetative propagation, produce readily flowers and viable seeds. We analyzed the genomic diversity and phylogenetic relationship of 52 Alatae accessions. For this purpose, we applied multiple molecular and cytogenetic approaches, including plastid and nuclear sequence polymorphisms, chromosome counting, genome size determination, and genomic in situ hybridization in combination with geographic distribution. We uncovered ploidy variation, recurrent hybridization, and backcrosses between species and their hybrids. The latter successfully spread over three continents. The results elucidate the evolution of Alatae accessions and explain the difficult taxonomic assignment of distinct accessions. Our study might be an example for analogous studies to resolve the hitherto unclear relationships among accessions of the duckweed genera Wolffiella and Wolffia.
Collapse
Affiliation(s)
- Anton Stepanenko
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeeland06466Germany
- Department of Molecular GeneticsInstitute of Cell Biology and Genetic Engineering, NASUKyiv03143Ukraine
| | - Luca Braglia
- Institute of Agricultural Biology and BiotechnologyNational Research Council (IBBA‐CNR)Milan20133Italy
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeeland06466Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeeland06466Germany
| | - Phuong T. N. Hoang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeeland06466Germany
- Dalat UniversityDalat670000Vietnam
| | - Yuri Lee
- Institute of Agricultural Biology and BiotechnologyNational Research Council (IBBA‐CNR)Milan20133Italy
| | - Guimin Chen
- School of Life SciencesHuaiyin Normal UniversityHuai'an223300China
| | - Silvia Gianì
- Institute of Agricultural Biology and BiotechnologyNational Research Council (IBBA‐CNR)Milan20133Italy
| | - Laura Morello
- Institute of Agricultural Biology and BiotechnologyNational Research Council (IBBA‐CNR)Milan20133Italy
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeeland06466Germany
| |
Collapse
|
3
|
Ziegler P. Developments in Toxicity Testing with Duckweeds. J Xenobiot 2025; 15:48. [PMID: 40278153 PMCID: PMC12028534 DOI: 10.3390/jox15020048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 04/26/2025] Open
Abstract
Duckweeds are a family of small floating macrophytes (the Lemnaceae) that inhabit quiet freshwaters worldwide. They have long been employed to determine toxicity to higher plants in the aquatic environment, and standardized national and international protocols have been developed for this purpose using two representative species. While these protocols, which assess the growth of the leaf-like fronds of the tested duckweed, are indeed suitable and still frequently used for detecting the toxicity of water-borne substances to aquatic higher plant life, they are cumbersome and lengthy, determine endpoints rather than depict toxicity timelines, and provide no information as to the mechanisms involved in the indicated toxicity. Progress has been made in downscaling, shortening and improving the standardized assay procedures, and the use of alternative duckweed species, protocols and endpoints for detecting toxicity has been explored. Biomarkers of toxic effect have long been determined concomitantly with testing for toxicity itself, and their potential for the assessment of toxicity has recently been greatly expanded by transcriptomic, proteomic and metabolomic techniques complemented by FITR spectroscopy, transformation and genotoxicity and timescale toxicity testing. Improved modern biomarker analysis can help to both better understand the mechanisms underlying toxicity and facilitate the identification of unknown toxins.
Collapse
Affiliation(s)
- Paul Ziegler
- Department of Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
4
|
Li G, Zheng T, Wang G, Gu Q, Chang X, Qian Y, Xu X, Wang Y, Li B, Geng Y. Transgenerational Plasticity Enhances the Tolerance of Duckweed ( Lemna minor) to Stress from Exudates of Microcystis aeruginosa. Int J Mol Sci 2024; 25:13027. [PMID: 39684737 DOI: 10.3390/ijms252313027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Transgenerational plasticity (TGP) refers to the influence of ancestral environmental signals on offspring's traits across generations. While evidence of TGP in plants is growing, its role in plant adaptation over successive generations remains unclear, particularly in floating plants facing fluctuating environments. Duckweed (Lemna minor), a common ecological remediation material, often coexists with the harmful bloom-forming cyanobacterium Microcystis aeruginosa, which releases a highly toxic exudate mixture (MaE) during its growth. In this study, we investigate the TGP of duckweed and its adaptive role under stress from MaE during the bloom-forming process. We found that exposure to MaE induces significant phenotypic plasticity in duckweed, manifested by alterations in morphological, physiological, and transcriptomic profiles. Specifically, MaE exposure significantly affected duckweed, promoting growth at low concentrations but inhibiting it at high concentrations, affecting traits like biomass, frond number, total frond area, and photosynthetic efficiency. Additionally, the activities of antioxidant enzymes, together with the levels of proline, soluble sugars, and proteins, are elevated with increasing MaE concentrations. These plastic changes are largely retained through asexual reproductive cycles, persisting for several generations even under MaE-free conditions. We identified 619 genes that maintain a 'transcriptional memory', some of which correlate with the TGP-linked alterations in morphological and physiological traits in response to MaE stress. Notably, progeny from MaE-exposed lineages demonstrate enhanced fitness when re-exposed to MaE. These results enhance our comprehension of the adaptive significance of TGP in plants and suggest feasible approaches for utilizing duckweed's TGP in the bioremediation of detrimental algal blooms.
Collapse
Affiliation(s)
- Gengyun Li
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China
| | - Tiantian Zheng
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Gang Wang
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Qian Gu
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Xuexiu Chang
- Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming 650214, China
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Yu Qian
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Xiao Xu
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Yi Wang
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Bo Li
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| | - Yupeng Geng
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China
| |
Collapse
|
5
|
Romano LE, van Loon JJWA, Vincent-Bonnieu S, Aronne G. Wolffia globosa, a novel crop species for protein production in space agriculture. Sci Rep 2024; 14:27979. [PMID: 39543375 PMCID: PMC11564545 DOI: 10.1038/s41598-024-79109-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Space agriculture, pivotal for sustainable extraterrestrial missions, requires plants that can adapt to altered gravitational conditions. This study delves into the adaptive responses to altered gravity of Wolffia globosa, an aquatic plant known for its rapid growth and high nutritional value. The research aimed to analyse the effect of simulated microgravity and hypergravity on relative growth rate (RGR), morphological characteristics, protein content, and the correlation between plant size and growth rate of Wolffia globosa. The study highlighted the responses of the species to altered gravity, uncovering inherent variability among seven different clones of W. globosa. Results show a base variability among clones in terms of RGR, size and protein content. Furthermore, some clones are affected by simulated microgravity, showing a decrease in RGR. Differently, under hypergravity, clones showed RGR higher than in 1 g control, therefore revealing a novel plant response to hypergravity. Morphological adaptations to gravity alterations were also evident. Among the studied clones, significant morphological changes were observed, further underlining the peculiar adaptation to the hypergravity environment. Differently, under simulated microgravity, morphology was generally stable across clones. A key finding of the study was the significant negative correlation between RGR and the physical dimensions of the plants: the fastest growth was associated with the smallest dimensions of the plants. This correlation might have practical implications in selecting clones for space cultivation, that leads to compact yet highly productive clones. The analysis of the protein content of all the clones revealed mostly no significant changes under hypergravity. Otherwise, a general decrease in protein content was observed under simulated microgravity. Overall, the study confirms the suitability of W. globosa for space agriculture and provides new insights into the perspective of using W. globosa as an alternative crop species for protein production for manned Space missions. Furthermore, it underscores the need for focusing on the clones and the selection of the W. globosa plants that are best adapted to the environmental conditions of space; therefore, selecting those with the best combination of biomass production (by means of growth rate, size), and protein content.
Collapse
Affiliation(s)
- Leone Ermes Romano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.
| | - Jack J W A van Loon
- Department Oral and Maxillofacial Surgery/Pathology, Amsterdam Movement Sciences and Amsterdam Bone Center (ABC), Amsterdam University Medical Center Location VUmc and Academic Center for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
- European Space Agency (ESA) Technology Center (ESTEC), Noordwijk, The Netherlands
| | | | - Giovanna Aronne
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
6
|
Ziegler P. The Developmental Cycle of Spirodela polyrhiza Turions: A Model for Turion-Based Duckweed Overwintering? PLANTS (BASEL, SWITZERLAND) 2024; 13:2993. [PMID: 39519914 PMCID: PMC11548384 DOI: 10.3390/plants13212993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Duckweeds are widely distributed small, simply constructed aquatic higher plants (the Lemnaceae) found on quiet freshwater surfaces. Species inhabiting temperate climates may have to cope with long periods of severe cold during the winter season. Several duckweeds form compact resting structures from the assimilatory fronds of the growing season that can bridge inhospitable conditions in a quiescent state. Of these, turions separate from the mother fronds and overwinter on the water body bottom in a dormant state. They can surface, germinate, and sprout to resume active growth upon warming in the spring. The turions of the largest duckweed, Spirodela polyrhiza, have been intensively examined as to ultrastructure, the factors governing their formation and release from dormancy, and the signals driving their germination and sprouting and the accompanying starch degradation. Comparative transcriptomics of assimilatory fronds and dormant turions are revealing the molecular features of this developmental cycle. The results illustrate an elegant sequence of reactions that ensures aquatic survival of even severe winters by frost avoidance in a vegetative mode. Since little is known about other duckweed resting fronds, the S. polyrhiza turion developmental cycle cannot be considered to be representative of duckweed resting fronds in general but can serve as a reference for corresponding investigations.
Collapse
Affiliation(s)
- Paul Ziegler
- Department of Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
7
|
Laurich JR, Lash E, O'Brien AM, Pogoutse O, Frederickson ME. Community interactions among microbes give rise to host-microbiome mutualisms in an aquatic plant. mBio 2024; 15:e0097224. [PMID: 38904411 PMCID: PMC11324027 DOI: 10.1128/mbio.00972-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/14/2024] [Indexed: 06/22/2024] Open
Abstract
Microbiomes often benefit plants, conferring resistance to pathogens, improving stress tolerance, or promoting plant growth. As potential plant mutualists, however, microbiomes are not a single organism but a community of species with complex interactions among microbial taxa and between microbes and their shared host. The nature of ecological interactions among microbes in the microbiome can have important consequences for the net effects of microbiomes on hosts. Here, we compared the effects of individual microbial strains and 10-strain synthetic communities on microbial productivity and host growth using the common duckweed Lemna minor and a synthetic, simplified version of its native microbiome. Except for Pseudomonas protegens, which was a mutualist when tested alone, all of the single strains we tested were commensals on hosts, benefiting from plant presence but not increasing host growth relative to uninoculated controls. However, 10-strain synthetic microbial communities increased both microbial productivity and duckweed growth more than the average single-strain inoculation and uninoculated controls, meaning that host-microbiome mutualisms can emerge from community interactions among microbes on hosts. The effects of community inoculation were sub-additive, suggesting at least some competition among microbes in the duckweed microbiome. We also investigated the relationship between L. minor fitness and that of its microbes, providing some of the first empirical estimates of broad fitness alignment between plants and members of their microbiomes; hosts grew faster with more productive microbes or microbiomes. IMPORTANCE There is currently substantial interest in engineering synthetic microbiomes for health or agricultural applications. One key question is how multi-strain microbial communities differ from single microbial strains in their productivity and effects on hosts. We tested 20 single bacterial strains and 2 distinct 10-strain synthetic communities on plant hosts and found that 10-strain communities led to faster host growth and greater microbial productivity than the average, but not the best, single strain. Furthermore, the microbial strains or communities that achieved the greatest cell densities were also the most beneficial to their hosts, showing that both specific single strains and multi-strain synthetic communities can engage in high-quality mutualisms with their hosts. Our results suggest that ~5% of single strains, as well as multi-strain synthetic communities comprised largely of commensal microbes, can benefit hosts and result in effective host-microbe mutualisms.
Collapse
Affiliation(s)
- Jason R. Laurich
- Department of Ecology
& Evolutionary Biology, University of
Toronto, Toronto,
Ontario, Canada
| | - Emma Lash
- Department of Ecology
& Evolutionary Biology, University of
Toronto, Toronto,
Ontario, Canada
| | - Anna M. O'Brien
- Department of Ecology
& Evolutionary Biology, University of
Toronto, Toronto,
Ontario, Canada
- Department of
Molecular, Cellular, and Biomedical Sciences, University of New
Hampshire, Durham,
New Hampshire, USA
| | - Oxana Pogoutse
- Department of Ecology
& Evolutionary Biology, University of
Toronto, Toronto,
Ontario, Canada
| | - Megan E. Frederickson
- Department of Ecology
& Evolutionary Biology, University of
Toronto, Toronto,
Ontario, Canada
| |
Collapse
|
8
|
Schubert I. Hidden promiscuity elucidates the enigmatic relationship between duckweed accessions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2776-2777. [PMID: 38764321 DOI: 10.1093/jxb/erae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
This article comments on:
Braglia L, Ceschin S, Iannelli MA, Bog M, Fabriani M, Frugis G, Gavazzi F, Gianì S, Mariani F, Muzzi M, Pelella E, Morello L. 2024. Characterization of the cryptic interspecific hybrid Lemna×mediterranea by an integrated approach provides new insights into duckweed diversity. Journal of Experimental Botany 75, 3092–3110.
Collapse
Affiliation(s)
- Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Gatersleben, Germany
| |
Collapse
|
9
|
Braglia L, Ceschin S, Iannelli MA, Bog M, Fabriani M, Frugis G, Gavazzi F, Gianì S, Mariani F, Muzzi M, Pelella E, Morello L. Characterization of the cryptic interspecific hybrid Lemna×mediterranea by an integrated approach provides new insights into duckweed diversity. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3092-3110. [PMID: 38387000 PMCID: PMC11103106 DOI: 10.1093/jxb/erae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Lemnaceae taxonomy is challenged by the particular morphology of these tiny free-floating angiosperms. Although molecular taxonomy has helped clarify the phylogenetic history of this family, some inconsistency with morphological data leads to frequent misclassifications in the genus Lemna. Recently, the finding that Lemna japonica is an interspecific hybrid between Lemna minor and Lemna turionifera provided a clear explanation for one such taxonomic question. Here we demonstrated that L. minor is also capable of hybridizing with Lemna gibba, generating a cryptic but widespread taxon in the Mediterranean area. The nothotaxon Lemna ×mediterranea is described and compared with clones of the putative parental species L. minor and L. gibba. Genetic analysis by nuclear and plastid markers, as well as genome size measurement, revealed that two different cytotypes, diploid and triploid, originated by at least two independent hybridization events. Despite high overall similarity, morphometrical, physiological, and biochemical analyses showed an intermediate position of L. ×mediterranea between its parental species in most qualitative and quantitative characters, and also separation of the two hybrid cytotypes by some criteria. These data provide evidence that hybridization and polyploidization, driving forces of terrestrial plant evolution, contribute to duckweed genetic diversity and may have shaped the phylogenetic history of these mainly asexual, aquatic plants.
Collapse
Affiliation(s)
- Luca Braglia
- Institute of Agricultural Biology and Biotechnology, National Research Council, Via Bassini 15, 20133 Milan, Italy
| | - Simona Ceschin
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy
- NBFC-National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy
| | - M Adelaide Iannelli
- Institute of Agricultural Biology and Biotechnology, National Research Council, Via Salaria Km. 29,300, 00015 Monterotondo, Rome, Italy
| | - Manuela Bog
- Institute of Botany and Landscape Ecology, University Greifswald, Soldmannstr. 15, D-17489 Greifswald, Germany
| | - Marco Fabriani
- Institute of Agricultural Biology and Biotechnology, National Research Council, Via Salaria Km. 29,300, 00015 Monterotondo, Rome, Italy
| | - Giovanna Frugis
- Institute of Agricultural Biology and Biotechnology, National Research Council, Via Salaria Km. 29,300, 00015 Monterotondo, Rome, Italy
| | - Floriana Gavazzi
- Institute of Agricultural Biology and Biotechnology, National Research Council, Via Bassini 15, 20133 Milan, Italy
| | - Silvia Gianì
- Institute of Agricultural Biology and Biotechnology, National Research Council, Via Bassini 15, 20133 Milan, Italy
| | - Flaminia Mariani
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy
| | - Maurizio Muzzi
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy
| | - Emanuele Pelella
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy
| | - Laura Morello
- Institute of Agricultural Biology and Biotechnology, National Research Council, Via Bassini 15, 20133 Milan, Italy
| |
Collapse
|
10
|
Smith KE, Zhou M, Flis P, Jones DH, Bishopp A, Yant L. The evolution of the duckweed ionome mirrors losses in structural complexity. ANNALS OF BOTANY 2024; 133:997-1006. [PMID: 38307008 PMCID: PMC11089258 DOI: 10.1093/aob/mcae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/03/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND AND AIMS The duckweeds (Lemnaceae) consist of 36 species exhibiting impressive phenotypic variation, including the progressive evolutionary loss of a fundamental plant organ, the root. Loss of roots and reduction of vascular tissues in recently derived taxa occur in concert with genome expansions of ≤14-fold. Given the paired loss of roots and reduction in structural complexity in derived taxa, we focus on the evolution of the ionome (whole-plant elemental contents) in the context of these fundamental changes in body plan. We expect that progressive vestigiality and eventual loss of roots might have both adaptive and maladaptive consequences that are hitherto unknown. METHODS We quantified the ionomes of 34 accessions in 21 species across all duckweed genera, spanning 70 Myr in this rapidly cycling plant (doubling times are as rapid as ~24 h). We related both micro- and macroevolutionary ionome contrasts to body plan remodelling and showed nimble microevolutionary shifts in elemental accumulation and exclusion in novel accessions. KEY RESULTS We observed a robust directional trend in calcium and magnesium levels, decreasing from the ancestral representative Spirodela genus towards the derived rootless Wolffia, with the latter also accumulating cadmium. We also identified abundant within-species variation and hyperaccumulators of specific elements, with this extensive variation at the fine (as opposed to broad) scale. CONCLUSIONS These data underscore the impact of root loss and reveal the very fine scale of microevolutionary variation in hyperaccumulation and exclusion of a wide range of elements. Broadly, they might point to trade-offs not well recognized in ionomes.
Collapse
Affiliation(s)
- Kellie E Smith
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Min Zhou
- School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Paulina Flis
- School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Dylan H Jones
- School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Anthony Bishopp
- School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Levi Yant
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
11
|
Lee Y, Kato S, Kim JY, Shimono Y, Shiga T. Two lineages of Lemna aequinoctialis (Araceae, Lemnoideae) based on physiology, morphology, and phylogeny. JOURNAL OF PLANT RESEARCH 2024; 137:359-376. [PMID: 38349478 DOI: 10.1007/s10265-023-01509-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/08/2023] [Indexed: 05/12/2024]
Abstract
Lemna aequinoctialis Welw. is a widely spread species that has diverse physiological and molecular properties. Flower characteristics are important factors in deducing taxonomical status; however, owing to the rarity of flowering observations in Lemna, studying them has been a prolonged challenge. In this study, physiological and morphological analyses were conducted by inducing flowering, and molecular analysis was done based on the two chloroplast DNA loci (matK, atpF-atpH intergeneric spacer) of L. aequinoctialis sensu Landolt (1986) from 70 strains found in 70 localities in Japan, Korea, Thailand, and the US. In total, 752 flowering fronds from 13 strains were observed based on axenic conditions. Two different trends in flower organ development-protogyny and adichogamy-were detected in these strains. Their physiological traits were divided into two groups, showing different morphological features based on frond thickness, root cap, and anther sizes. Molecular analysis showed two lineages corresponding to two physiological groups. These were identified as L. aequinoctialis sensu Beppu et al. (1985) and L. aoukikusa Beppu et Murata based on the description of the nomenclature of L. aoukikusa. These were concluded as independent taxa and can be treated as different species. Furthermore, the distribution of L. aoukikusa is not only limited to Japan.
Collapse
Affiliation(s)
- Yuri Lee
- Graduate School of Science and Technology, Niigata University, Ikarashi Ninocho, Nishi-ku, Niigata, 950-2181, Japan
- Faculty of Education, Niigata University, Ikarashi Ninocho, Nishi-ku, Niigata, 950-2181, Japan
| | - Syou Kato
- Faculty of Education, Niigata University, Ikarashi Ninocho, Nishi-ku, Niigata, 950-2181, Japan
| | - Jae Young Kim
- Division of Horticulture and Medicinal Plant, Andong National University, Andong, 36729, Republic of Korea
| | - Yoshiko Shimono
- Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takashi Shiga
- Graduate School of Science and Technology, Niigata University, Ikarashi Ninocho, Nishi-ku, Niigata, 950-2181, Japan.
- Faculty of Education, Niigata University, Ikarashi Ninocho, Nishi-ku, Niigata, 950-2181, Japan.
| |
Collapse
|
12
|
Smith KE, Cowan L, Taylor B, McAusland L, Heatley M, Yant L, Murchie EH. Physiological adaptation to irradiance in duckweeds is species and accession specific and depends on light habitat niche. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2046-2063. [PMID: 38217537 PMCID: PMC10967250 DOI: 10.1093/jxb/erad499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
Duckweeds span 36 species of free-floating aquatic organisms with body sizes ranging from 2 mm to 10 mm, where each plant body plan is reduced to a largely leaf-like structure. As an emerging crop, their fast growth rates offer potential for cultivation in closed systems. We describe a novel UK collection derived from low light (dLL) or high light (dHL) habitats, profiled for growth, photosynthesis, and photoprotection (non-photochemical quenching, NPQ) responses. Twenty-three accessions of three Lemna species and one Spirodela polyrhiza were grown under relatively low light (LL: 100 μmol m-2 s-1) and high light (HL: 350 μmol m-2 s-1) intensities. We observed broad within- and between-species level variation in photosynthesis acclimation. Duckweeds grown under HL exhibited a lower growth rate, biomass, chlorophyll, and quantum yield of photosynthesis. In HL compared with LL, carotenoid de-epoxidation state and NPQ were higher, whilst PSII efficiency (φPSII) and Chl a:b ratios were unchanged. The dLL plants showed relatively stronger acclimation to HL compared with dHL plants, especially Lemna japonica accessions. These achieved faster growth in HL with concurrent higher carotenoid levels and NPQ, and less degradation of chlorophyll. We conclude that these data support local adaptation to the light environment in duckweed affecting acclimation in controlled conditions.
Collapse
Affiliation(s)
- Kellie E Smith
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Laura Cowan
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Beth Taylor
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Lorna McAusland
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Matthew Heatley
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Levi Yant
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Erik H Murchie
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK
| |
Collapse
|
13
|
O'Brien AM, Laurich JR, Frederickson ME. Evolutionary consequences of microbiomes for hosts: impacts on host fitness, traits, and heritability. Evolution 2024; 78:237-252. [PMID: 37828761 DOI: 10.1093/evolut/qpad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/30/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
An organism's phenotypes and fitness often depend on the interactive effects of its genome (Ghost), microbiome (Gmicrobe), and environment (E). These G × G, G × E, and G × G × E effects fundamentally shape host-microbiome (co)evolution and may be widespread, but are rarely compared within a single experiment. We collected and cultured Lemnaminor (duckweed) and its associated microbiome from 10 sites across an urban-to-rural ecotone. We factorially manipulated host genotype and microbiome in two environments (low and high zinc, an urban aquatic stressor) in an experiment with 200 treatments: 10 host genotypes × 10 microbiomes × 2 environments. Host genotype explained the most variation in L.minor fitness and traits, while microbiome effects often depended on host genotype (G × G). Microbiome composition predicted G × G effects: when compared in more similar microbiomes, duckweed genotypes had more similar effects on traits. Further, host fitness increased and microbes grew faster when applied microbiomes more closely matched the host's field microbiome, suggesting some local adaptation between hosts and microbiota. Finally, selection on and heritability of host traits shifted across microbiomes and zinc exposure. Thus, we found that microbiomes impact host fitness, trait expression, and heritability, with implications for host-microbiome evolution and microbiome breeding.
Collapse
Affiliation(s)
- Anna M O'Brien
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Jason R Laurich
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Megan E Frederickson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Kotamraju A, Logan M, Lens PNL. Integrated bioprocess for Se(VI) remediation using duckweed: Coupling selenate removal to biogas production. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132134. [PMID: 37544177 DOI: 10.1016/j.jhazmat.2023.132134] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/30/2023] [Accepted: 07/21/2023] [Indexed: 08/08/2023]
Abstract
The use of phytoremediation as a method for wastewater treatment or removal of pollutants is garnering significant interest and duckweed (DW), a free floating macrophyte, depicts significant potential for the removal of nutrients and toxic compounds from contaminated waters. The present work aimed to develop an integrated process for remediating selenate (Se(VI)) using DW biomass and subsequent use of Se(VI) enriched DW for biogas production. The main objective is to extend the application of selenium (Se) enriched DW biomass for biogas production. Se(VI) enriched DW biomass (Se-DW) gave higher methane production (48.38 ± 3.6 mL gCOD-1) than control DW biomass (C-DW) (24.46 ± 3.6 mL gCOD-1). To further enhance methane production, three pre-treatment approaches (acid, alkali and hydrothermal) were assessed and the solid and liquid fractions obtained after pre-treatment were used as a substrate. Pre-treatments increased biogas production in both Se-DW and C-DW than untreated conditions. Liquid fractions gave higher biogas production than solid fractions. In Se-DW, highest biogas production was observed in hydrothermal pre-treated Se-DW, while in C-DW, acid pre-treatment gave higher biogas production. Methane production was shown to be enhanced up to a Se(VI) concentration of 1.7 mg L-1, whereas a concentration beyond this lowered biogas production.
Collapse
Affiliation(s)
- Amulya Kotamraju
- National University of Ireland, Galway, H91 TK33 Galway, Ireland.
| | | | - Piet N L Lens
- National University of Ireland, Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
15
|
Oláh V, Appenroth KJ, Sree KS. Duckweed: Research Meets Applications. PLANTS (BASEL, SWITZERLAND) 2023; 12:3307. [PMID: 37765471 PMCID: PMC10535908 DOI: 10.3390/plants12183307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
The Special Issue "Duckweed: Research Meets Applications" of the journal Plants (ISSN 2223-7747) presents a comprehensive update of the current progress in the field [...].
Collapse
Affiliation(s)
- Viktor Oláh
- Department of Botany, Institute of Biology and Ecology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary
| | - Klaus-Juergen Appenroth
- Matthias Schleiden Institute–Plant Physiology, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - K. Sowjanya Sree
- Department of Environmental Science, Central University of Kerala, Periye 671320, India
| |
Collapse
|
16
|
Peterson A, Kishchenko O, Kuhlmann M, Tschiersch H, Fuchs J, Tikhenko N, Schubert I, Nagel M. Cryopreservation of Duckweed Genetic Diversity as Model for Long-Term Preservation of Aquatic Flowering Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3302. [PMID: 37765466 PMCID: PMC10534739 DOI: 10.3390/plants12183302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/26/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Vegetatively propagating aquatic angiosperms, the Lemnaceae family (duckweeds) represents valuable genetic resources for circular bioeconomics and other sustainable applications. Due to extremely fast growth and laborious cultivation of in vitro collections, duckweeds are an urgent subject for cryopreservation. We developed a robust and fast DMSO-free protocol for duckweed cryopreservation by vitrification. A single-use device was designed for sampling of duckweed fronds from donor culture, further spin-drying, and subsequent transferring to cryo-tubes with plant vitrification solution 3 (PVS3). Following cultivation in darkness and applying elevated temperatures during early regrowth stage, a specific pulsed illumination instead of a diurnal regime enabled successful regrowth after the cryopreservation of 21 accessions of Spirodela, Landoltia, Lemna, and Wolffia genera, including interspecific hybrids, auto- and allopolyploids. Genome size measurements revealed no quantitative genomic changes potentially caused by cryopreservation. The expression of CBF/DREB1 genes, considered as key factors in the development of freezing tolerance, was studied prior to cooling but was not linked with duckweed regrowth after rewarming. Despite preserving chlorophyll fluorescence after rewarming, the rewarmed fronds demonstrated nearly zero photosynthetic activity, which did not recover. The novel protocol provides the basis for future routine application of cryostorage to duckweed germplasm collections, saving labor for in vitro cultivation and maintaining characterized reference and mutant samples.
Collapse
Affiliation(s)
- Anton Peterson
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben (ROR (Research Organization Registry)-ID of IPK: https://ror.org/02skbsp27), Corrensstraße 3, 06466 Seeland, Germany; (O.K.); (M.K.); (H.T.); (J.F.); (N.T.); (I.S.)
- Institute of Cell Biology and Genetic Engineering, National Academy of Science of Ukraine, Acad. Zabolotnogo Str. 148, 03143 Kyiv, Ukraine
| | - Olena Kishchenko
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben (ROR (Research Organization Registry)-ID of IPK: https://ror.org/02skbsp27), Corrensstraße 3, 06466 Seeland, Germany; (O.K.); (M.K.); (H.T.); (J.F.); (N.T.); (I.S.)
- Institute of Cell Biology and Genetic Engineering, National Academy of Science of Ukraine, Acad. Zabolotnogo Str. 148, 03143 Kyiv, Ukraine
| | - Markus Kuhlmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben (ROR (Research Organization Registry)-ID of IPK: https://ror.org/02skbsp27), Corrensstraße 3, 06466 Seeland, Germany; (O.K.); (M.K.); (H.T.); (J.F.); (N.T.); (I.S.)
| | - Henning Tschiersch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben (ROR (Research Organization Registry)-ID of IPK: https://ror.org/02skbsp27), Corrensstraße 3, 06466 Seeland, Germany; (O.K.); (M.K.); (H.T.); (J.F.); (N.T.); (I.S.)
| | - Joerg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben (ROR (Research Organization Registry)-ID of IPK: https://ror.org/02skbsp27), Corrensstraße 3, 06466 Seeland, Germany; (O.K.); (M.K.); (H.T.); (J.F.); (N.T.); (I.S.)
| | - Natalia Tikhenko
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben (ROR (Research Organization Registry)-ID of IPK: https://ror.org/02skbsp27), Corrensstraße 3, 06466 Seeland, Germany; (O.K.); (M.K.); (H.T.); (J.F.); (N.T.); (I.S.)
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben (ROR (Research Organization Registry)-ID of IPK: https://ror.org/02skbsp27), Corrensstraße 3, 06466 Seeland, Germany; (O.K.); (M.K.); (H.T.); (J.F.); (N.T.); (I.S.)
| | - Manuela Nagel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben (ROR (Research Organization Registry)-ID of IPK: https://ror.org/02skbsp27), Corrensstraße 3, 06466 Seeland, Germany; (O.K.); (M.K.); (H.T.); (J.F.); (N.T.); (I.S.)
| |
Collapse
|
17
|
Liang Y, Yu X, Anaokar S, Shi H, Dahl WB, Cai Y, Luo G, Chai J, Cai Y, Mollá‐Morales A, Altpeter F, Ernst E, Schwender J, Martienssen RA, Shanklin J. Engineering triacylglycerol accumulation in duckweed (Lemna japonica). PLANT BIOTECHNOLOGY JOURNAL 2023; 21:317-330. [PMID: 36209479 PMCID: PMC9884027 DOI: 10.1111/pbi.13943] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/08/2022] [Accepted: 09/30/2022] [Indexed: 05/13/2023]
Abstract
Duckweeds are amongst the fastest growing of higher plants, making them attractive high-biomass targets for biofuel feedstock production. Their fronds have high rates of fatty acid synthesis to meet the demand for new membranes, but triacylglycerols (TAG) only accumulate to very low levels. Here we report on the engineering of Lemna japonica for the synthesis and accumulation of TAG in its fronds. This was achieved by expression of an estradiol-inducible cyan fluorescent protein-Arabidopsis WRINKLED1 fusion protein (CFP-AtWRI1), strong constitutive expression of a mouse diacylglycerol:acyl-CoA acyltransferase2 (MmDGAT), and a sesame oleosin variant (SiOLE(*)). Individual expression of each gene increased TAG accumulation by 1- to 7-fold relative to controls, while expression of pairs of these genes increased TAG by 7- to 45-fold. In uninduced transgenics containing all three genes, TAG accumulation increased by 45-fold to 3.6% of dry weight (DW) without severely impacting growth, and by 108-fold to 8.7% of DW after incubation on medium containing 100 μm estradiol for 4 days. TAG accumulation was accompanied by an increase in total fatty acids of up to three-fold to approximately 15% of DW. Lipid droplets from fronds of all transgenic lines were visible by confocal microscopy of BODIPY-stained fronds. At a conservative 12 tonnes (dry matter) per acre and 10% (DW) TAG, duckweed could produce 350 gallons of oil/acre/year, approximately seven-fold the yield of soybean, and similar to that of oil palm. These findings provide the foundation for optimizing TAG accumulation in duckweed and present a new opportunity for producing biofuels and lipidic bioproducts.
Collapse
Affiliation(s)
- Yuanxue Liang
- Biology DepartmentBrookhaven National LaboratoryUptonNYUSA
| | - Xiao‐Hong Yu
- Biology DepartmentBrookhaven National LaboratoryUptonNYUSA
| | - Sanket Anaokar
- Biology DepartmentBrookhaven National LaboratoryUptonNYUSA
| | - Hai Shi
- Biology DepartmentBrookhaven National LaboratoryUptonNYUSA
| | | | - Yingqi Cai
- Biology DepartmentBrookhaven National LaboratoryUptonNYUSA
| | - Guangbin Luo
- Agronomy Department, Genetics InstituteUniversity of FloridaGainesvilleFLUSA
| | - Jin Chai
- Biology DepartmentBrookhaven National LaboratoryUptonNYUSA
| | - Yuanheng Cai
- Biology DepartmentBrookhaven National LaboratoryUptonNYUSA
| | | | - Fredy Altpeter
- Agronomy Department, Genetics InstituteUniversity of FloridaGainesvilleFLUSA
| | - Evan Ernst
- Cold Spring Harbor LaboratoryCold Spring HarborNYUSA
- Howard Hughes Medical InstituteCold Spring Harbor LaboratoryCold Spring HarborNYUSA
| | - Jorg Schwender
- Biology DepartmentBrookhaven National LaboratoryUptonNYUSA
| | - Robert A. Martienssen
- Cold Spring Harbor LaboratoryCold Spring HarborNYUSA
- Howard Hughes Medical InstituteCold Spring Harbor LaboratoryCold Spring HarborNYUSA
| | - John Shanklin
- Biology DepartmentBrookhaven National LaboratoryUptonNYUSA
| |
Collapse
|
18
|
Zhou Y, Stepanenko A, Kishchenko O, Xu J, Borisjuk N. Duckweeds for Phytoremediation of Polluted Water. PLANTS (BASEL, SWITZERLAND) 2023; 12:589. [PMID: 36771672 PMCID: PMC9919746 DOI: 10.3390/plants12030589] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/28/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Tiny aquatic plants from the Lemnaceae family, commonly known as duckweeds, are often regarded as detrimental to the environment because of their ability to quickly populate and cover the surfaces of bodies of water. Due to their rapid vegetative propagation, duckweeds have one of the fastest growth rates among flowering plants and can accumulate large amounts of biomass in relatively short time periods. Due to the high yield of valuable biomass and ease of harvest, duckweeds can be used as feedstock for biofuels, animal feed, and other applications. Thanks to their efficient absorption of nitrogen- and phosphate-containing pollutants, duckweeds play an important role in the restorative ecology of water reservoirs. Moreover, compared to other species, duckweed species and ecotypes demonstrate exceptionally high adaptivity to a variety of environmental factors; indeed, duckweeds remove and convert many contaminants, such as nitrogen, into plant biomass. The global distribution of duckweeds and their tolerance of ammonia, heavy metals, other pollutants, and stresses are the major factors highlighting their potential for use in purifying agricultural, municipal, and some industrial wastewater. In summary, duckweeds are a powerful tool for bioremediation that can reduce anthropogenic pollution in aquatic ecosystems and prevent water eutrophication in a simple, inexpensive ecologically friendly way. Here we review the potential for using duckweeds in phytoremediation of several major water pollutants: mineral nitrogen and phosphorus, various organic chemicals, and heavy metals.
Collapse
Affiliation(s)
- Yuzhen Zhou
- School of Life Science, Huaiyin Normal University, Huai’an 223300, China
| | - Anton Stepanenko
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine
| | - Olena Kishchenko
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
- Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine
| | - Jianming Xu
- School of Life Science, Huaiyin Normal University, Huai’an 223300, China
| | - Nikolai Borisjuk
- School of Life Science, Huaiyin Normal University, Huai’an 223300, China
| |
Collapse
|
19
|
Lykholat YV, Rabokon AM, Blume RY, Khromykh NO, Didur OO, Sakharova VH, Kabar AM, Pirko YV, Blume YB. Characterization of β-Tubulin Genes in Prunus persica and Prunus dulcis for Fingerprinting of their Interspecific Hybrids. CYTOL GENET+ 2022. [DOI: 10.3103/s009545272206007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Taghipour E, Bog M, Frootan F, Shojaei S, Rad N, Arezoumandi M, Jafari M, Salmanian AH. DNA barcoding and biomass accumulation rates of native Iranian duckweed species for biotechnological applications. FRONTIERS IN PLANT SCIENCE 2022; 13:1034238. [PMID: 36523621 PMCID: PMC9744944 DOI: 10.3389/fpls.2022.1034238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
The Lemnaceae family (duckweed) consists of at least three recognized genera with six reported species in Iran that are distributed in wetlands. Duckweeds are the simplest and smallest flowering aquatic monocots with free-floating fronds that can reproduce asexually every 2-3 days. Duckweed could be a major source of balanced amino acids and high protein content, which is increasingly promising for biotechnological applications. For molecular classification and species identification of the collected samples, DNA barcoding was performed using two standard chloroplast markers, the spacer region between the ATP synthase subunits F and H (atpF-atpH) and the intron region of the ribosomal protein S16 (rps16). The results confirm the presence of four species belonging to the two genera Lemna and Spirodela. In addition, L. turionifera was detected for the first time in Iran. Due to the high growth rates of duckweed, measurement of biomass accumulation and doubling time are important factors in determining growth potential, especially for native species. The relative growth rates (RGR), doubling times (DT), biomass accumulation, and relative weekly yields (RY) of 40 distinct duckweed clones were determined under standard cultivation conditions. The dry weight-based RGR ranged from 0.149 to more than 0.600 per day, DT from 1.12 to 9 days, and RY from 7 to 108.9 per week. All values are comparable with previous studies. RGR and RY of selected clones are higher than the growth potential for a wide range of wild plants and common crops. These data support that native duckweed has high productivity value and should be further investigated as a potentially rich protein source for alternative human food, livestock feed, and recombinant protein production.
Collapse
Affiliation(s)
- Elham Taghipour
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Department of Agricultural Biotechnology, Tehran, Iran
| | - Manuela Bog
- University of Greifswald, Institute of Botany and Landscape Ecology, Greifswald, Germany
| | - Fateme Frootan
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Department of Agricultural Biotechnology, Tehran, Iran
| | - Sadegh Shojaei
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Department of Agricultural Biotechnology, Tehran, Iran
| | - Nima Rad
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Department of Agricultural Biotechnology, Tehran, Iran
| | - Mahdi Arezoumandi
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Department of Agricultural Biotechnology, Tehran, Iran
| | - Mahyat Jafari
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Department of Agricultural Biotechnology, Tehran, Iran
| | - Ali Hatef Salmanian
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Department of Agricultural Biotechnology, Tehran, Iran
| |
Collapse
|
21
|
Bog M, Braglia L, Morello L, Noboa Melo KI, Schubert I, Shchepin ON, Sree KS, Xu S, Lam E, Appenroth KJ. Strategies for Intraspecific Genotyping of Duckweed: Comparison of Five Orthogonal Methods Applied to the Giant Duckweed Spirodela polyrhiza. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223033. [PMID: 36432762 PMCID: PMC9696241 DOI: 10.3390/plants11223033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 06/12/2023]
Abstract
The predominantly vegetative propagating duckweeds are of growing commercial interest. Since clonal accessions within a respective species can vary considerably with respect to their physiological as well as biochemical traits, it is critical to be able to track the clones of species of interest after their characterization. Here, we compared the efficacy of five different genotyping methods for Spirodela polyrhiza, a species with very low intraspecific sequence variations, including polymorphic NB-ARC-related loci, tubulin-gene-based polymorphism (TBP), simple sequence repeat variations (SSR), multiplexed ISSR genotyping by sequencing (MIG-seq), and low-coverage, reduced-representation genome sequencing (GBS). Four of the five approaches could distinguish 20 to 22 genotypes out of the 23 investigated clones, while TBP resolved just seven genotypes. The choice for a particular method for intraspecific genotyping can depend on the research question and the project budget, while the combination of orthogonal methods may increase the confidence and resolution for the results obtained.
Collapse
Affiliation(s)
- Manuela Bog
- Institute of Botany and Landscape Ecology, University of Greifswald, 17489 Greifswald, Germany
| | - Luca Braglia
- Istituto Biologia e Biotecnologia Agraria, Via Bassini 15, 20131 Milano, Italy
| | - Laura Morello
- Istituto Biologia e Biotecnologia Agraria, Via Bassini 15, 20131 Milano, Italy
| | - Karen I. Noboa Melo
- Institute of Botany and Landscape Ecology, University of Greifswald, 17489 Greifswald, Germany
| | - Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466 Stadt Seeland, Germany
| | - Oleg N. Shchepin
- Institute of Botany and Landscape Ecology, University of Greifswald, 17489 Greifswald, Germany
| | - K. Sowjanya Sree
- Department of Environmental Science, Central University of Kerala, Periye 671320, India
| | - Shuqing Xu
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Eric Lam
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Klaus J. Appenroth
- Matthias Schleiden Institute—Plant Physiology, University of Jena, 07743 Jena, Germany
| |
Collapse
|
22
|
Hoang PTN, Fuchs J, Schubert V, Tran TBN, Schubert I. Chromosome Numbers and Genome Sizes of All 36 Duckweed Species ( Lemnaceae). PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11202674. [PMID: 36297698 PMCID: PMC9608876 DOI: 10.3390/plants11202674] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/27/2022] [Accepted: 10/08/2022] [Indexed: 06/12/2023]
Abstract
Usually, chromosome sets (karyotypes) and genome sizes are rather stable for distinct species and therefore of diagnostic value for taxonomy. In combination with (cyto)genomics, both features provide essential cues for genome evolution and phylogenetic relationship studies within and between taxa above the species level. We present for the first time a survey on chromosome counts and genome size measurement for one or more accessions from all 36 duckweed species and discuss the evolutionary impact and peculiarities of both parameters in duckweeds.
Collapse
|
23
|
Bog M, Appenroth KJ, Schneider P, Sree KS. Intraspecific Diversity in Aquatic Ecosystems: Comparison between Spirodela polyrhiza and Lemna minor in Natural Populations of Duckweed. PLANTS 2022; 11:plants11070968. [PMID: 35406948 PMCID: PMC9003317 DOI: 10.3390/plants11070968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022]
Abstract
Samples of two duckweed species, Spirodela polyrhiza and Lemna minor, were collected around small ponds and investigated concerning the question of whether natural populations of duckweeds constitute a single clone, or whether clonal diversity exists. Amplified fragment length polymorphism was used as a molecular method to distinguish clones of the same species. Possible intraspecific diversity was evaluated by average-linkage clustering. The main criterion to distinguish one clone from another was the 95% significance level of the Jaccard dissimilarity index for replicated samples. Within natural populations of L. minor, significant intraspecific genetic differences were detected. In each of the three small ponds harbouring populations of L. minor, based on twelve samples, between four and nine distinct clones were detected. Natural populations of L. minor consist of a mixture of several clones representing intraspecific biodiversity in an aquatic ecosystem. Moreover, identical distinct clones were discovered in more than one pond, located at a distance of 1 km and 2.4 km from each other. Evidently, fronds of L. minor were transported between these different ponds. The genetic differences for S. polyrhiza, however, were below the error-threshold of the method within a pond to detect distinct clones, but were pronounced between samples of two different ponds.
Collapse
Affiliation(s)
- Manuela Bog
- Institute of Botany and Landscape Ecology, University of Greifswald, D-17489 Greifswald, Germany;
| | - Klaus-Juergen Appenroth
- Matthias Schleiden Institute-Plant Physiology, University of Jena, D-07743 Jena, Germany;
- Correspondence: (K.-J.A.); or (K.S.S.); Tel.: +49-3641-949233 (K.-J.A.); +91-9999-672921 (K.S.S.)
| | - Philipp Schneider
- Matthias Schleiden Institute-Plant Physiology, University of Jena, D-07743 Jena, Germany;
| | - K. Sowjanya Sree
- Department of Environmental Science, Central University of Kerala, Periye 671320, India
- Correspondence: (K.-J.A.); or (K.S.S.); Tel.: +49-3641-949233 (K.-J.A.); +91-9999-672921 (K.S.S.)
| |
Collapse
|
24
|
Braglia L, Breviario D, Gianì S, Gavazzi F, De Gregori J, Morello L. New Insights into Interspecific Hybridization in Lemna L. Sect. Lemna (Lemnaceae Martinov). PLANTS 2021; 10:plants10122767. [PMID: 34961238 PMCID: PMC8703825 DOI: 10.3390/plants10122767] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022]
Abstract
Duckweeds have been increasingly studied in recent years, both as model plants and in view of their potential applications as a new crop in a circular bioeconomy perspective. In order to select species and clones with the desired attributes, the correct identification of the species is fundamental. Molecular methods have recently provided a more solid base for taxonomy and yielded a consensus phylogenetic tree, although some points remain to be elucidated. The duckweed genus Lemna L. comprises twelve species, grouped in four sections, which include very similar sister species. The least taxonomically resolved is sect. Lemna, presenting difficulties in species delimitation using morphological and even barcoding molecular markers. Ambiguous species boundaries between Lemna minor L. and Lemna japonica Landolt have been clarified by Tubulin Based Polymorphism (TBP), with the discovery of interspecific hybrids. In the present work, we extended TBP profiling to a larger number of clones in sect. Lemna, previously classified using only morphological features, in order to test that classification, and to investigate the possible existence of other hybrids in this section. The analysis revealed several misidentifications of clones, in particular among the species L. minor, L. japonica and Lemna gibba L., and identified six putative ‘L. gibba’ clones as interspecific hybrids between L. minor and L. gibba.
Collapse
|
25
|
Acosta K, Appenroth KJ, Borisjuk L, Edelman M, Heinig U, Jansen MAK, Oyama T, Pasaribu B, Schubert I, Sorrels S, Sree KS, Xu S, Michael TP, Lam E. Return of the Lemnaceae: duckweed as a model plant system in the genomics and postgenomics era. THE PLANT CELL 2021; 33:3207-3234. [PMID: 34273173 PMCID: PMC8505876 DOI: 10.1093/plcell/koab189] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/18/2021] [Indexed: 05/05/2023]
Abstract
The aquatic Lemnaceae family, commonly called duckweed, comprises some of the smallest and fastest growing angiosperms known on Earth. Their tiny size, rapid growth by clonal propagation, and facile uptake of labeled compounds from the media were attractive features that made them a well-known model for plant biology from 1950 to 1990. Interest in duckweed has steadily regained momentum over the past decade, driven in part by the growing need to identify alternative plants from traditional agricultural crops that can help tackle urgent societal challenges, such as climate change and rapid population expansion. Propelled by rapid advances in genomic technologies, recent studies with duckweed again highlight the potential of these small plants to enable discoveries in diverse fields from ecology to chronobiology. Building on established community resources, duckweed is reemerging as a platform to study plant processes at the systems level and to translate knowledge gained for field deployment to address some of society's pressing needs. This review details the anatomy, development, physiology, and molecular characteristics of the Lemnaceae to introduce them to the broader plant research community. We highlight recent research enabled by Lemnaceae to demonstrate how these plants can be used for quantitative studies of complex processes and for revealing potentially novel strategies in plant defense and genome maintenance.
Collapse
Affiliation(s)
- Kenneth Acosta
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Klaus J Appenroth
- Plant Physiology, Matthias Schleiden Institute, University of Jena, Jena 07737, Germany
| | - Ljudmilla Borisjuk
- The Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben D-06466, Germany
| | - Marvin Edelman
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Uwe Heinig
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Marcel A K Jansen
- School of Biological, Earth and Environmental Sciences, Environmental Research Institute, University College Cork, Cork T23 TK30, Ireland
| | - Tokitaka Oyama
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Buntora Pasaribu
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Ingo Schubert
- The Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben D-06466, Germany
| | - Shawn Sorrels
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - K Sowjanya Sree
- Department of Environmental Science, Central University of Kerala, Periye 671320, India
| | - Shuqing Xu
- Institute for Evolution and Biodiversity, University of Münster, Münster 48149, Germany
| | - Todd P Michael
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute of Biological Studies, La Jolla, California 92037, USA
| | - Eric Lam
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|