1
|
Xu Z, Zhao Y. Study on the variation characteristics and influencing factors of stem water content of Acer truncatum during the overwintering period. JOURNAL OF PLANT RESEARCH 2024; 137:893-906. [PMID: 38977619 DOI: 10.1007/s10265-024-01561-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/23/2024] [Indexed: 07/10/2024]
Abstract
Stem water content serves as a pivotal parameter that reflects the plant vitality and maintains their internal water balance. Given the insufficient comprehension regarding the stem water content characteristics and its influencing factors during different stages of the overwintering period, the study focused on Acer truncatum Bunge and developed an Internet of Things (IoT)-based ecological information monitoring system. The system incorporated a proprietary stem water content sensor, allowing non-invasive, in-situ and real time acquisition of stem water content while monitoring diverse environmental parameters. We conducted a detailed elucidation of stem water content variation characteristics and their responses to diverse environmental factors. The results showed: (1) During the overwintering period, stem water content exhibited diurnal variations characterized by " daytime ascent and nighttime descent" across the three stages, exhibiting differences in the moment when the stem water content reaches extremal values and daily fluctuations ranges. Stem water content exhibited minimal fluctuations during deciduous and bud-breaking stages but experienced significant freezing-thawing alternations during the dormant stage, leading to an increased daily fluctuation range. (2) The Pearson correlation coefficients between environmental parameters and stem water content varied dynamically across stages. Path analysis revealed that during the deciduous stage, stem temperature and saturation vapor pressure deficit were dominant factors influencing stem water content; during dormant stage, air temperature and saturation vapor pressure deficit directly impacted stem water content; during the bud-breaking stage, the primary parameters affecting stem water content were saturation vapor pressure deficit and stem temperature. The study provides valuable insights into unveiling the water transport patterns within tree stems tissue and their environmental adaptation mechanisms during the overwintering period, aiding in the scientific development of winter management strategies to protect trees from severe cold and freezing damage, while fostering healthy growth in the subsequent year.
Collapse
Affiliation(s)
- Zehai Xu
- School of Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yandong Zhao
- School of Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
2
|
Wang N, Song M, Zhang Y, Liu X, Wu P, Qi L, Song H, Du N, Wang H, Zheng P, Wang R. Physiological responses of Quercus acutissima and Quercus rubra seedlings to drought and defoliation treatments. TREE PHYSIOLOGY 2023; 43:737-750. [PMID: 36708029 DOI: 10.1093/treephys/tpad005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 12/27/2022] [Accepted: 01/20/2023] [Indexed: 05/13/2023]
Abstract
Ongoing global climate change is increasing the risk of drought stress in some areas, which may compromise forest health. Such drought events also increase outbreaks of insect herbivores, resulting in plant defoliation. Interactions between drought and defoliation are poorly understood. In a greenhouse experiment, we selected a native species, Quercus acutissima Carr. and an alien species, Quercus rubra L. to explore their physiological responses to drought and defoliation treatments. After the treatments, we determined the seedlings' physiological responses on Days 10 and 60. Our results showed that the defoliation treatment accelerated the carbon reserve consumption of plants under drought stress and inhibited the growth of both seedling types. Under the drought condition, Q. rubra maintained normal stem-specific hydraulic conductivity and normal growth parameters during the early stage of stress, whereas Q. acutissima used less water and grew more slowly during the experiment. Sixty days after defoliation treatment, the stem starch concentration of Q. acutissima was higher than that of the control group, but the stem biomass was lower. This indicates that Q. acutissima adopted a 'slow strategy' after stress, and more resources were used for storage rather than growth, which was conducive to the ability of these seedlings to resist recurrent biotic attack. Thus, Q. acutissima may be more tolerant to drought and defoliation than Q. rubra. The resource acquisition strategies of Quercus in this study suggest that the native Quercus species may be more successful at a long-term resource-poor site than the alien Quercus species.
Collapse
Affiliation(s)
- Ning Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao 266237, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Meixia Song
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao 266237, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Yang Zhang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao 266237, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Xiao Liu
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao 266237, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Pan Wu
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao 266237, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Luyu Qi
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao 266237, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Huijia Song
- Beijing Museum of Natural History, 126 Tianqiao South Street, Beijing 100050, China
| | - Ning Du
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao 266237, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Hui Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao 266237, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Peiming Zheng
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao 266237, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Renqing Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, 72 Binhai Road, Qingdao 266237, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, 72 Binhai Road, Qingdao 266237, China
| |
Collapse
|
3
|
Tejera-Nieves M, Abraha M, Chen J, Hamilton SK, Robertson GP, Walker James B. Seasonal decline in leaf photosynthesis in perennial switchgrass explained by sink limitations and water deficit. FRONTIERS IN PLANT SCIENCE 2022; 13:1023571. [PMID: 36684783 PMCID: PMC9846045 DOI: 10.3389/fpls.2022.1023571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/07/2022] [Indexed: 05/05/2023]
Abstract
Leaf photosynthesis of perennial grasses usually decreases markedly from early to late summer, even when the canopy remains green and environmental conditions are favorable for photosynthesis. Understanding the physiological basis of this photosynthetic decline reveals the potential for yield improvement. We tested the association of seasonal photosynthetic decline in switchgrass (Panicum virgatum L.) with water availability by comparing plants experiencing ambient rainfall with plants in a rainfall exclusion experiment in Michigan, USA. For switchgrass exposed to ambient rainfall, daily net CO2 assimilation ( A n e t ' ) declined from 0.9 mol CO2 m-2 day-1 in early summer to 0.43 mol CO2 m-2 day-1 in late summer (53% reduction; P<0.0001). Under rainfall exclusion shelters, soil water content was 73% lower and A n e t ' was 12% and 26% lower in July and September, respectively, compared to those of the rainfed plants. Despite these differences, the seasonal photosynthetic decline was similar in the season-long rainfall exclusion compared to the rainfed plants; A n e t ' in switchgrass under the shelters declined from 0.85 mol CO2 m-2 day-1 in early summer to 0.39 mol CO2 m-2 day-1 (54% reduction; P<0.0001) in late summer. These results suggest that while water deficit limited A n e t ' late in the season, abundant late-season rainfalls were not enough to restore A n e t ' in the rainfed plants to early-summer values suggesting water deficit was not the sole driver of the decline. Alongside change in photosynthesis, starch in the rhizomes increased 4-fold (P<0.0001) and stabilized when leaf photosynthesis reached constant low values. Additionally, water limitation under shelters had no negative effects on the timing of rhizome starch accumulation, and rhizome starch content increased ~ 6-fold. These results showed that rhizomes also affect leaf photosynthesis during the growing season. Towards the end of the growing season, when vegetative growth is completed and rhizome reserves are filled, diminishing rhizome sink activity likely explained the observed photosynthetic declines in plants under both ambient and reduced water availability.
Collapse
Affiliation(s)
- Mauricio Tejera-Nieves
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, United States
| | - Michael Abraha
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, United States
- W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, United States
- Center for Global Change and Earth Observations, Michigan State University, East Lansing, MI, United States
| | - Jiquan Chen
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, United States
- Center for Global Change and Earth Observations, Michigan State University, East Lansing, MI, United States
- Department of Geography, Environment, and Spatial Sciences, Michigan State University, East Lansing, MI, United States
| | - Stephen K. Hamilton
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, United States
- W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, United States
- Department of Integrative Biology, Michigan State University, East Lansing, MI, United States
| | - G. Philip Robertson
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, United States
- W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, United States
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Berkley Walker James
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, United States
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
- *Correspondence: Berkley Walker James,
| |
Collapse
|
4
|
Liu X, Zhang Q, Song M, Wang N, Fan P, Wu P, Cui K, Zheng P, Du N, Wang H, Wang R. Physiological Responses of Robinia pseudoacacia and Quercus acutissima Seedlings to Repeated Drought-Rewatering Under Different Planting Methods. FRONTIERS IN PLANT SCIENCE 2021; 12:760510. [PMID: 34938307 PMCID: PMC8685255 DOI: 10.3389/fpls.2021.760510] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/08/2021] [Indexed: 05/03/2023]
Abstract
Changing precipitation patterns have aggravated the existing uneven water distribution, leading to the alternation of drought and rewatering. Based on this variation, we studied species, namely, Robinia pseudoacacia and Quercus acutissima, with different root forms and water regulation strategy to determine physiological responses to repeated drought-rewatering under different planting methods. Growth, physiological, and hydraulic traits were measured using pure and mixed planting seedlings that were subjected to drought, repeated drought-rewatering (i.e., treatments), and well-irrigated seedlings (i.e., control). Drought had negative effects on plant functional traits, such as significantly decreased xylem water potential (Ψmd), net photosynthetic rate (AP), and then height and basal diameter growth were slowed down, while plant species could form stress imprint and adopt compensatory mechanism after repeated drought-rewatering. Mixed planting of the two tree species prolonged the desiccation time during drought, slowed down Ψmd and AP decreasing, and after rewatering, plant functional traits could recover faster than pure planting. Our results demonstrate that repeated drought-rewatering could make plant species form stress imprint and adopt compensatory mechanism, while mixed planting could weaken the inhibition of drought and finally improve the overall drought resistance; this mechanism may provide a theoretical basis for afforestation and vegetation restoration in the warm temperate zone under rising uneven spatiotemporal water distribution.
Collapse
Affiliation(s)
- Xiao Liu
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Qinyuan Zhang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Meixia Song
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Ning Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | | | - Pan Wu
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Kening Cui
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Peiming Zheng
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Ning Du
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| | - Hui Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
- *Correspondence: Hui Wang,
| | - Renqing Wang
- Institute of Ecology and Biodiversity, School of Life Sciences, Shandong University, Qingdao, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Qingdao, China
- Qingdao Forest Ecology Research Station of National Forestry and Grassland Administration, Shandong University, Qingdao, China
| |
Collapse
|