1
|
Zarka KA, Jagd LM, Douches DS. T-DNA characterization of genetically modified 3-R-gene late blight-resistant potato events with a novel procedure utilizing the Samplix Xdrop ® enrichment technology. FRONTIERS IN PLANT SCIENCE 2024; 15:1330429. [PMID: 38419775 PMCID: PMC10900525 DOI: 10.3389/fpls.2024.1330429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
Before the commercialization of genetically modified crops, the events carrying the novel DNA must be thoroughly evaluated for agronomic, nutritional, and molecular characteristics. Over the years, polymerase chain reaction-based methods, Southern blot, and short-read sequencing techniques have been utilized for collecting molecular characterization data. Multiple genomic applications are necessary to determine the insert location, flanking sequence analysis, characterization of the inserted DNA, and determination of any interruption of native genes. These techniques are time-consuming and labor-intensive, making it difficult to characterize multiple events. Current advances in sequencing technologies are enabling whole-genomic sequencing of modified crops to obtain full molecular characterization. However, in polyploids, such as the tetraploid potato, it is a challenge to obtain whole-genomic sequencing coverage that meets the regulatory approval of the genetic modification. Here we describe an alternative to labor-intensive applications with a novel procedure using Samplix Xdrop® enrichment technology and next-generation Nanopore sequencing technology to more efficiently characterize the T-DNA insertions of four genetically modified potato events developed by the Feed the Future Global Biotech Potato Partnership: DIA_MSU_UB015, DIA_MSU_UB255, GRA_MSU_UG234, and GRA_MSU_UG265 (derived from regionally important varieties Diamant and Granola). Using the Xdrop® /Nanopore technique, we obtained a very high sequence read coverage within the T-DNA and junction regions. In three of the four events, we were able to use the data to confirm single T-DNA insertions, identify insert locations, identify flanking sequences, and characterize the inserted T-DNA. We further used the characterization data to identify native gene interruption and confirm the stability of the T-DNA across clonal cycles. These results demonstrate the functionality of using the Xdrop® /Nanopore technique for T-DNA characterization. This research will contribute to meeting regulatory safety and regulatory approval requirements for commercialization with small shareholder farmers in target countries within our partnership.
Collapse
Affiliation(s)
- Kelly A. Zarka
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | | | - David S. Douches
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
2
|
Banu MSA, Huda KMK, Harun-Ur-Rashid M, Parveen S, Tuteja N. A DEAD box helicase Psp68 positively regulates salt stress responses in marker-free transgenic rice plants. Transgenic Res 2023; 32:293-304. [PMID: 37247124 DOI: 10.1007/s11248-023-00353-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/16/2023] [Indexed: 05/30/2023]
Abstract
Helicases are the motor proteins not only involved in transcriptional and post-transcription process but also provide abiotic stress tolerance in many crops. The p68, belong to the SF2 (DEAD-box helicase) family proteins and overexpression of Psp68 providing enhanced tolerance to transgenic rice plants. In this study, salinity tolerant marker-free transgenic rice has been developed by overexpressing Psp68 gene and phenotypically characterized. The Psp68 overexpressing marker-free transgenic rice plants were initially screened in the rooting medium containing salt stress and 20% polyethylene glycol (PEG). Stable integration and overexpression of Psp68 in marker-free transgenic lines were confirmed by molecular analyses including PCR, southern, western blot, and qRT-PCR analyses. The marker-free transgenic lines showed enhanced tolerance to salinity stress as displayed by early seed germination, higher chlorophyll content, reduced necrosis, more survival rate, improved seedling growth and more grain yield per plant. Furthermore, Psp68 overexpressing marker-free transgenics also accumulated less Na+ and higher K+ ions in the presence of salinity stress. Phenotypic analyses also revealed that marker-free transgenic rice lines efficiently scavenge ROS-mediated damages as displayed by lower H2O2 and malondialdehyde content, delayed electrolyte leakage, higher photosynthetic efficiency, membrane stability, proline content and enhanced activities of antioxidants enzymes. Overall, our results confirmed that Psp68 overexpression confers salinity stress tolerance in marker-free transgenics, hence the technique could be utilized to develop genetically modified crops without any biosafety issues.
Collapse
Affiliation(s)
- Mst Sufara Akhter Banu
- Bangladesh Agricultural Research Council (BARC), Dhaka, 1215, Bangladesh
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India
| | - Kazi Md Kamrul Huda
- Department of Genetics and Plant Breeding, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh.
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India.
| | - Md Harun-Ur-Rashid
- Department of Genetics and Plant Breeding, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Shahanaz Parveen
- Department of Genetics and Plant Breeding, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India
| |
Collapse
|
3
|
Yuan G, Liu Y, Yao T, Muchero W, Chen JG, Tuskan GA, Yang X. eYGFPuv-Assisted Transgenic Selection in Populus deltoides WV94 and Multiplex Genome Editing in Protoplasts of P. trichocarpa × P. deltoides Clone '52-225'. PLANTS (BASEL, SWITZERLAND) 2023; 12:1657. [PMID: 37111880 PMCID: PMC10145771 DOI: 10.3390/plants12081657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/16/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Although CRISPR/Cas-based genome editing has been widely used for plant genetic engineering, its application in the genetic improvement of trees has been limited, partly because of challenges in Agrobacterium-mediated transformation. As an important model for poplar genomics and biotechnology research, eastern cottonwood (Populus deltoides) clone WV94 can be transformed by A. tumefaciens, but several challenges remain unresolved, including the relatively low transformation efficiency and the relatively high rate of false positives from antibiotic-based selection of transgenic events. Moreover, the efficacy of CRISPR-Cas system has not been explored in P. deltoides yet. Here, we first optimized the protocol for Agrobacterium-mediated stable transformation in P. deltoides WV94 and applied a UV-visible reporter called eYGFPuv in transformation. Our results showed that the transgenic events in the early stage of transformation could be easily recognized and counted in a non-invasive manner to narrow down the number of regenerated shoots for further molecular characterization (at the DNA or mRNA level) using PCR. We found that approximately 8.7% of explants regenerated transgenic shoots with green fluorescence within two months. Next, we examined the efficacy of multiplex CRISPR-based genome editing in the protoplasts derived from P. deltoides WV94 and hybrid poplar clone '52-225' (P. trichocarpa × P. deltoides clone '52-225'). The two constructs expressing the Trex2-Cas9 system resulted in mutation efficiency ranging from 31% to 57% in hybrid poplar clone 52-225, but no editing events were observed in P. deltoides WV94 transient assay. The eYGFPuv-assisted plant transformation and genome editing approach demonstrated in this study has great potential for accelerating the genome editing-based breeding process in poplar and other non-model plants species and point to the need for additional CRISPR work in P. deltoides.
Collapse
Affiliation(s)
- Guoliang Yuan
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Chemical and Biological Process Development Group, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99352, USA
| | - Yang Liu
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN 37831, USA
| | - Tao Yao
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Wellington Muchero
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin-Gui Chen
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Gerald A. Tuskan
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xiaohan Yang
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
4
|
Recent Advances in Antibiotic-Free Markers; Novel Technologies to Enhance Safe Human Food Production in the World. Mol Biotechnol 2022:10.1007/s12033-022-00609-7. [DOI: 10.1007/s12033-022-00609-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022]
|
5
|
Sahu PK, Sao R, Choudhary DK, Thada A, Kumar V, Mondal S, Das BK, Jankuloski L, Sharma D. Advancement in the Breeding, Biotechnological and Genomic Tools towards Development of Durable Genetic Resistance against the Rice Blast Disease. PLANTS 2022; 11:plants11182386. [PMID: 36145787 PMCID: PMC9504543 DOI: 10.3390/plants11182386] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 01/02/2023]
Abstract
Rice production needs to be sustained in the coming decades, as the changeable climatic conditions are becoming more conducive to disease outbreaks. The majority of rice diseases cause enormous economic damage and yield instability. Among them, rice blast caused by Magnaportheoryzae is a serious fungal disease and is considered one of the major threats to world rice production. This pathogen can infect the above-ground tissues of rice plants at any growth stage and causes complete crop failure under favorable conditions. Therefore, management of blast disease is essentially required to sustain global food production. When looking at the drawback of chemical management strategy, the development of durable, resistant varieties is one of the most sustainable, economic, and environment-friendly approaches to counter the outbreaks of rice blasts. Interestingly, several blast-resistant rice cultivars have been developed with the help of breeding and biotechnological methods. In addition, 146 R genes have been identified, and 37 among them have been molecularly characterized to date. Further, more than 500 loci have been identified for blast resistance which enhances the resources for developing blast resistance through marker-assisted selection (MAS), marker-assisted backcross breeding (MABB), and genome editing tools. Apart from these, a better understanding of rice blast pathogens, the infection process of the pathogen, and the genetics of the immune response of the host plant are very important for the effective management of the blast disease. Further, high throughput phenotyping and disease screening protocols have played significant roles in easy comprehension of the mechanism of disease spread. The present review critically emphasizes the pathogenesis, pathogenomics, screening techniques, traditional and molecular breeding approaches, and transgenic and genome editing tools to develop a broad spectrum and durable resistance against blast disease in rice. The updated and comprehensive information presented in this review would be definitely helpful for the researchers, breeders, and students in the planning and execution of a resistance breeding program in rice against this pathogen.
Collapse
Affiliation(s)
- Parmeshwar K. Sahu
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
| | - Richa Sao
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
| | | | - Antra Thada
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
| | - Vinay Kumar
- ICAR-National Institute of Biotic Stress Management, Baronda, Raipur 493225, Chhattisgarh, India
| | - Suvendu Mondal
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Bikram K. Das
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Ljupcho Jankuloski
- Plant Breeding and Genetics Section, Joint FAO/IAEA Centre, International Atomic Energy Agency, 1400 Vienna, Austria
- Correspondence: (L.J.); (D.S.); Tel.: +91-7000591137 (D.S.)
| | - Deepak Sharma
- Department of Genetics and Plant Breeding, Indira Gandhi Krishi Vishwavidyalaya, Raipur 492012, Chhattisgarh, India
- Correspondence: (L.J.); (D.S.); Tel.: +91-7000591137 (D.S.)
| |
Collapse
|
6
|
Cao Y, Chen J, Xie X, Liu S, Jiang Y, Pei M, Wu Q, Qi P, Du L, Peng B, Lan J, Wu F, Feng K, Zhang Y, Fang Y, Liu M, Jaber MY, Wang Z, Olsson S, Lu G, Li Y. Characterization of two infection-induced transcription factors of Magnaporthe oryzae reveals their roles in regulating early infection and effector expression. MOLECULAR PLANT PATHOLOGY 2022; 23:1200-1213. [PMID: 35430769 PMCID: PMC9276953 DOI: 10.1111/mpp.13224] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/03/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
The initial stage of rice blast fungus, Magnaporthe oryzae, infection, before 36 h postinoculation, is a critical timespan for deploying pathogen effectors to overcome the host's defences and ultimately cause the disease. However, how this process is regulated at the transcription level remains largely unknown. This study functionally characterized two M. oryzae Early Infection-induced Transcription Factor genes (MOEITF1 and MOEITF2) and analysed their roles in this process. Target gene deletion and mutant phenotype analysis showed that the mutants Δmoeitf1 and Δmoeitf2 were only defective for infection growth but not for vegetative growth, asexual/sexual sporulation, conidial germination, and appressoria formation. Gene expression analysis of 30 putative effectors revealed that most effector genes were down-regulated in mutants, implying a potential regulation by the transcription factors. Artificial overexpression of two severely down-regulated effectors, T1REP and T2REP, in the mutants partially restored the pathogenicity of Δmoeitf1 and Δmoeitf2, respectively, indicating that these are directly regulated. Yeast one-hybrid assay and electrophoretic mobility shift assay indicated that Moeitf1 specifically bound the T1REP promoter and Moeitf2 specifically bound the T2REP promoter. Both T1REP and T2REP were predicted to be secreted during infection, and the mutants of T2REP were severely reduced in pathogenicity. Our results indicate crucial roles for the fungal-specific Moeitf1 and Moeitf2 transcription factors in regulating an essential step in M. oryzae early establishment after penetrating rice epidermal cells, highlighting these as possible targets for disease control.
Collapse
Affiliation(s)
- Yiyang Cao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jia Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Xuze Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Shenghua Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yue Jiang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Mengtian Pei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Qianfei Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Pengfei Qi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Lili Du
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Baoyi Peng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jianwu Lan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Fan Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Ke Feng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yifei Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yu Fang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Muxing Liu
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjingChina
| | - Mohammed Y. Jaber
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Present address:
Department of Plant Production and ProtectionFaculty of Agriculture and Veterinary MedicineAn‐Najah National UniversityNablusPalestine
| | - Zonghua Wang
- Institue of OceanographyMinjiang UniversityFuzhouChina
| | - Stefan Olsson
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Plant Immunity CenterHaixia Institute of Science and Technology, College of Life Science, Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Ya Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
7
|
Singh R, Kaur N, Praba UP, Kaur G, Tanin MJ, Kumar P, Neelam K, Sandhu JS, Vikal Y. A Prospective Review on Selectable Marker-Free Genome Engineered Rice: Past, Present and Future Scientific Realm. Front Genet 2022; 13:882836. [PMID: 35754795 PMCID: PMC9219106 DOI: 10.3389/fgene.2022.882836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
As a staple food crop, rice has gained mainstream attention in genome engineering for its genetic improvement. Genome engineering technologies such as transgenic and genome editing have enabled the significant improvement of target traits in relation to various biotic and abiotic aspects as well as nutrition, for which genetic diversity is lacking. In comparison to conventional breeding, genome engineering techniques are more precise and less time-consuming. However, one of the major issues with biotech rice commercialization is the utilization of selectable marker genes (SMGs) in the vector construct, which when incorporated into the genome are considered to pose risks to human health, the environment, and biodiversity, and thus become a matter of regulation. Various conventional strategies (co-transformation, transposon, recombinase systems, and MAT-vector) have been used in rice to avoid or remove the SMG from the developed events. However, the major limitations of these methods are; time-consuming, leftover cryptic sequences in the genome, and there is variable frequency. In contrast to these methods, CRISPR/Cas9-based marker excision, marker-free targeted gene insertion, programmed self-elimination, and RNP-based delivery enable us to generate marker-free engineered rice plants precisely and in less time. Although the CRISPR/Cas9-based SMG-free approaches are in their early stages, further research and their utilization in rice could help to break the regulatory barrier in its commercialization. In the current review, we have discussed the limitations of traditional methods followed by advanced techniques. We have also proposed a hypothesis, “DNA-free marker-less transformation” to overcome the regulatory barriers posed by SMGs.
Collapse
Affiliation(s)
- Rajveer Singh
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Navneet Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Umesh Preethi Praba
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Gurwinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Mohammad Jafar Tanin
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Pankaj Kumar
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Kumari Neelam
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Jagdeep Singh Sandhu
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Yogesh Vikal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
8
|
Marker-Free Rice (Oryza sativa L. cv. IR 64) Overexpressing PDH45 Gene Confers Salinity Tolerance by Maintaining Photosynthesis and Antioxidant Machinery. Antioxidants (Basel) 2022; 11:antiox11040770. [PMID: 35453455 PMCID: PMC9025255 DOI: 10.3390/antiox11040770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022] Open
Abstract
Helicases function as key enzymes in salinity stress tolerance, and the role and function of PDH45 (pea DNA helicase 45) in stress tolerance have been reported in different crops with selectable markers, raising public and regulatory concerns. In the present study, we developed five lines of marker-free PDH45-overexpressing transgenic lines of rice (Oryza sativa L. cv. IR64). The overexpression of PDH45 driven by CaMV35S promoter in transgenic rice conferred high salinity (200 mM NaCl) tolerance in the T1 generation. Molecular attributes such as PCR, RT-PCR, and Southern and Western blot analyses confirmed stable integration and expression of the PDH45 gene in the PDH45-overexpressing lines. We observed higher endogenous levels of sugars (glucose and fructose) and hormones (GA, zeatin, and IAA) in the transgenic lines in comparison to control plants (empty vector (VC) and wild type (WT)) under salt treatments. Furthermore, photosynthetic characteristics such as net photosynthetic rate (Pn), stomatal conductance (gs), intercellular CO2 (Ci), and chlorophyll (Chl) content were significantly higher in transgenic lines under salinity stress as compared to control plants. However, the maximum primary photochemical efficiency of PSII, as an estimated from variable to maximum chlorophyll a fluorescence (Fv/Fm), was identical in the transgenics to that in the control plants. The activities of antioxidant enzymes, such as catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), and guaiacol peroxidase (GPX), were significantly higher in transgenic lines in comparison to control plants, which helped in keeping the oxidative stress burden (MDA and H2O2) lesser on transgenic lines, thus protecting the growth and photosynthetic efficiency of the plants. Overall, the present research reports the development of marker-free PDH45-overexpressing transgenic lines for salt tolerance that can potentially avoid public and biosafety concerns and facilitate the commercialization of genetically engineered crop plants.
Collapse
|
9
|
Tan J, Wang Y, Chen S, Lin Z, Zhao Y, Xue Y, Luo Y, Liu YG, Zhu Q. An Efficient Marker Gene Excision Strategy Based on CRISPR/Cas9-Mediated Homology-Directed Repair in Rice. Int J Mol Sci 2022; 23:1588. [PMID: 35163510 PMCID: PMC8835944 DOI: 10.3390/ijms23031588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 01/05/2023] Open
Abstract
In order to separate transformed cells from non-transformed cells, antibiotic selectable marker genes are usually utilized in genetic transformation. After obtaining transgenic plants, it is often necessary to remove the marker gene from the plant genome in order to avoid regulatory issues. However, many marker-free systems are time-consuming and labor-intensive. Homology-directed repair (HDR) is a process of homologous recombination using homologous arms for efficient and precise repair of DNA double-strand breaks (DSBs). The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 (Cas9) system is a powerful genome editing tool that can efficiently cause DSBs. Here, we isolated a rice promoter (Pssi) of a gene that highly expressed in stem, shoot tip and inflorescence, and established a high-efficiency sequence-excision strategy by using this Pssi to drive CRISPR/Cas9-mediated HDR for marker free (PssiCHMF). In our study, PssiCHMF-induced marker gene deletion was detected in 73.3% of T0 plants and 83.2% of T1 plants. A high proportion (55.6%) of homozygous marker-excised plants were obtained in T1 progeny. The recombinant GUS reporter-aided analysis and its sequencing of the recombinant products showed precise deletion and repair mediated by the PssiCHMF method. In conclusion, our CRISPR/Cas9-mediated HDR auto-excision method provides a time-saving and efficient strategy for removing the marker genes from transgenic plants.
Collapse
Affiliation(s)
- Jiantao Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (J.T.); (Y.W.); (S.C.); (Z.L.); (Y.Z.); (Y.X.); (Y.L.); (Y.-G.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yaxi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (J.T.); (Y.W.); (S.C.); (Z.L.); (Y.Z.); (Y.X.); (Y.L.); (Y.-G.L.)
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shuifu Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (J.T.); (Y.W.); (S.C.); (Z.L.); (Y.Z.); (Y.X.); (Y.L.); (Y.-G.L.)
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhansheng Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (J.T.); (Y.W.); (S.C.); (Z.L.); (Y.Z.); (Y.X.); (Y.L.); (Y.-G.L.)
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yanchang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (J.T.); (Y.W.); (S.C.); (Z.L.); (Y.Z.); (Y.X.); (Y.L.); (Y.-G.L.)
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yang Xue
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (J.T.); (Y.W.); (S.C.); (Z.L.); (Y.Z.); (Y.X.); (Y.L.); (Y.-G.L.)
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yuyu Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (J.T.); (Y.W.); (S.C.); (Z.L.); (Y.Z.); (Y.X.); (Y.L.); (Y.-G.L.)
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (J.T.); (Y.W.); (S.C.); (Z.L.); (Y.Z.); (Y.X.); (Y.L.); (Y.-G.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (J.T.); (Y.W.); (S.C.); (Z.L.); (Y.Z.); (Y.X.); (Y.L.); (Y.-G.L.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|