1
|
Li C, Wang J, Lan H, Yu Q. Enhanced drought tolerance and photosynthetic efficiency in Arabidopsis by overexpressing phosphoenolpyruvate carboxylase from a single-cell C4 halophyte Suaeda aralocaspica. FRONTIERS IN PLANT SCIENCE 2024; 15:1443691. [PMID: 39280952 PMCID: PMC11392766 DOI: 10.3389/fpls.2024.1443691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/06/2024] [Indexed: 09/18/2024]
Abstract
In crop genetic improvement, the introduction of C4 plants' characteristics, known for high photosynthetic efficiency and water utilization, into C3 plants has been a significant challenge. This study investigates the effects of the desert halophyte Suaeda aralocaspica SaPEPC1 gene from a single-cell C4 photosythetic pathway, on drought resistance and photosynthetic performance in Arabidopsis. We used transgenic Arabidopsis with Zea mays ZmPEPC1 from C4 plant with classic Kranz anatomical structure and Arabidopsis AtPEPC1 from C3 photosynthetic cycle plants as controls. The results demonstrated that C4 photosynthetic-type PEPCs could improve drought resistance in plants through stomatal closure, promoting antioxidant enzyme accumulation, and reducing reactive oxygen species (ROS) accumulation. Overexpression of SaPEPC1 was significantly more effective than ZmPEPC1 in enhancing drought tolerance. Notably, overexpressed SaPEPC1 significantly improved light saturation intensity, electron transport rate (ETR), photosynthetic rate (Pn), and photoprotection ability under intense light. Furthermore, overexpression SaPEPC1 or ZmPEPC1 enhanced the activity of key C4 photosynthetic enzymes, including phosphoenolpyruvate carboxylase (PEPC), pyruvate orthophosphate dikinase (PPDK) and NADP-malic enzyme (NADP-ME), and promoted photosynthetic product sugar accumulation. However, with AtPEPC1 overexpression showing no obvious improvement effect on drought and photosynthetic performance. Therefore, these results indicated that introducing C4-type PEPC into C3 plants can significantly enhance drought resistance and photosynthetic performance. However, SaPEPC1 from a single-cell C4 cycle plant exhibits more significant effect in ETR and PSII photosynthesis performance than ZmPEPC1 from a classical C4 anatomical structure plant, although the underlying mechanism requires further exploration.
Collapse
Affiliation(s)
- Caixia Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Haiyan Lan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Qinghui Yu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| |
Collapse
|
2
|
Short AW, Sebastian JSV, Huang J, Wang G, Dassanayake M, Finnegan PM, Parker JD, Cao KF, Wee AKS. Comparative transcriptomics of the chilling stress response in two Asian mangrove species, Bruguiera gymnorhiza and Rhizophora apiculata. TREE PHYSIOLOGY 2024; 44:tpae019. [PMID: 38366388 PMCID: PMC11443552 DOI: 10.1093/treephys/tpae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 11/30/2023] [Accepted: 02/03/2024] [Indexed: 02/18/2024]
Abstract
Low temperatures largely determine the geographic limits of plant species by reducing survival and growth. Inter-specific differences in the geographic distribution of mangrove species have been associated with cold tolerance, with exclusively tropical species being highly cold-sensitive and subtropical species being relatively cold-tolerant. To identify species-specific adaptations to low temperatures, we compared the chilling stress response of two widespread Indo-West Pacific mangrove species from Rhizophoraceae with differing latitudinal range limits-Bruguiera gymnorhiza (L.) Lam. ex Savigny (subtropical range limit) and Rhizophora apiculata Blume (tropical range limit). For both species, we measured the maximum photochemical efficiency of photosystem II (Fv/Fm) as a proxy for the physiological condition of the plants and examined gene expression profiles during chilling at 15 and 5 °C. At 15 °C, B. gymnorhiza maintained a significantly higher Fv/Fm than R. apiculata. However, at 5 °C, both species displayed equivalent Fv/Fm values. Thus, species-specific differences in chilling tolerance were only found at 15 °C, and both species were sensitive to chilling at 5 °C. At 15 °C, B. gymnorhiza downregulated genes related to the light reactions of photosynthesis and upregulated a gene involved in cyclic electron flow regulation, whereas R. apiculata downregulated more RuBisCo-related genes. At 5 °C, both species repressed genes related to CO2 assimilation. The downregulation of genes related to light absorption and upregulation of genes related to cyclic electron flow regulation are photoprotective mechanisms that likely contributed to the greater photosystem II photochemical efficiency of B. gymnorhiza at 15 °C. The results of this study provide evidence that the distributional range limits and potentially the expansion rates of plant species are associated with differences in the regulation of photosynthesis and photoprotective mechanisms under low temperatures.
Collapse
Affiliation(s)
- Aidan W Short
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning 530004, China
- Institute of Ecology and Evolution, Department of Biology, 5289 University of Oregon, Eugene, OR 97403, USA
| | - John Sunoj V Sebastian
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning 530004, China
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, Guangxi 530004, China
| | - Jie Huang
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning 530004, China
| | - Guannan Wang
- Department of Biological Sciences, Louisiana State University (LSU), 202 Life Science Bldg, Baton Rouge, LA 70803, USA
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University (LSU), 202 Life Science Bldg, Baton Rouge, LA 70803, USA
| | - Patrick M Finnegan
- School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - John D Parker
- Smithsonian Environmental Research Center, Smithsonian Institution, 647 Contees Wharf Road, Edgewater, MD 21037, USA
| | - Kun-Fang Cao
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning 530004, China
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, Guangxi 530004, China
| | - Alison K S Wee
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning 530004, China
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, Guangxi 530004, China
- School of Environmental and Geographical Sciences, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Malaysia
| |
Collapse
|
3
|
Mathur S, Seo B, Jajoo A, Reddy KR, Reddy VR. Chlorophyll fluorescence is a potential indicator to measure photochemical efficiency in early to late soybean maturity groups under changing day lengths and temperatures. FRONTIERS IN PLANT SCIENCE 2023; 14:1228464. [PMID: 37936935 PMCID: PMC10627226 DOI: 10.3389/fpls.2023.1228464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/27/2023] [Indexed: 11/09/2023]
Abstract
In this study, we employed chlorophyll a fluorescence technique, to indicate plant health and status in response to changing day lengths (photoperiods) and temperatures in soybean early and late maturity groups. Chlorophyll a fluorescence study indicates changes in light reactions in photosystem II. Experiments were performed for 3-day lengths (12.5, 13.5, and 14.5 h) and five temperatures (22/14°C, 26/18°C, 30/22°C, 34/26°C, and 40/32°C), respectively. The I-P phase declined for changing day lengths. Active reaction centers decreased at long day length for maturity group III. We observed that low temperatures impacted the acceptor side of photosystem II and partially impacted electron transport toward the photosystem I end electron acceptor. Results emphasized that higher temperatures (40/32°C) triggered damage at the oxygen-evolving complex and decreased electron transport and photosynthesis. We studied specific leaf areas and aboveground mass. Aboveground parameters were consistent with the fluorescence study. Chlorophyll a fluorescence can be used as a potential technique for high-throughput phenotyping methods. The traits selected in the study proved to be possible indicators to provide information on the health status of various maturity groups under changing temperatures and day lengths. These traits can also be deciding criteria for breeding programs to develop inbreed soybean lines for stress tolerance and sensitivity based on latitudinal variations.
Collapse
Affiliation(s)
- Sonal Mathur
- Adaptive Cropping Systems Laboratory, USDA-Agricultural Research Service (USDA-ARS), Beltsville Agricultural Research Center, Beltsville, MD, United States
| | - Beomseok Seo
- Adaptive Cropping Systems Laboratory, USDA-Agricultural Research Service (USDA-ARS), Beltsville Agricultural Research Center, Beltsville, MD, United States
- School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA, United States
| | - Anjana Jajoo
- School of Biotechnology, Devi Ahilya University, Indore, India
| | - Kambham Raja Reddy
- Department of Plant and Soil Sciences, Mississippi State University, Starkville, MS, United States
| | - Vangimalla R. Reddy
- Adaptive Cropping Systems Laboratory, USDA-Agricultural Research Service (USDA-ARS), Beltsville Agricultural Research Center, Beltsville, MD, United States
| |
Collapse
|
4
|
Bilal S, Khan T, Asaf S, Khan NA, Saad Jan S, Imran M, Al-Rawahi A, Khan AL, Lee IJ, Al-Harrasi A. Silicon-Induced Morphological, Biochemical and Molecular Regulation in Phoenix dactylifera L. under Low-Temperature Stress. Int J Mol Sci 2023; 24:ijms24076036. [PMID: 37047009 PMCID: PMC10094002 DOI: 10.3390/ijms24076036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Climate changes abruptly affect optimum growth temperatures, leading to a negative influence on plant physiology and productivity. The present study aimed to investigate the extent of low-temperature stress effects on date palm growth and physiological indicators under the exogenous application of silicon (Si). Date palm seedlings were treated with Si (1.0 mM) and exposed to different temperature regimes (5, 15, and 30 °C). It was observed that the application of Si markedly improved fresh and dry biomass, photosynthetic pigments (chlorophyll and carotenoids), plant morphology, and relative water content by ameliorating low-temperature-induced oxidative stress. Low-temperature stress (5 and 15 °C), led to a substantial upregulation of ABA-signaling-related genes (NCED-1 and PyL-4) in non Si treated plants, while Si treated plants revealed an antagonistic trend. However, jasmonic acid and salicylic acid accumulation were markedly elevated in Si treated plants under stress conditions (5 and 15 °C) in comparison with non Si treated plants. Interestingly, the upregulation of low temperature stress related plant plasma membrane ATPase (PPMA3 and PPMA4) and short-chain dehydrogenases/reductases (SDR), responsible for cellular physiology, stomatal conductance and nutrient translocation under silicon applications, was observed in Si plants under stress conditions in comparison with non Si treated plants. Furthermore, a significant expression of LSi-2 was detected in Si plants under stress, leading to the significant accumulation of Si in roots and shoots. In contrast, non Si plants demonstrated a low expression of LSi-2 under stress conditions, and thereby, reduced level of Si accumulation were observed. Less accumulation of oxidative stress was evident from the expression of superoxide dismutase (SOD) and catalase (CAT). Additionally, Si plants revealed a significant exudation of organic acids (succinic acid and citric acid) and nutrient accumulation (K and Mg) in roots and shoots. Furthermore, the application of Si led to substantial upregulation of the low temperature stress related soybean cold regulated gene (SRC-2) and ICE-1 (inducer of CBF expression 1), involved in the expression of CBF/DREB (C-repeat binding factor/dehydration responsive element binding factor) gene family under stress conditions in comparison with non Si plants. The current research findings are crucial for exploring the impact on morpho-physio-biochemical attributes of date palms under low temperature and Si supplementation, which may provide an efficient strategy for growing plants in low-temperature fields.
Collapse
Affiliation(s)
- Saqib Bilal
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Taimoor Khan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Sajjad Asaf
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Nasir Ali Khan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA
| | - Syed Saad Jan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Muhammad Imran
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, 80 Dahak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Ahmed Al-Rawahi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Abdul Latif Khan
- Department of Engineering Technology, University of Houston, Sugar Land, TX 77479, USA
| | - In-Jung Lee
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, 80 Dahak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| |
Collapse
|
5
|
Riznichenko GY, Belyaeva NE, Kovalenko IB, Antal TK, Goryachev SN, Maslakov AS, Plyusnina TY, Fedorov VA, Khruschev SS, Yakovleva OV, Rubin AB. Mathematical Simulation of Electron Transport in the Primary Photosynthetic Processes. BIOCHEMISTRY (MOSCOW) 2022; 87:1065-1083. [DOI: 10.1134/s0006297922100017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Sunoj V, Wen Y, Jajoo A, Short A, Zeng W, Elsheery N, Cao K. Moderate photoinhibition of PSII and oxidation of P700 contribute to chilling tolerance of tropical tree species in subtropics of China. PHOTOSYNTHETICA 2022; 61:177-189. [PMID: 39650675 PMCID: PMC11515820 DOI: 10.32615/ps.2022.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/09/2022] [Indexed: 12/11/2024]
Abstract
In the subtropics, a few tropical tree species are distributed and planted for ornamental and horticultural purposes; however, the photosynthesis of these species can be impaired by chilling. This study aimed to understand how these species respond to chilling. Light-dependent and CO2 assimilation reactions of six tropical tree species from geographically diverse areas, but grown at a lower subtropical site in China, were monitored during a chilling (≤ 10°C). Chilling induced stomatal and nonstomatal effects and moderate photoinhibition of PSII, with severe effect in Ixora chinensis. Woodfordia fruticosa was little affected by chilling, with negligible reduction of photosynthesis and PSII activity, higher cyclic electron flow (CEF), and oxidation state of P700 (P700+). Photoinhibition of PSII thus reduced electron flow to P700, while active CEF reduced oxidative damage of PSI and maintained photosynthesis during chilling. Studied parameters revealed that coupling between light-dependent and CO2 assimilation reactions was enhanced under chilling.
Collapse
Affiliation(s)
- V.S.J. Sunoj
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, 530004 Nanning, Guangxi, China
| | - Y. Wen
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, 530004 Nanning, Guangxi, China
| | - A. Jajoo
- School of Life Science, Devi Ahilya University, 452017 Indore, India
| | - A.W. Short
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, 530004 Nanning, Guangxi, China
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - W.H. Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, 530004 Nanning, Guangxi, China
| | - N.I. Elsheery
- Department of Agricultural Botany, Tanta University, 72513 Tanta, Egypt
| | - K.F. Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, 530004 Nanning, Guangxi, China
| |
Collapse
|
7
|
Rehman SU, Muhammad K, Novaes E, Que Y, Din A, Islam M, Porto ACM, Inamullah M, Sajid M, Ullah N, Iqsa S. Expression analysis of transcription factors in sugarcane during cold stress. BRAZ J BIOL 2021; 83:e242603. [PMID: 34932612 DOI: 10.1590/1519-6984.242603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 05/03/2021] [Indexed: 12/13/2022] Open
Abstract
Transcription factors (TF) are a wide class of genes in plants, and these can regulate the expression of other genes in response to various environmental stresses (biotic and abiotic). In the current study, transcription factor activity in sugarcane was examined during cold stress. Initially, RNA transcript reads of two sugarcane cultivars (ROC22 and GT08-1108) under cold stress were downloaded from SRA NCBI database. The reads were aligned into a reference genome and the differential expression analyses were performed with the R/Bioconductor edgeR package. Based on our analyses in the ROC22 cultivar, 963 TF genes were significantly upregulated under cold stress among a total of 5649 upregulated genes, while 293 TF genes were downregulated among a total of 3,289 downregulated genes. In the GT08-1108 cultivar, 974 TF genes were identified among 5,649 upregulated genes and 283 TF genes were found among 3,289 downregulated genes. Most transcription factors were annotated with GO categories related to protein binding, transcription factor binding, DNA-sequence-specific binding, transcription factor complex, transcription factor activity in RNA polymerase II, the activity of nucleic acid binding transcription factor, transcription corepressor activity, sequence-specific regulatory region, the activity of transcription factor of RNA polymerase II, transcription factor cofactor activity, transcription factor activity from plastid promoter, transcription factor activity from RNA polymerase I promoter, polymerase II and RNA polymerase III. The findings of above results will help to identify differentially expressed transcription factors during cold stress. It also provides a comprehensive analysis of the regulation of the transcription activity of many genes. Therefore, this study provides the molecular basis for improving cold tolerance in sugarcane and other economically important grasses.
Collapse
Affiliation(s)
- S U Rehman
- Hazara University, Department of Biotechnology and Genetic Engineering, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - K Muhammad
- Hazara University, Department of Biotechnology and Genetic Engineering, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - E Novaes
- Universidade Federal de Lavras, Natural Scincey Institute, Department of Biology, Lavras, MG, Brasil
| | - Y Que
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - A Din
- Hazara University, Department of Biotechnology and Genetic Engineering, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - M Islam
- Hazara University, Department of Biotechnology and Genetic Engineering, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - A C M Porto
- Universidade Federal de Lavras, Natural Scincey Institute, Department of Biology, Lavras, MG, Brasil
| | - M Inamullah
- Hazara University, Department of Biotechnology and Genetic Engineering, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - M Sajid
- Department of Agriculture, Hazara University, Mansehra, 21300- Khyber Pakhtunkhwa-Pakistan
| | - N Ullah
- Hazara University, Department of Biotechnology and Genetic Engineering, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - S Iqsa
- Hazara University, Department of Biotechnology and Genetic Engineering, Mansehra, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
8
|
Yan L, Sunoj VSJ, Short AW, Lambers H, Elsheery NI, Kajita T, Wee AKS, Cao KF. Correlations between allocation to foliar phosphorus fractions and maintenance of photosynthetic integrity in six mangrove populations as affected by chilling. THE NEW PHYTOLOGIST 2021; 232:2267-2282. [PMID: 34610157 DOI: 10.1111/nph.17770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 09/19/2021] [Indexed: 05/20/2023]
Abstract
Chilling restrains the distribution of mangroves. We tested whether foliar phosphorus (P) fractions and gene expression are associated with cold tolerance in mangrove species. We exposed seedlings of six mangrove populations from different latitudes to favorable, chilling and recovery treatments, and measured their foliar P concentrations and fractions, photochemistry, nighttime respiration, and gene expression. A Kandelia obovata (KO; 26.45°N) population completely and a Bruguiera gymnorhiza (Guangxi) (BGG; 21.50°N) population partially (30%) survived chilling. Avicennia marina (24.29°N), and other B. gymnorhiza (26.66°N, 24.40°N, and 19.62°N) populations died after chilling. Photosystems of KO and photosystem I of BGG were least injured. During chilling, leaf P fractions, except nucleic acid P in three populations, declined and photoinhibition and nighttime respiration increased in all populations, with the greatest impact in B. gymnorhiza. Leaf nucleic acid P was positively correlated with photochemical efficiency during recovery and nighttime respiration across populations for each treatment. Relatively high concentrations of nucleic acid P and metabolite P were associated with stronger chilling tolerance in KO. Bruguiera gymnorhiza exhibited relatively low concentrations of organic P in favorable and chilling conditions, but its partially survived population showed stronger compensation in nucleic acid P and Pi concentrations and gene expression during recovery.
Collapse
Affiliation(s)
- Li Yan
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bio-resources and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, 530004, China
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - V S John Sunoj
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bio-resources and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, 530004, China
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA
| | - Aidan W Short
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bio-resources and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, 530004, China
| | - Hans Lambers
- School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Nabil I Elsheery
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bio-resources and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, 530004, China
- Agriculture Botany Department, Tanta University, Tanta, 72513, Egypt
| | - Tadashi Kajita
- Iriomote Station, Tropical Biosphere Research Center, University of the Ryukyus, Uehara, Yaeyama, Taketomi, Okinawa, 907-1541, Japan
| | - Alison K S Wee
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bio-resources and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, 530004, China
- School of Environmental and Geographical Sciences, University of Nottingham Malaysia, Semenyih, 43500, Malaysia
| | - Kun-Fang Cao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bio-resources and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, 530004, China
| |
Collapse
|