1
|
Singh S, Viswanath A, Chakraborty A, Narayanan N, Malipatil R, Jacob J, Mittal S, Satyavathi TC, Thirunavukkarasu N. Identification of key genes and molecular pathways regulating heat stress tolerance in pearl millet to sustain productivity in challenging ecologies. FRONTIERS IN PLANT SCIENCE 2024; 15:1443681. [PMID: 39239194 PMCID: PMC11374647 DOI: 10.3389/fpls.2024.1443681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/29/2024] [Indexed: 09/07/2024]
Abstract
Pearl millet is a nutri-cereal that is mostly grown in harsh environments, making it an ideal crop to study heat tolerance mechanisms at the molecular level. Despite having a better-inbuilt tolerance to high temperatures than other crops, heat stress negatively affects the crop, posing a threat to productivity gain. Hence, to understand the heat-responsive genes, the leaf and root samples of two contrasting pearl millet inbreds, EGTB 1034 (heat tolerant) and EGTB 1091 (heat sensitive), were subjected to heat-treated conditions and generated genome-wide transcriptomes. We discovered 13,464 differentially expressed genes (DEGs), of which 6932 were down-regulated and 6532 up-regulated in leaf and root tissues. The pairwise analysis of the tissue-based transcriptome data of the two genotypes demonstrated distinctive genotype and tissue-specific expression of genes. The root exhibited a higher number of DEGs compared to the leaf, emphasizing different adaptive strategies of pearl millet. A large number of genes encoding ROS scavenging enzymes, WRKY, NAC, enzymes involved in nutrient uptake, protein kinases, photosynthetic enzymes, and heat shock proteins (HSPs) and several transcription factors (TFs) involved in cross-talking of temperature stress responsive mechanisms were activated in the stress conditions. Ribosomal proteins emerged as pivotal hub genes, highly interactive with key genes expressed and involved in heat stress response. The synthesis of secondary metabolites and metabolic pathways of pearl millet were significantly enriched under heat stress. Comparative synteny analysis of HSPs and TFs in the foxtail millet genome demonstrated greater collinearity with pearl millet compared to proso millet, rice, sorghum, and maize. In this study, 1906 unannotated DEGs were identified, providing insight into novel participants in the molecular response to heat stress. The identified genes hold promise for expediting varietal development for heat tolerance in pearl millet and similar crops, fostering resilience and enhancing grain yield in heat-prone environments.
Collapse
Affiliation(s)
- Swati Singh
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Aswini Viswanath
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Animikha Chakraborty
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Neha Narayanan
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Renuka Malipatil
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Jinu Jacob
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Shikha Mittal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, India
| | - Tara C Satyavathi
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| | - Nepolean Thirunavukkarasu
- Genomics and Molecular Breeding Lab, Global Center of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad, India
| |
Collapse
|
2
|
Prusty A, Panchal A, Singh RK, Prasad M. Major transcription factor families at the nexus of regulating abiotic stress response in millets: a comprehensive review. PLANTA 2024; 259:118. [PMID: 38592589 DOI: 10.1007/s00425-024-04394-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/17/2024] [Indexed: 04/10/2024]
Abstract
Millets stand out as a sustainable crop with the potential to address the issues of food insecurity and malnutrition. These small-seeded, drought-resistant cereals have adapted to survive a broad spectrum of abiotic stresses. Researchers are keen on unravelling the regulatory mechanisms that empower millets to withstand environmental adversities. The aim is to leverage these identified genetic determinants from millets for enhancing the stress tolerance of major cereal crops through genetic engineering or breeding. This review sheds light on transcription factors (TFs) that govern diverse abiotic stress responses and play role in conferring tolerance to various abiotic stresses in millets. Specifically, the molecular functions and expression patterns of investigated TFs from various families, including bHLH, bZIP, DREB, HSF, MYB, NAC, NF-Y and WRKY, are comprehensively discussed. It also explores the potential of TFs in developing stress-tolerant crops, presenting a comprehensive discussion on diverse strategies for their integration.
Collapse
Affiliation(s)
- Ankita Prusty
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Anurag Panchal
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Roshan Kumar Singh
- Department of Botany, Mahishadal Raj College, Purba Medinipur, Garh Kamalpur, West Bengal, 721628, India
| | - Manoj Prasad
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Department of Genetics, University of Delhi, South Campus, Benito-Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
3
|
Kumar B, Singh AK, Bahuguna RN, Pareek A, Singla‐Pareek SL. Orphan crops: A genetic treasure trove for hunting stress tolerance genes. Food Energy Secur 2022. [DOI: 10.1002/fes3.436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Brijesh Kumar
- Plant Stress Biology Group International Centre for Genetic Engineering and Biotechnology New Delhi India
| | - Anil Kumar Singh
- ICAR‐National Institute for Plant Biotechnology LBS Centre New Delhi India
| | - Rajeev Nayan Bahuguna
- Center for Advanced Studies on Climate Change Dr. Rajendra Prasad Central Agricultural University Bihar Pusa, Samastipur India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences Jawaharlal Nehru University New Delhi India
| | - Sneh L. Singla‐Pareek
- Plant Stress Biology Group International Centre for Genetic Engineering and Biotechnology New Delhi India
| |
Collapse
|
4
|
Srivastava RK, Yadav OP, Kaliamoorthy S, Gupta SK, Serba DD, Choudhary S, Govindaraj M, Kholová J, Murugesan T, Satyavathi CT, Gumma MK, Singh RB, Bollam S, Gupta R, Varshney RK. Breeding Drought-Tolerant Pearl Millet Using Conventional and Genomic Approaches: Achievements and Prospects. FRONTIERS IN PLANT SCIENCE 2022; 13:781524. [PMID: 35463391 PMCID: PMC9021881 DOI: 10.3389/fpls.2022.781524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/11/2022] [Indexed: 06/03/2023]
Abstract
Pearl millet [Pennisetum glaucum (L.) R. Br.] is a C4 crop cultivated for its grain and stover in crop-livestock-based rain-fed farming systems of tropics and subtropics in the Indian subcontinent and sub-Saharan Africa. The intensity of drought is predicted to further exacerbate because of looming climate change, necessitating greater focus on pearl millet breeding for drought tolerance. The nature of drought in different target populations of pearl millet-growing environments (TPEs) is highly variable in its timing, intensity, and duration. Pearl millet response to drought in various growth stages has been studied comprehensively. Dissection of drought tolerance physiology and phenology has helped in understanding the yield formation process under drought conditions. The overall understanding of TPEs and differential sensitivity of various growth stages to water stress helped to identify target traits for manipulation through breeding for drought tolerance. Recent advancement in high-throughput phenotyping platforms has made it more realistic to screen large populations/germplasm for drought-adaptive traits. The role of adapted germplasm has been emphasized for drought breeding, as the measured performance under drought stress is largely an outcome of adaptation to stress environments. Hybridization of adapted landraces with selected elite genetic material has been stated to amalgamate adaptation and productivity. Substantial progress has been made in the development of genomic resources that have been used to explore genetic diversity, linkage mapping (QTLs), marker-trait association (MTA), and genomic selection (GS) in pearl millet. High-throughput genotyping (HTPG) platforms are now available at a low cost, offering enormous opportunities to apply markers assisted selection (MAS) in conventional breeding programs targeting drought tolerance. Next-generation sequencing (NGS) technology, micro-environmental modeling, and pearl millet whole genome re-sequence information covering circa 1,000 wild and cultivated accessions have helped to greater understand germplasm, genomes, candidate genes, and markers. Their application in molecular breeding would lead to the development of high-yielding and drought-tolerant pearl millet cultivars. This review examines how the strategic use of genetic resources, modern genomics, molecular biology, and shuttle breeding can further enhance the development and delivery of drought-tolerant cultivars.
Collapse
Affiliation(s)
- Rakesh K. Srivastava
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - O. P. Yadav
- Indian Council of Agricultural Research-Central Arid Zone Research Institute, Jodhpur, India
| | - Sivasakthi Kaliamoorthy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - S. K. Gupta
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Desalegn D. Serba
- United States Department of Agriculture-Agriculture Research Service (ARS), U.S. Arid Land Agricultural Research Center, Maricopa, AZ, United States
| | - Sunita Choudhary
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Mahalingam Govindaraj
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Jana Kholová
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Tharanya Murugesan
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - C. Tara Satyavathi
- Indian Council of Agricultural Research – All India Coordinated Research Project on Pearl Millet, Jodhpur, India
| | - Murali Krishna Gumma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Ram B. Singh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Srikanth Bollam
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Rajeev Gupta
- United States Department of Agriculture-Agriculture Research Service (ARS), Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
- State Agricultural Biotechnology Centre, Centre for Crop & Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
5
|
Ndiaye A, Diallo AO, Fall NC, Diouf RD, Diouf D, Kane NA. Transcriptomic analysis of methyl jasmonate treatment reveals gene networks involved in drought tolerance in pearl millet. Sci Rep 2022; 12:5158. [PMID: 35338214 PMCID: PMC8956577 DOI: 10.1038/s41598-022-09152-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/16/2022] [Indexed: 11/09/2022] Open
Abstract
Water deficit stress at the early stage of development is one of the main factors limiting pearl millet production. One practice to counteract this limitation would be to resort to the application of hormones to stimulate plant growth and development at critical stages. Exogenous methyl jasmonate (MeJA) can improve drought tolerance by modulating signaling, metabolism, and photosynthesis pathways, therefore, we assumed that can occur in pearl millet during the early stage of development. To decipher the molecular mechanisms controlling these pathways, RNAseq was conducted in two pearl millet genotypes, drought-sensitive SosatC88 and drought-tolerant Souna3, in response to 200 μM of MeJA. Pairwise comparison between the MeJA-treated and non-treated plants revealed 3270 differentially expressed genes (DEGs) among 20,783 transcripts in SosatC88 and 127 DEGs out of 20,496 transcripts in Souna3. Gene ontology (GO) classification assigned most regulated DEGs in SosatC88 to heme binding, oxidation-reduction process, response to oxidative stress and membrane, and in Souna3 to terpene synthase activity, lyase activity, magnesium ion binding, and thylakoid. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis reveals that DEGs in SosatC88 are related to the oxidation-reduction process, the biosynthesis of other secondary metabolites, the signal transduction, and the metabolism of terpenoids, while in Souna3, DEGs are related to the metabolism of terpenoids and the energy metabolism. Two genes encoding a diterpenoid biosynthesis-related (Pgl_GLEAN_10009413) and a Glutathione S transferase T3 (Pgl_GLEAN_10034098) were contra-regulated between SosatC88 and Souna3. Additionally, five random genes differentially expressed by RNAseq were validated using qPCR, therefore, they are potential targets for the development of novel strategies breeding schemes for plant growth under water deficit stress. These insights into the molecular mechanisms of pearl millet genotype tolerance at the early stage of development contribute to the understanding of the role of hormones in adaptation to drought-prone environments.
Collapse
Affiliation(s)
- Adama Ndiaye
- Centre d'Étude Régional Pour L'Amélioration de L'Adaptation À La Sècheresse (CERAAS), Institut Sénégalais de Recherches Agricoles (ISRA), Route de Khombole, Thiès, BP 3320, Sénégal.,Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté Des Sciences Et Techniques, Université Cheikh Anta Diop (UCAD), 10700, Dakar-Fann, Dakar, Sénégal.,Laboratoire Mixte International Adaptation Des Plantes Et Des Microorganismes Associés Aux Stress Environnementaux (LAPSE), Dakar, Sénégal
| | - Amadou Oury Diallo
- Centre d'Étude Régional Pour L'Amélioration de L'Adaptation À La Sècheresse (CERAAS), Institut Sénégalais de Recherches Agricoles (ISRA), Route de Khombole, Thiès, BP 3320, Sénégal.,Laboratoire Mixte International Adaptation Des Plantes Et Des Microorganismes Associés Aux Stress Environnementaux (LAPSE), Dakar, Sénégal
| | - Ndèye Coura Fall
- Centre d'Étude Régional Pour L'Amélioration de L'Adaptation À La Sècheresse (CERAAS), Institut Sénégalais de Recherches Agricoles (ISRA), Route de Khombole, Thiès, BP 3320, Sénégal
| | - Rose Diambogne Diouf
- Centre d'Étude Régional Pour L'Amélioration de L'Adaptation À La Sècheresse (CERAAS), Institut Sénégalais de Recherches Agricoles (ISRA), Route de Khombole, Thiès, BP 3320, Sénégal
| | - Diaga Diouf
- Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté Des Sciences Et Techniques, Université Cheikh Anta Diop (UCAD), 10700, Dakar-Fann, Dakar, Sénégal.,Laboratoire Mixte International Adaptation Des Plantes Et Des Microorganismes Associés Aux Stress Environnementaux (LAPSE), Dakar, Sénégal
| | - Ndjido Ardo Kane
- Centre d'Étude Régional Pour L'Amélioration de L'Adaptation À La Sècheresse (CERAAS), Institut Sénégalais de Recherches Agricoles (ISRA), Route de Khombole, Thiès, BP 3320, Sénégal. .,Laboratoire Mixte International Adaptation Des Plantes Et Des Microorganismes Associés Aux Stress Environnementaux (LAPSE), Dakar, Sénégal.
| |
Collapse
|
6
|
Satyavathi CT, Tomar RS, Ambawat S, Kheni J, Padhiyar SM, Desai H, Bhatt SB, Shitap MS, Meena RC, Singhal T, Sankar SM, Singh SP, Khandelwal V. Stage specific comparative transcriptomic analysis to reveal gene networks regulating iron and zinc content in pearl millet [Pennisetum glaucum (L.) R. Br.]. Sci Rep 2022; 12:276. [PMID: 34997160 PMCID: PMC8742121 DOI: 10.1038/s41598-021-04388-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Pearl millet is an important staple food crop of poor people and excels all other cereals due to its unique features of resilience to adverse climatic conditions. It is rich in micronutrients like iron and zinc and amenable for focused breeding for these micronutrients along with high yield. Hence, this is a key to alleviate malnutrition and ensure nutritional security. This study was conducted to identify and validate candidate genes governing grain iron and zinc content enabling the desired modifications in the genotypes. Transcriptome sequencing using ION S5 Next Generation Sequencer generated 43.5 million sequence reads resulting in 83,721 transcripts with N50 of 597 bp and 84.35% of transcripts matched with the pearl millet genome assembly. The genotypes having high iron and zinc showed differential gene expression during different stages. Of which, 155 were up-regulated and 251 were down-regulated while during flowering stage and milking stage 349 and 378 transcripts were differentially expressed, respectively. Gene annotation and GO term showed the presence of transcripts involved in metabolic activities associated with uptake and transport of iron and zinc. Information generated will help in gaining insights into iron and zinc metabolism and develop genotypes with high yield, grain iron and zinc content.
Collapse
Affiliation(s)
- C Tara Satyavathi
- ICAR-AICRP on Pearl Millet, Agriculture University, Jodhpur, Rajasthan, 342 304, India.
| | - Rukam S Tomar
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Supriya Ambawat
- ICAR-AICRP on Pearl Millet, Agriculture University, Jodhpur, Rajasthan, 342 304, India
| | - Jasminkumar Kheni
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Shital M Padhiyar
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Hiralben Desai
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - S B Bhatt
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - M S Shitap
- Department of Agricultural Statistics, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Ramesh Chand Meena
- ICAR-AICRP on Pearl Millet, Agriculture University, Jodhpur, Rajasthan, 342 304, India
| | - Tripti Singhal
- Division of Genetics, Indian Agricultural Research Institute, ICAR, New Delhi, India
| | - S Mukesh Sankar
- Division of Genetics, Indian Agricultural Research Institute, ICAR, New Delhi, India
| | - S P Singh
- Division of Genetics, Indian Agricultural Research Institute, ICAR, New Delhi, India
| | - Vikas Khandelwal
- ICAR-AICRP on Pearl Millet, Agriculture University, Jodhpur, Rajasthan, 342 304, India
| |
Collapse
|
7
|
Satyavathi CT, Ambawat S, Khandelwal V, Srivastava RK. Pearl Millet: A Climate-Resilient Nutricereal for Mitigating Hidden Hunger and Provide Nutritional Security. FRONTIERS IN PLANT SCIENCE 2021; 12:659938. [PMID: 34589092 PMCID: PMC8475763 DOI: 10.3389/fpls.2021.659938] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 08/03/2021] [Indexed: 06/03/2023]
Abstract
Pearl millet [Pennisetum glaucum (L.) R. Br.] is the sixth most important cereal crop after rice, wheat, maize, barley and sorghum. It is widely grown on 30 million ha in the arid and semi-arid tropical regions of Asia and Africa, accounting for almost half of the global millet production. Climate change affects crop production by directly influencing biophysical factors such as plant and animal growth along with the various areas associated with food processing and distribution. Assessment of the effects of global climate changes on agriculture can be helpful to anticipate and adapt farming to maximize the agricultural production more effectively. Pearl millet being a climate-resilient crop is important to minimize the adverse effects of climate change and has the potential to increase income and food security of farming communities in arid regions. Pearl millet has a deep root system and can survive in a wide range of ecological conditions under water scarcity. It has high photosynthetic efficiency with an excellent productivity and growth in low nutrient soil conditions and is less reliant on chemical fertilizers. These attributes have made it a crop of choice for cultivation in arid and semi-arid regions of the world; however, fewer efforts have been made to study the climate-resilient features of pearl millet in comparison to the other major cereals. Several hybrids and varieties of pearl millet were developed during the past 50 years in India by both the public and private sectors. Pearl millet is also nutritionally superior and rich in micronutrients such as iron and zinc and can mitigate malnutrition and hidden hunger. Inclusion of minimum standards for micronutrients-grain iron and zinc content in the cultivar release policy-is the first of its kind step taken in pearl millet anywhere in the world, which can lead toward enhanced food and nutritional security. The availability of high-quality whole-genome sequencing and re-sequencing information of several lines may aid genomic dissection of stress tolerance and provide a good opportunity to further exploit the nutritional and climate-resilient attributes of pearl millet. Hence, more efforts should be put into its genetic enhancement and improvement in inheritance to exploit it in a better way. Thus, pearl millet is the next-generation crop holding the potential of nutritional richness and the climate resilience and efforts must be targeted to develop nutritionally dense hybrids/varieties tolerant to drought using different omics approaches.
Collapse
Affiliation(s)
- C. Tara Satyavathi
- Indian Council of Agricultural Research - All India Coordinated Research Project on Pearl Millet, Jodhpur, India
| | - Supriya Ambawat
- Indian Council of Agricultural Research - All India Coordinated Research Project on Pearl Millet, Jodhpur, India
| | - Vikas Khandelwal
- Indian Council of Agricultural Research - All India Coordinated Research Project on Pearl Millet, Jodhpur, India
| | - Rakesh K. Srivastava
- Department of Molecular Breeding (Genomics Trait Discovery), International Crops Research Institute for Semi-arid Tropics, Patancheru, India
| |
Collapse
|