1
|
Hočevar K, Vuleta A, Manitašević Jovanović S. Plastic Responses of Iris pumila Functional and Mechanistic Leaf Traits to Experimental Warming. PLANTS (BASEL, SWITZERLAND) 2025; 14:960. [PMID: 40338248 PMCID: PMC11944494 DOI: 10.3390/plants14060960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 05/09/2025]
Abstract
Phenotypic plasticity is an important adaptive strategy that enables plants to respond to environmental changes, particularly temperature fluctuations associated with global warming. In this study, the phenotypic plasticity of Iris pumila leaf traits in response to an elevated temperature (by 1 °C) was investigated under controlled experimental conditions. In particular, we investigated important functional and mechanistic leaf traits: specific leaf area (SLA), leaf dry matter content (LDMC), specific leaf water content (SLWC), stomatal density (SD), leaf thickness (LT), and chlorophyll content. The results revealed that an elevated temperature induced trait-specific plastic responses, with mechanistic traits exhibiting greater plasticity than functional traits, reflecting their role in short-term acclimation. SLA and SD increased at higher temperatures, promoting photosynthesis and gas exchange, while reductions in SLWC, LDMC, LT, and chlorophyll content suggest a trade-off in favor of growth and metabolic activity over structural investment. Notably, chlorophyll content exhibited the highest plasticity, emphasizing its crucial role in modulating photosynthetic efficiency under thermal stress. Correlation analyses revealed strong phenotypic integration between leaf traits, with distinct trait relationships emerging under different temperature conditions. These findings suggest that I. pumila employs both rapid physiological adjustments and longer-term structural strategies to cope with thermal stress, with mechanistic traits facilitating rapid adjustments and functional traits maintaining ecological stability.
Collapse
Affiliation(s)
| | | | - Sanja Manitašević Jovanović
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (K.H.); (A.V.)
| |
Collapse
|
2
|
Dong A, Wang N, Zenda T, Zhai X, Zhong Y, Yang Q, Xing Y, Duan H, Yan X. ZmDnaJ-ZmNCED6 module positively regulates drought tolerance via modulating stomatal closure in maize. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 218:109286. [PMID: 39571456 DOI: 10.1016/j.plaphy.2024.109286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/03/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024]
Abstract
Heat Shock Protein plays a vital role in maintaining protein homeostasis and protecting cells from stress stimulation. As one of the HSP40 proteins, DnaJ is a stress response protein widely existing in plant cells. The function and regulatory mechanism of ZmDnaJ, a novel chloroplast-localized type-III HSP40, in maize drought tolerance were characterized. Tissue-specific expression analysis showed that ZmDnaJ is highly expressed in the leaves, and is strongly drought-induced in maize seedlings. Overexpression of ZmDnaJ improved maize drought tolerance by enhancing stomatal closure and increasing ABA content to mediate photosynthesis. In contrast, the CRISPR-Cas9 knockout zmdnaj mutant showed lower relative water content and high sensitivity to drought stress. Moreover, Y2H, BiFC and Co-IP analyses revealed that ZmDnaJ interacts with an ABA synthesis-related protein ZmNCED6 to regulate drought tolerance. Similarly, ZmNCED6 overexpressed lines showed stronger oxidation resistance, enhanced photosynthetic rate, stomatal closure and ABA content, whilst the CRISPR-Cas9 knockout mutant showed sensitive to drought stress. More importantly, ZmDnaJ could regulate key drought tolerance genes (ZmPYL10, ZmPP2C44, ZmEREB65, ZmNCED4, ZmNCED6 and ZmABI5), involved in ABA signal transduction pathways. Taken together, our findings suggest that ZmDnaJ-ZmNCED6 module improves drought tolerance in maize.
Collapse
Affiliation(s)
- Anyi Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China; North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Nan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China; North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China; North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Xiuzhen Zhai
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China; North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Yuan Zhong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China; North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Qian Yang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China; North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Yue Xing
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China; North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Huijun Duan
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China; North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| | - Xiaocui Yan
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China; North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| |
Collapse
|
3
|
Li Y, Huang J, Song F, Guo Z, Deng W. Physiological and Transcriptomic Dynamics in Mulberry: Insights into Species-Specific Responses to Midday Depression. Genes (Basel) 2024; 15:1571. [PMID: 39766838 PMCID: PMC11675086 DOI: 10.3390/genes15121571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objective: The midday depression of photosynthesis, a physiological phenomenon driven by environmental stress, impacts plant productivity. This study aims to elucidate the molecular and physiological responses underlying midday depression in two mulberry species, Ewu No. 1 (Ew1) and Husan No. 32 (H32), to better understand their species-specific stress adaptation mechanisms. Methods: RNA-seq analysis was conducted on leaf samples collected at three time points (10:00 a.m., 12:00 p.m., and 4:00 p.m.), identifying 22,630 differentially expressed genes (DEGs). A comparative Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was performed to reveal the involvement of key metabolic and signaling pathways in stress responses. Results: Ew1 displayed enhanced stress tolerance by upregulating genes involved in energy management, water conservation, and photosynthetic processes, maintaining higher photosynthetic rates under midday stress. In contrast, H32 adopted a more conservative response, downregulating genes related to photosynthesis and metabolism, favoring survival at the expense of productivity. The KEGG analysis highlighted starch and sucrose metabolism and plant hormone signaling as critical pathways contributing to these species-specific responses. Conclusions: Ew1's adaptive molecular strategies make it more suitable for environments with variable light and temperature conditions, while H32's conservative approach may limit its productivity. These findings provide valuable insights for breeding programs aimed at improving stress tolerance and photosynthetic efficiency in mulberry and other crops, particularly under fluctuating environmental conditions.
Collapse
Affiliation(s)
| | | | | | | | - Wen Deng
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (Y.L.); (J.H.); (F.S.); (Z.G.)
| |
Collapse
|
4
|
Ashton CJ, Page R, Lobo AKM, Amaral J, Siqueira JA, Orr DJ, Carmo-Silva E. Radiometric determination of rubisco activation state and quantity in leaves. Methods Enzymol 2024; 708:323-351. [PMID: 39572146 DOI: 10.1016/bs.mie.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
Rubisco is the key enzyme in photosynthesis, catalyzing fixation of carbon dioxide from the atmosphere into energy storage molecules. Several inefficiencies in Rubisco limit the rate of photosynthesis, and, therefore, the growth of the plant. Rubisco is sensitive to light, making deactivation of the enzyme upon sampling likely. Moreover, the indirect methods often used to study its activity make obtaining reliable data difficult. In this Chapter, we describe an approach to generate reliable and repeatable data for Rubisco activities, activation state and abundance in plant leaves. We include methods to sample and extract proteins, minimizing Rubisco degradation and deactivation. We describe radiometric techniques to measure Rubisco activities and calculate its activation state at the time of sampling, and to quantify its abundance.
Collapse
Affiliation(s)
- Catherine J Ashton
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Rhiannon Page
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Ana K M Lobo
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Joana Amaral
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Joao A Siqueira
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Douglas J Orr
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | | |
Collapse
|
5
|
Peer LA, Bhat MY, Lone AA, Dar ZA, Mir BA. Genetic, molecular and physiological crosstalk during drought tolerance in maize (Zea mays): pathways to resilient agriculture. PLANTA 2024; 260:81. [PMID: 39196449 DOI: 10.1007/s00425-024-04517-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
MAIN CONCLUSION This review comprehensively elucidates maize drought tolerance mechanisms, vital for global food security. It highlights genetic networks, key genes, CRISPR-Cas applications, and physiological responses, guiding resilient variety development. Maize, a globally significant crop, confronts the pervasive challenge of drought stress, impacting its growth and yield significantly. Drought, an important abiotic stress, triggers a spectrum of alterations encompassing maize's morphological, biochemical, and physiological dimensions. Unraveling and understanding these mechanisms assumes paramount importance for ensuring global food security. Approaches like developing drought-tolerant varieties and harnessing genomic and molecular applications emerge as effective measures to mitigate the negative effects of drought. The multifaceted nature of drought tolerance in maize has been unfolded through complex genetic networks. Additionally, quantitative trait loci mapping and genome-wide association studies pinpoint key genes associated with drought tolerance, influencing morphophysiological traits and yield. Furthermore, transcription factors like ZmHsf28, ZmNAC20, and ZmNF-YA1 play pivotal roles in drought response through hormone signaling, stomatal regulation, and gene expression. Genes, such as ZmSAG39, ZmRAFS, and ZmBSK1, have been reported to be pivotal in enhancing drought tolerance through diverse mechanisms. Integration of CRISPR-Cas9 technology, targeting genes like gl2 and ZmHDT103, emerges as crucial for precise genetic enhancement, highlighting its role in safeguarding global food security amid pervasive drought challenges. Thus, decoding the genetic and molecular underpinnings of drought tolerance in maize sheds light on its resilience and paves the way for cultivating robust and climate-smart varieties, thus safeguarding global food security amid climate challenges. This comprehensive review covers quantitative trait loci mapping, genome-wide association studies, key genes and functions, CRISPR-Cas applications, transcription factors, physiological responses, signaling pathways, offering a nuanced understanding of intricate mechanisms involved in maize drought tolerance.
Collapse
Affiliation(s)
- Latif A Peer
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
| | - Mohd Y Bhat
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Ajaz A Lone
- Dryland Agriculture Research Station, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, 191121, India
| | - Zahoor A Dar
- Dryland Agriculture Research Station, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, 191121, India
| | - Bilal A Mir
- Department of Botany, North Campus, University of Kashmir, Delina, Srinagar, Jammu and Kashmir, 193201, India
| |
Collapse
|
6
|
Wang H, Chen B, Shen X. Extreme rainfall, farmer vulnerability, and labor mobility-Evidence from rural China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170866. [PMID: 38340843 DOI: 10.1016/j.scitotenv.2024.170866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
The recurrent occurrence of extreme weather events poses a significant threat to agricultural production, food security, and sustainable economic development. Understanding farmers' adaptive responses to cope with these challenges is pivotal for informing and implementing effective climate resilience policies. This study utilizes the Spatial Precipitation Index (SPI) to assess rainfall patterns and applies fixed effects methods to analyze extreme rainfall shocks' impact on rural households, using panel data from China's 2006-2015 National Rural Fixed Point Survey. Below are the results. Firstly, both drought and rainstorm shocks negatively affect agricultural yield and income, highlighting farmers' vulnerability to extreme rainfall events. Secondly, farmers respond to these shocks by reallocating labor from agriculture to non-agricultural sectors or migrating to urban areas, with these labor mobility patterns typically being temporary. Thirdly, there's notable heterogeneity linked to household affluence. Less affluent rural households experienced more pronounced declines in yield and income, compelling higher migration rates. Collectively, our findings shed light on how Chinese rural households strategically adjust their labor decisions to respond to extreme rainfall shocks through inter-sectoral and inter-regional labor mobility.
Collapse
Affiliation(s)
- Heer Wang
- School of Economics, Zhejiang University, Hangzhou 310058, PR China.
| | - Bo Chen
- School of Economics, Jinan University, Guangzhou 510632, PR China
| | - Xuhang Shen
- School of Economics, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
7
|
Schmitt KFM, do Amaral Junior AT, Kamphorst SH, Pinto VB, de Lima VJ, de Oliveira UA, Viana FN, Leite JT, Gomes LP, Silva JGDS, Lamêgo DL, Bernado WDP, de Souza GAR, de Almeida FA, de Souza Filho GA, Silveira V, Campostrini E. Decoding the effects of drought stress on popcorn (Zea mays var. everta) flowering combining proteomics and physiological analysis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108444. [PMID: 38382344 DOI: 10.1016/j.plaphy.2024.108444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Under conditions of soil water limitation and adequate irrigation, we conducted an investigation into the growth dynamics, gas exchange performance, and proteomic profiles of two inbred popcorn lines-L71, characterized as drought-tolerant, and L61, identified as drought-sensitive. Our goal was to uncover the mechanisms associated with tolerance to soil water limitation during the flowering. The plants were cultivated until grain filling in a substrate composed of perlite and peat within 150cm long lysimeter, subjected to two water conditions (WC): i) irrigated (WW) at lysimeter capacity (LC - 100%), and ii) water-stressed (WS). Under WS conditions, the plants gradually reached 45% of LC and were maintained at this level for 10 days. Irrespective of the WC, L71 exhibited the highest values of dry biomass in both shoot and root systems, signifying its status as the most robust genotype. The imposed water limitation led to early senescence, chlorophyll degradation, and increased anthocyanin levels, with a more pronounced impact observed in L61. Traits related to gas exchange manifested differences between the lines only under WS conditions. A total of 1838 proteins were identified, with 169 differentially accumulated proteins (DAPs) in the tolerant line and 386 DAPs in the sensitive line. Notably, differences in energy metabolism, photosynthesis, oxidative stress response, and protein synthesis pathways were identified as the key distinctions between L71 and L61. Consequently, our findings offer valuable insights into the alterations in proteomic profiles associated with the adaptation to soil water limitation in popcorn.
Collapse
Affiliation(s)
- Katia Fabiane Medeiros Schmitt
- Laboratório de Melhoramento Vegetal, Centro de Ciência e Tecnologia Agronômica, Universidade Estadual do Norte Fluminense, Av. Prof. Alberto Lamego 2000, Campos dos Goytacazes, 28013-602, Brazil.
| | - Antônio Teixeira do Amaral Junior
- Laboratório de Melhoramento Vegetal, Centro de Ciência e Tecnologia Agronômica, Universidade Estadual do Norte Fluminense, Av. Prof. Alberto Lamego 2000, Campos dos Goytacazes, 28013-602, Brazil.
| | - Samuel Henrique Kamphorst
- Instituto Latino-Americano de Ciências da Vida e da Natureza. Universidade Federal da Integração Latino-Americana.
| | - Vitor Batista Pinto
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia (CBB). Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil.
| | - Valter Jário de Lima
- Laboratório de Melhoramento Vegetal, Centro de Ciência e Tecnologia Agronômica, Universidade Estadual do Norte Fluminense, Av. Prof. Alberto Lamego 2000, Campos dos Goytacazes, 28013-602, Brazil.
| | - Uéliton Alves de Oliveira
- Laboratório de Melhoramento Vegetal, Centro de Ciência e Tecnologia Agronômica, Universidade Estadual do Norte Fluminense, Av. Prof. Alberto Lamego 2000, Campos dos Goytacazes, 28013-602, Brazil.
| | - Flávia Nicácio Viana
- Laboratório de Melhoramento Vegetal, Centro de Ciência e Tecnologia Agronômica, Universidade Estadual do Norte Fluminense, Av. Prof. Alberto Lamego 2000, Campos dos Goytacazes, 28013-602, Brazil.
| | - Jhean Torres Leite
- Pesquisador em Ciências agronômicas GDM Seeds, Porto Nacional, TO, 77500-000, Brazil.
| | - Leticia Peixoto Gomes
- Laboratório de Melhoramento Vegetal, Centro de Ciência e Tecnologia Agronômica, Universidade Estadual do Norte Fluminense, Av. Prof. Alberto Lamego 2000, Campos dos Goytacazes, 28013-602, Brazil.
| | - José Gabriel de Souza Silva
- Laboratório de Melhoramento Vegetal, Centro de Ciência e Tecnologia Agronômica, Universidade Estadual do Norte Fluminense, Av. Prof. Alberto Lamego 2000, Campos dos Goytacazes, 28013-602, Brazil.
| | - Danielle Leal Lamêgo
- Laboratório de Melhoramento Vegetal, Centro de Ciência e Tecnologia Agronômica, Universidade Estadual do Norte Fluminense, Av. Prof. Alberto Lamego 2000, Campos dos Goytacazes, 28013-602, Brazil.
| | - Wallace de Paula Bernado
- Laboratório de Melhoramento Vegetal, Centro de Ciência e Tecnologia Agronômica, Universidade Estadual do Norte Fluminense, Av. Prof. Alberto Lamego 2000, Campos dos Goytacazes, 28013-602, Brazil.
| | - Guilherme Augusto Rodrigues de Souza
- Laboratório de Melhoramento Vegetal, Centro de Ciência e Tecnologia Agronômica, Universidade Estadual do Norte Fluminense, Av. Prof. Alberto Lamego 2000, Campos dos Goytacazes, 28013-602, Brazil.
| | - Felipe Astolpho de Almeida
- Laboratório de Química e Função de Proteínas e Peptídes, CBB. Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil.
| | - Gonçalo Apolinário de Souza Filho
- Laboratório de Biotecnologia, CBB. Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil.
| | - Vanildo Silveira
- Laboratório de Biotecnologia, CBB. Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil.
| | - Eliemar Campostrini
- Laboratório de Melhoramento Vegetal, Centro de Ciência e Tecnologia Agronômica, Universidade Estadual do Norte Fluminense, Av. Prof. Alberto Lamego 2000, Campos dos Goytacazes, 28013-602, Brazil.
| |
Collapse
|
8
|
Li L, Li Y, Ding G. Response mechanism of carbon metabolism of Pinus massoniana to gradient high temperature and drought stress. BMC Genomics 2024; 25:166. [PMID: 38347506 PMCID: PMC10860282 DOI: 10.1186/s12864-024-10054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/25/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND The carbon metabolism pathway is of paramount importance for the growth and development of plants, exerting a pivotal regulatory role in stress responses. The exacerbation of drought impacts on the plant carbon cycle due to global warming necessitates comprehensive investigation into the response mechanisms of Masson Pine (Pinus massoniana Lamb.), an exemplary pioneer drought-tolerant tree, thereby establishing a foundation for predicting future forest ecosystem responses to climate change. RESULTS The seedlings of Masson Pine were utilized as experimental materials in this study, and the transcriptome, metabolome, and photosynthesis were assessed under varying temperatures and drought intensities. The findings demonstrated that the impact of high temperature and drought on the photosynthetic rate and transpiration rate of Masson Pine seedlings was more pronounced compared to individual stressors. The analysis of transcriptome data revealed that the carbon metabolic pathways of Masson Pine seedlings were significantly influenced by high temperature and drought co-stress, with a particular impact on genes involved in starch and sucrose metabolism. The metabolome analysis revealed that only trehalose and Galactose 1-phosphate were specifically associated with the starch and sucrose metabolic pathways. Furthermore, the trehalose metabolic heat map was constructed by integrating metabolome and transcriptome data, revealing a significant increase in trehalose levels across all three comparison groups. Additionally, the PmTPS1, PmTPS5, and PmTPPD genes were identified as key regulatory genes governing trehalose accumulation. CONCLUSIONS The combined effects of high temperature and drought on photosynthetic rate, transpiration rate, transcriptome, and metabolome were more pronounced than those induced by either high temperature or drought alone. Starch and sucrose metabolism emerged as the pivotal carbon metabolic pathways in response to high temperature and drought stress in Masson pine. Trehalose along with PmTPS1, PmTPS5, and PmTPPD genes played crucial roles as metabolites and key regulators within the starch and sucrose metabolism.
Collapse
Affiliation(s)
- Liangliang Li
- Forest Resources and Environment Research Center, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, 550001, Guiyang, China
- Institute of Mountain Resources of Guizhou Province, Guiyang, China, 550001
| | - Yan Li
- Forest Resources and Environment Research Center, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, 550001, Guiyang, China
| | - Guijie Ding
- Forest Resources and Environment Research Center, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, 550001, Guiyang, China.
| |
Collapse
|
9
|
Li Y, Zhang P, Sheng W, Zhang Z, Rose RJ, Song Y. Securing maize reproductive success under drought stress by harnessing CO 2 fertilization for greater productivity. FRONTIERS IN PLANT SCIENCE 2023; 14:1221095. [PMID: 37860252 PMCID: PMC10582713 DOI: 10.3389/fpls.2023.1221095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023]
Abstract
Securing maize grain yield is crucial to meet food and energy needs for the future growing population, especially under frequent drought events and elevated CO2 (eCO2) due to climate change. To maximize the kernel setting rate under drought stress is a key strategy in battling against the negative impacts. Firstly, we summarize the major limitations to leaf source and kernel sink in maize under drought stress, and identified that loss in grain yield is mainly attributed to reduced kernel set. Reproductive drought tolerance can be realized by collective contribution with a greater assimilate import into ear, more available sugars for ovary and silk use, and higher capacity to remobilize assimilate reserve. As such, utilization of CO2 fertilization by improved photosynthesis and greater reserve remobilization is a key strategy for coping with drought stress under climate change condition. We propose that optimizing planting methods and mining natural genetic variation still need to be done continuously, meanwhile, by virtue of advanced genetic engineering and plant phenomics tools, the breeding program of higher photosynthetic efficiency maize varieties adapted to eCO2 can be accelerated. Consequently, stabilizing maize production under drought stress can be achieved by securing reproductive success by harnessing CO2 fertilization.
Collapse
Affiliation(s)
- Yangyang Li
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Pengpeng Zhang
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Wenjing Sheng
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Zixiang Zhang
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Ray J. Rose
- School of Environmental and Life Sciences, The University of Newcastle, Newcastle, NSW, Australia
| | - Youhong Song
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
10
|
Pei YY, Lei L, Fan XW, Li YZ. Effects of high air temperature, drought, and both combinations on maize: A case study. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 327:111543. [PMID: 36427558 DOI: 10.1016/j.plantsci.2022.111543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 11/13/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
High air temperature (HAT) and natural soil drought (NSD) have seriously affected crop yield and frequently take place in a HAT-NSD combination. Maize (Zea mays) is an important crop, thermophilic but not heat tolerant. In this study, HAT, NSD, and HAT-NSD effects on maize inbred line Huangzao4 -were characterized. Main findings were as follows: H2O2 and O- accumulated much more in immature young leaves than in mature old leaves under the stresses. Lateral roots were highly distributed near the upper pot mix layers under HAT and near root tips under HAT-NSD. Saccharide accumulated mainly in stressed root caps (RC) and formed a highly accumulated saccharide band at the boundary between RC and meristematic zone. Lignin deposition was in stressed roots under NSD and HAT-NSD. Chloroplasts increased in number and formed a high-density ring around leaf vascular bundles (VB) under HAT and HAT-NSD, and sparsely scattered in the peripheral area of VBs under NSD. The RC cells containing starch granules were most under NAD-HAT but least under HAT. Under NSD and HAT-NSD followed by re-watering, anther number per tassel spikelet reduced to 3. These results provide multiple clues for further distinguishing molecular mechanisms for maize to tolerate these stresses.
Collapse
Affiliation(s)
- Yan-Yan Pei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China.
| | - Ling Lei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China.
| | - Xian-Wei Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China.
| | - You-Zhi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China.
| |
Collapse
|
11
|
Singh J, Garai S, Das S, Thakur JK, Tripathy BC. Role of C4 photosynthetic enzyme isoforms in C3 plants and their potential applications in improving agronomic traits in crops. PHOTOSYNTHESIS RESEARCH 2022; 154:233-258. [PMID: 36309625 DOI: 10.1007/s11120-022-00978-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
As compared to C3, C4 plants have higher photosynthetic rates and better tolerance to high temperature and drought. These traits are highly beneficial in the current scenario of global warming. Interestingly, all the genes of the C4 photosynthetic pathway are present in C3 plants, although they are involved in diverse non-photosynthetic functions. Non-photosynthetic isoforms of carbonic anhydrase (CA), phosphoenolpyruvate carboxylase (PEPC), malate dehydrogenase (MDH), the decarboxylating enzymes NAD/NADP-malic enzyme (NAD/NADP-ME), and phosphoenolpyruvate carboxykinase (PEPCK), and finally pyruvate orthophosphate dikinase (PPDK) catalyze reactions that are essential for major plant metabolism pathways, such as the tricarboxylic acid (TCA) cycle, maintenance of cellular pH, uptake of nutrients and their assimilation. Consistent with this view differential expression pattern of these non-photosynthetic C3 isoforms has been observed in different tissues across the plant developmental stages, such as germination, grain filling, and leaf senescence. Also abundance of these C3 isoforms is increased considerably in response to environmental fluctuations particularly during abiotic stress. Here we review the vital roles played by C3 isoforms of C4 enzymes and the probable mechanisms by which they help plants in acclimation to adverse growth conditions. Further, their potential applications to increase the agronomic trait value of C3 crops is discussed.
Collapse
Affiliation(s)
- Jitender Singh
- National Institute of Plant Genome Research, New Delhi, 110067, India.
| | - Sampurna Garai
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Shubhashis Das
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Jitendra Kumar Thakur
- National Institute of Plant Genome Research, New Delhi, 110067, India.
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| | | |
Collapse
|
12
|
Diédhiou I, Ramírez-Tobias HM, Fortanelli-Martinez J, Flores-Ramírez R. Maize Intercropping in the Traditional " Milpa" System. Physiological, Morphological, and Agronomical Parameters under Induced Warming: Evidence of related Effect of Climate Change in San Luis Potosí (Mexico). LIFE (BASEL, SWITZERLAND) 2022; 12:life12101589. [PMID: 36295024 PMCID: PMC9605515 DOI: 10.3390/life12101589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
Warmer temperatures predicted as a result of climate change will have an impact on milpa. An experiment was carried out with induced passive heat with the objective of simulating the increase in temperature on the physiological, morphological, and yield parameters of milpa from different climates of San Luis Potosí, Mexico. Two different environments, Open-top chambers (OTC) and control, and three milpas, from warm–dry, temperate, and hot and humid climates, were studied. A total of 12 experimental units of 13.13 m2 were used in the random design, with a factorial arrangement of 2 × 3 and two replications. Abiotic variables (minimum, maximum, and mean daily temperatures and accumulated heat units) were determined and compared between the two environments and confirmed that the OTC increased the abiotic variables. The growth and development parameters increased under the warming effect. Furthermore, the milpa from hot and humid climate was the least affected. In contrast, the warming considerably delayed yield parameters. The squash suffered the most, while the bean benefited the most. The warming affected the chlorophyll fluorescence and gas exchange differently for each crop. However, at an early stage, the maximum photochemical efficiency (Fv/Fm) and non-photochemical quenching (qN) for bean and maize were reduced, while at a late stage, they were Fv/Fm, photochemical quenching (qP), and qN for maize; stomatal conductance and transpiration rate of the squash were improved under the warming treatments. In conclusion, the warming delayed the yield and photosynthetic parameters, while growth and development benefited. The milpa systems were differently affected by warming.
Collapse
Affiliation(s)
- Idrissa Diédhiou
- Facultad de Agronomía y Veterinaria, Universidad Autónoma de San Luis Potosí, Carretera San Luis Potosí-Matehuala Km. 14.5, Soledad de Graciano Sánchez, San Luis Potosí 78321, Mexico
- Programa Multidisciplinario de Posgrado en Ciencias Ambientales, Universidad Autónoma de San Luis Potosí. Av. Manuel Nava 201, 2o. piso, Zona Universitaria, San Luis Potosí 78000, Mexico
- Correspondence: (I.D.); (H.M.R.-T.)
| | - Hugo M. Ramírez-Tobias
- Facultad de Agronomía y Veterinaria, Universidad Autónoma de San Luis Potosí, Carretera San Luis Potosí-Matehuala Km. 14.5, Soledad de Graciano Sánchez, San Luis Potosí 78321, Mexico
- Programa Multidisciplinario de Posgrado en Ciencias Ambientales, Universidad Autónoma de San Luis Potosí. Av. Manuel Nava 201, 2o. piso, Zona Universitaria, San Luis Potosí 78000, Mexico
- Correspondence: (I.D.); (H.M.R.-T.)
| | - Javier Fortanelli-Martinez
- Instituto de Investigación de Zonas Desérticas, Universidad Autónoma de San Luis Potosí, Calle Altair N° 200, Colonia del Llano, San Luis Potosí 78377, Mexico
| | - Rogelio Flores-Ramírez
- Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), CIACYT-Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
| |
Collapse
|
13
|
Yao X, Zhou M, Ruan J, Peng Y, Ma C, Wu W, Gao A, Weng W, Cheng J. Physiological and Biochemical Regulation Mechanism of Exogenous Hydrogen Peroxide in Alleviating NaCl Stress Toxicity in Tartary Buckwheat ( Fagopyrum tataricum (L.) Gaertn). Int J Mol Sci 2022; 23:10698. [PMID: 36142630 PMCID: PMC9505081 DOI: 10.3390/ijms231810698] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
We aimed to elucidate the physiological and biochemical mechanism by which exogenous hydrogen peroxide (H2O2) alleviates salt stress toxicity in Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn). Tartary buckwheat "Chuanqiao-2" under 150 mmol·L-1 salt (NaCl) stress was treated with 5 or 10 mmol·L-1 H2O2, and seedling growth, physiology and biochemistry, and related gene expression were studied. Treatment with 5 mmol·L-1 H2O2 significantly increased plant height (PH), fresh and dry weights of shoots (SFWs/SDWs) and roots (RFWs/RDWs), leaf length (LL) and area (LA), and relative water content (LRWC); increased chlorophyll a (Chl a) and b (Chl b) contents; improved fluorescence parameters; enhanced antioxidant enzyme activity and content; and reduced malondialdehyde (MDA) content. Expressions of all stress-related and enzyme-related genes were up-regulated. The F3'H gene (flavonoid synthesis pathway) exhibited similar up-regulation under 10 mmol·L-1 H2O2 treatment. Correlation and principal component analyses showed that 5 mmol·L-1 H2O2 could significantly alleviate the toxic effect of salt stress on Tartary buckwheat. Our results show that exogenous 5 mmol·L-1 H2O2 can alleviate the inhibitory or toxic effects of 150 mmol·L-1 NaCl stress on Tartary buckwheat by promoting growth, enhancing photosynthesis, improving enzymatic reactions, reducing membrane lipid peroxidation, and inducing the expression of related genes.
Collapse
Affiliation(s)
- Xin Yao
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Meiliang Zhou
- Institute of Crop Science, Chinese Academy of Agriculture Science, Beijing 100081, China
| | - Jingjun Ruan
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Yan Peng
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Chao Ma
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Weijiao Wu
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Anjing Gao
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Wenfeng Weng
- College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Jianping Cheng
- College of Agronomy, Guizhou University, Guiyang 550025, China
| |
Collapse
|
14
|
Shanker AK, Gunnapaneni D, Bhanu D, Vanaja M, Lakshmi NJ, Yadav SK, Prabhakar M, Singh VK. Elevated CO 2 and Water Stress in Combination in Plants: Brothers in Arms or Partners in Crime? BIOLOGY 2022; 11:biology11091330. [PMID: 36138809 PMCID: PMC9495351 DOI: 10.3390/biology11091330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/17/2022] [Indexed: 04/30/2023]
Abstract
The changing dynamics in the climate are the primary and important determinants of agriculture productivity. The effects of this changing climate on overall productivity in agriculture can be understood when we study the effects of individual components contributing to the changing climate on plants and crops. Elevated CO2 (eCO2) and drought due to high variability in rainfall is one of the important manifestations of the changing climate. There is a considerable amount of literature that addresses climate effects on plant systems from molecules to ecosystems. Of particular interest is the effect of increased CO2 on plants in relation to drought and water stress. As it is known that one of the consistent effects of increased CO2 in the atmosphere is increased photosynthesis, especially in C3 plants, it will be interesting to know the effect of drought in relation to elevated CO2. The potential of elevated CO2 ameliorating the effects of water deficit stress is evident from literature, which suggests that these two agents are brothers in arms protecting the plant from stress rather than partners in crime, specifically for water deficit when in isolation. The possible mechanisms by which this occurs will be discussed in this minireview. Interpreting the effects of short-term and long-term exposure of plants to elevated CO2 in the context of ameliorating the negative impacts of drought will show us the possible ways by which there can be effective adaption to crops in the changing climate scenario.
Collapse
|
15
|
Malenica N, Dunić JA, Vukadinović L, Cesar V, Šimić D. Genetic Approaches to Enhance Multiple Stress Tolerance in Maize. Genes (Basel) 2021; 12:genes12111760. [PMID: 34828366 PMCID: PMC8617808 DOI: 10.3390/genes12111760] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/29/2022] Open
Abstract
The multiple-stress effects on plant physiology and gene expression are being intensively studied lately, primarily in model plants such as Arabidopsis, where the effects of six stressors have simultaneously been documented. In maize, double and triple stress responses are obtaining more attention, such as simultaneous drought and heat or heavy metal exposure, or drought in combination with insect and fungal infestation. To keep up with these challenges, maize natural variation and genetic engineering are exploited. On one hand, quantitative trait loci (QTL) associated with multiple-stress tolerance are being identified by molecular breeding and genome-wide association studies (GWAS), which then could be utilized for future breeding programs of more resilient maize varieties. On the other hand, transgenic approaches in maize have already resulted in the creation of many commercial double or triple stress resistant varieties, predominantly weed-tolerant/insect-resistant and, additionally, also drought-resistant varieties. It is expected that first generation gene-editing techniques, as well as recently developed base and prime editing applications, in combination with the routine haploid induction in maize, will pave the way to pyramiding more stress tolerant alleles in elite lines/varieties on time.
Collapse
Affiliation(s)
- Nenad Malenica
- Division of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia;
| | - Jasenka Antunović Dunić
- Department of Biology, Josip Juraj Strossmayer University, Cara Hadrijana 8/A, 31000 Osijek, Croatia; (J.A.D.); (V.C.)
| | - Lovro Vukadinović
- Agricultural Institute Osijek, Južno Predgrađe 17, 31000 Osijek, Croatia;
| | - Vera Cesar
- Department of Biology, Josip Juraj Strossmayer University, Cara Hadrijana 8/A, 31000 Osijek, Croatia; (J.A.D.); (V.C.)
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena 21, 31000 Osijek, Croatia
| | - Domagoj Šimić
- Agricultural Institute Osijek, Južno Predgrađe 17, 31000 Osijek, Croatia;
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Svetošimunska 25, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-31-515-521
| |
Collapse
|