1
|
Li C, Colinas M, Wood JC, Vaillancourt B, Hamilton JP, Jones SL, Caputi L, O'Connor SE, Buell CR. Cell-type-aware regulatory landscapes governing monoterpene indole alkaloid biosynthesis in the medicinal plant Catharanthus roseus. THE NEW PHYTOLOGIST 2025; 245:347-362. [PMID: 39456129 PMCID: PMC11617651 DOI: 10.1111/nph.20208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024]
Abstract
In plants, the biosynthetic pathways of some specialized metabolites are partitioned into specialized or rare cell types, as exemplified by the monoterpenoid indole alkaloid (MIA) pathway of Catharanthus roseus (Madagascar Periwinkle), the source of the anticancer compounds vinblastine and vincristine. In the leaf, the C. roseus MIA biosynthetic pathway is partitioned into three cell types with the final known steps of the pathway expressed in the rare cell type termed idioblast. How cell-type specificity of MIA biosynthesis is achieved is poorly understood. We generated single-cell multi-omics data from C. roseus leaves. Integrating gene expression and chromatin accessibility profiles across single cells, as well as transcription factor (TF)-binding site profiles, we constructed a cell-type-aware gene regulatory network for MIA biosynthesis. We showcased cell-type-specific TFs as well as cell-type-specific cis-regulatory elements. Using motif enrichment analysis, co-expression across cell types, and functional validation approaches, we discovered a novel idioblast-specific TF (Idioblast MYB1, CrIDM1) that activates expression of late-stage MIA biosynthetic genes in the idioblast. These analyses not only led to the discovery of the first documented cell-type-specific TF that regulates the expression of two idioblast-specific biosynthetic genes within an idioblast metabolic regulon but also provides insights into cell-type-specific metabolic regulation.
Collapse
Affiliation(s)
- Chenxin Li
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthens30602GAUSA
- Department of Crop and Soil SciencesUniversity of GeorgiaAthens30602GAUSA
| | - Maite Colinas
- Department of Natural Product BiosynthesisMax Planck Institute for Chemical EcologyJena07745Germany
| | - Joshua C. Wood
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthens30602GAUSA
| | | | - John P. Hamilton
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthens30602GAUSA
- Department of Crop and Soil SciencesUniversity of GeorgiaAthens30602GAUSA
| | - Sophia L. Jones
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthens30602GAUSA
| | - Lorenzo Caputi
- Department of Natural Product BiosynthesisMax Planck Institute for Chemical EcologyJena07745Germany
| | - Sarah E. O'Connor
- Department of Natural Product BiosynthesisMax Planck Institute for Chemical EcologyJena07745Germany
| | - C. Robin Buell
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthens30602GAUSA
- Department of Crop and Soil SciencesUniversity of GeorgiaAthens30602GAUSA
- Institute of Plant Breeding, Genetics, and GenomicsUniversity of GeorgiaAthens30602GAUSA
| |
Collapse
|
2
|
Lee YS, Braun EL, Grotewold E. Evolutionary trajectory of transcription factors and selection of targets for metabolic engineering. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230367. [PMID: 39343015 PMCID: PMC11439498 DOI: 10.1098/rstb.2023.0367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 10/01/2024] Open
Abstract
Transcription factors (TFs) provide potentially powerful tools for plant metabolic engineering as they often control multiple genes in a metabolic pathway. However, selecting the best TF for a particular pathway has been challenging, and the selection often relies significantly on phylogenetic relationships. Here, we offer examples where evolutionary relationships have facilitated the selection of the suitable TFs, alongside situations where such relationships are misleading from the perspective of metabolic engineering. We argue that the evolutionary trajectory of a particular TF might be a better indicator than protein sequence homology alone in helping decide the best targets for plant metabolic engineering efforts. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Yun Sun Lee
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824, USA
| | - Edward L. Braun
- Department of Biology, University of Florida, Gainesville, FL32611, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824, USA
| |
Collapse
|
3
|
Kamileen MO, Nakamura Y, Luck K, Heinicke S, Hong B, Colinas M, Lichman BR, O'Connor SE. Streamlined screening platforms lead to the discovery of pachysiphine synthase from Tabernanthe iboga. THE NEW PHYTOLOGIST 2024; 244:1437-1449. [PMID: 39285533 DOI: 10.1111/nph.20133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/25/2024] [Indexed: 10/18/2024]
Abstract
Plant-specialized metabolism is largely driven by the oxidative tailoring of key chemical scaffolds catalyzed by cytochrome P450 (CYP450s) enzymes. Monoterpene indole alkaloids (MIAs) tabersonine and pseudo-tabersonine, found in the medicinal plant Tabernanthe iboga (commonly known as iboga), are tailored with oxidations, and the enzymes involved remain unknown. Here, we developed a streamlined screening strategy to test the activity of T. iboga CYP450s in Nicotiana benthamiana. Using multigene constructs encoding the biosynthesis of tabersonine and pseudo-tabersonine scaffolds, we aimed to uncover the CYP450s responsible for oxidative transformations in these scaffolds. Our approach identified two T. iboga cytochrome P450 enzymes: pachysiphine synthase (PS) and 16-hydroxy-tabersonine synthase (T16H). These enzymes catalyze an epoxidation and site-specific hydroxylation of tabersonine to produce pachysiphine and 16-OH-tabersonine, respectively. This work provides new insights into the biosynthetic pathways of MIAs and underscores the utility of N. benthamiana and Catharanthus roseus as platforms for the functional characterization of plant enzymes.
Collapse
Affiliation(s)
- Mohamed O Kamileen
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, YO10 5DD, UK
| | - Yoko Nakamura
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany
- NMR and Natural Product Biosynthesis Group, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany
| | - Katrin Luck
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany
| | - Sarah Heinicke
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany
| | - Benke Hong
- Department of Chemistry, Westlake University, 18 Shilongshan Road, 310024, Hangzhou, China
| | - Maite Colinas
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany
| | - Benjamin R Lichman
- Department of Biology, Centre for Novel Agricultural Products, University of York, York, YO10 5DD, UK
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, D-07745, Jena, Germany
| |
Collapse
|
4
|
Traverse KKF, Breselge S, Trautman JG, Dee A, Wang J, Childs KL, Lee-Parsons CWT. Characterization of the ZCTs, a subgroup of Cys2-His2 zinc finger transcription factors regulating alkaloid biosynthesis in Catharanthus roseus. PLANT CELL REPORTS 2024; 43:209. [PMID: 39115578 PMCID: PMC11310244 DOI: 10.1007/s00299-024-03295-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/26/2024] [Indexed: 08/11/2024]
Abstract
KEY MESSAGE The C. roseus ZCTs are jasmonate-responsive, can be induced by CrMYC2a, and can act as significant regulators of the terpenoid indole alkaloid pathway when highly expressed. Catharanthus roseus is the sole known producer of the anti-cancer terpenoid indole alkaloids (TIAs), vinblastine and vincristine. While the enzymatic steps of the pathway have been elucidated, an understanding of its regulation is still emerging. The present study characterizes an important subgroup of Cys2-His2 zinc finger transcription factors known as Zinc finger Catharanthus Transcription factors (ZCTs). We identified three new ZCT members (named ZCT4, ZCT5, and ZCT6) that clustered with the putative repressors of the TIA pathway, ZCT1, ZCT2, and ZCT3. We characterized the role of these six ZCTs as potential redundant regulators of the TIA pathway, and their tissue-specific and jasmonate-responsive expression. These ZCTs share high sequence conservation in their two Cys2-His2 zinc finger domains but differ in the spacer length and sequence between these zinc fingers. The transient overexpression of ZCTs in seedlings significantly repressed the promoters of the terpenoid (pLAMT) and condensation branch (pSTR1) of the TIA pathway, consistent with that previously reported for ZCT1, ZCT2, and ZCT3. In addition, ZCTs significantly repressed and indirectly activated several promoters of the vindoline pathway (not previously studied). The ZCTs differed in their tissue-specific expression but similarly increased with jasmonate in a dosage-dependent manner (except for ZCT5). We showed significant activation of the pZCT1 and pZCT3 promoters by the de-repressed CrMYC2a, suggesting that the jasmonate-responsive expression of the ZCTs can be mediated by CrMYC2a. In summary, the C. roseus ZCTs are jasmonate-responsive, can be induced by CrMYC2a, and can act as significant regulators of the TIA pathway when highly expressed.
Collapse
Affiliation(s)
| | - Samuel Breselge
- Department of Biology, Northeastern University, Boston, MA, USA
| | - Juliet G Trautman
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Amanda Dee
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Jie Wang
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Kevin L Childs
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Carolyn W T Lee-Parsons
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA.
- Department of Bioengineering, Northeastern University, Boston, MA, USA.
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA.
| |
Collapse
|
5
|
Cole‐Osborn LF, Meehan E, Lee‐Parsons CWT. Critical parameters for robust Agrobacterium-mediated transient transformation and quantitative promoter assays in Catharanthus roseus seedlings. PLANT DIRECT 2024; 8:e596. [PMID: 38855128 PMCID: PMC11154794 DOI: 10.1002/pld3.596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/16/2024] [Accepted: 05/14/2024] [Indexed: 06/11/2024]
Abstract
Agrobacterium-mediated transient expression methods are widely used to study gene function in both model and non-model plants. Using a dual-luciferase assay, we quantified the effect of Agrobacterium-infiltration parameters on the transient transformation efficiency of Catharanthus roseus seedlings. We showed that transformation efficiency is highly sensitive to seedling developmental state and a pre- and post-infiltration dark incubation and is less sensitive to the Agrobacterium growth stage. For example, 5 versus 6 days of germination in the dark increased seedling transformation efficiency by seven- to eight-fold while a dark incubation pre- and post-infiltration increased transformation efficiency by five- to 13-fold. Agrobacterium in exponential compared with stationary phase increased transformation efficiency by two-fold. Finally, we quantified the variation in our Agrobacterium-infiltration method in replicate infiltrations and experiments. Within a given experiment, significant differences of up to 2.6-fold in raw firefly luciferase (FLUC) and raw Renilla luciferase (RLUC) luminescence occurred in replicate infiltrations. These differences were significantly reduced when FLUC was normalized to RLUC values, highlighting the utility of including a reference reporter to minimize false positives. Including a second experimental replicate further reduced the potential for false positives. This optimization and quantitative validation of Agrobacterium infiltration in C. roseus seedlings will facilitate the study of this important medicinal plant and will expand the application of Agrobacterium-mediated transformation methods in other plant species.
Collapse
Affiliation(s)
| | - Emma Meehan
- Department of Chemical EngineeringNortheastern UniversityBostonMassachusettsUSA
| | - Carolyn W. T. Lee‐Parsons
- Department of Chemical EngineeringNortheastern UniversityBostonMassachusettsUSA
- Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
- Department of BioengineeringNortheastern UniversityBostonMassachusettsUSA
| |
Collapse
|
6
|
Cole-Osborn LF, McCallan SA, Prifti O, Abu R, Sjoelund V, Lee-Parsons CWT. The role of the Golden2-like (GLK) transcription factor in regulating terpenoid indole alkaloid biosynthesis in Catharanthus roseus. PLANT CELL REPORTS 2024; 43:141. [PMID: 38743349 PMCID: PMC11093837 DOI: 10.1007/s00299-024-03208-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/27/2024] [Indexed: 05/16/2024]
Abstract
KEY MESSAGE A GLK homologue was identified and functionally characterized in Catharanthus roseus. Silencing CrGLK with VIGS or the chloroplast retrograde signaling inducer lincomycin increased terpenoid indole alkaloid biosynthesis. Catharanthus roseus is the sole source of the chemotherapeutic terpenoid indole alkaloids (TIAs) vinblastine and vincristine. TIA pathway genes, particularly genes in the vindoline pathway, are expressed at higher levels in immature versus mature leaves, but the molecular mechanisms responsible for this developmental regulation are unknown. We investigated the role of GOLDEN2-LIKE (GLK) transcription factors in contributing to this ontogenetic regulation since GLKs are active in seedlings upon light exposure and in the leaf's early development, but their activity is repressed as leaves age and senesce. We identified a GLK homologue in C. roseus and functionally characterized its role in regulating TIA biosynthesis, with a focus on the vindoline pathway, by transiently reducing its expression through two separate methods: virus-induced gene silencing (VIGS) and application of chloroplast retrograde signaling inducers, norflurazon and lincomycin. Reducing CrGLK levels with each method reduced chlorophyll accumulation and the expression of the light harvesting complex subunit (LHCB2.2), confirming its functional homology with GLKs in other plant species. In contrast, reducing CrGLK via VIGS or lincomycin increased TIA accumulation and TIA pathway gene expression, suggesting that CrGLK may repress TIA biosynthesis. However, norflurazon had no effect on TIA gene expression, indicating that reducing CrGLK alone is not sufficient to induce TIA biosynthesis. Future work is needed to clarify the specific molecular mechanisms leading to increased TIA biosynthesis with CrGLK silencing. This is the first identification and characterization of GLK in C. roseus and the first investigation of how chloroplast retrograde signaling might regulate TIA biosynthesis.
Collapse
Affiliation(s)
- Lauren F Cole-Osborn
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
- Department of Bioengineering, Northeastern University, Boston, USA
| | - Shannon A McCallan
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, USA
| | - Olga Prifti
- Department of Bioengineering, Northeastern University, Boston, USA
| | - Rafay Abu
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, USA
| | - Virginie Sjoelund
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, USA
| | - Carolyn W T Lee-Parsons
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA.
- Department of Bioengineering, Northeastern University, Boston, USA.
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, USA.
| |
Collapse
|
7
|
Uzaki M, Mori T, Sato M, Wakazaki M, Takeda-Kamiya N, Yamamoto K, Murakami A, Guerrero DAS, Shichijo C, Ohnishi M, Ishizaki K, Fukaki H, O'Connor SE, Toyooka K, Mimura T, Hirai MY. Integration of cell differentiation and initiation of monoterpenoid indole alkaloid metabolism in seed germination of Catharanthus roseus. THE NEW PHYTOLOGIST 2024; 242:1156-1171. [PMID: 38513692 DOI: 10.1111/nph.19662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024]
Abstract
In Catharanthus roseus, monoterpenoid indole alkaloids (MIAs) are produced through the cooperation of four cell types, with final products accumulating in specialized cells known as idioblasts and laticifers. To explore the relationship between cellular differentiation and cell type-specific MIA metabolism, we analyzed the expression of MIA biosynthesis in germinating seeds. Embryos from immature and mature seeds were observed via stereomicroscopy, fluorescence microscopy, and electron microscopy. Time-series MIA and iridoid quantification, along with transcriptome analysis, were conducted to determine the initiation of MIA biosynthesis. In addition, the localization of MIAs was examined using alkaloid staining and imaging mass spectrometry (IMS). Laticifers were present in embryos before seed maturation. MIA biosynthesis commenced 12 h after germination. MIAs accumulated in laticifers of embryos following seed germination, and MIA metabolism is induced after germination in a tissue-specific manner. These findings suggest that cellular morphological differentiation precedes metabolic differentiation. Considering the well-known toxicity and defense role of MIAs in matured plants, MIAs may be an important defense strategy already in the delicate developmental phase of seed germination, and biosynthesis and accumulation of MIAs may require the tissue and cellular differentiation.
Collapse
Affiliation(s)
- Mai Uzaki
- Graduate School of Bioagricultural Science, Nagoya University, Nagoya, Aichi, 464-8601, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Tetsuya Mori
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Mayumi Wakazaki
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Noriko Takeda-Kamiya
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Kotaro Yamamoto
- School of Science, Yokohama City University, Yokohama, Kanagawa, 236-0027, Japan
| | - Akio Murakami
- Graduate School of Science, Kobe University, Kobe, Hyogo, 657-8501, Japan
| | - Delia Ayled Serna Guerrero
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, D-07745, Germany
| | - Chizuko Shichijo
- Graduate School of Science, Kobe University, Kobe, Hyogo, 657-8501, Japan
| | - Miwa Ohnishi
- Graduate School of Science, Kobe University, Kobe, Hyogo, 657-8501, Japan
- Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Kimitsune Ishizaki
- Graduate School of Science, Kobe University, Kobe, Hyogo, 657-8501, Japan
| | - Hidehiro Fukaki
- Graduate School of Science, Kobe University, Kobe, Hyogo, 657-8501, Japan
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, D-07745, Germany
| | - Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Tetsuro Mimura
- Graduate School of Science, Kobe University, Kobe, Hyogo, 657-8501, Japan
- College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan
- The Institute for Sustainable Agro-ecosystem Services, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 188-0002, Japan
- Faculty of Bioenvironmental Sciences, Kyoto University of Advanced Science, Kyoto, 621-8555, Japan
| | - Masami Yokota Hirai
- Graduate School of Bioagricultural Science, Nagoya University, Nagoya, Aichi, 464-8601, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
8
|
Guedes JG, Ribeiro R, Carqueijeiro I, Guimarães AL, Bispo C, Archer J, Azevedo H, Fonseca NA, Sottomayor M. The leaf idioblastome of the medicinal plant Catharanthus roseus is associated with stress resistance and alkaloid metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:274-299. [PMID: 37804484 PMCID: PMC10735432 DOI: 10.1093/jxb/erad374] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/06/2023] [Indexed: 10/09/2023]
Abstract
Catharanthus roseus leaves produce a range of monoterpenoid indole alkaloids (MIAs) that include low levels of the anticancer drugs vinblastine and vincristine. The MIA pathway displays a complex architecture spanning different subcellular and cell type localizations, and is under complex regulation. As a result, the development of strategies to increase the levels of the anticancer MIAs has remained elusive. The pathway involves mesophyll specialized idioblasts where the late unsolved biosynthetic steps are thought to occur. Here, protoplasts of C. roseus leaf idioblasts were isolated by fluorescence-activated cell sorting, and their differential alkaloid and transcriptomic profiles were characterized. This involved the assembly of an improved C. roseus transcriptome from short- and long-read data, IDIO+. It was observed that C. roseus mesophyll idioblasts possess a distinctive transcriptomic profile associated with protection against biotic and abiotic stresses, and indicative that this cell type is a carbon sink, in contrast to surrounding mesophyll cells. Moreover, it is shown that idioblasts are a hotspot of alkaloid accumulation, suggesting that their transcriptome may hold the key to the in-depth understanding of the MIA pathway and the success of strategies leading to higher levels of the anticancer drugs.
Collapse
Affiliation(s)
- Joana G Guedes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal
| | - Rogério Ribeiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| | - Inês Carqueijeiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Ana Luísa Guimarães
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| | - Cláudia Bispo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - John Archer
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Herlander Azevedo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| | - Nuno A Fonseca
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Mariana Sottomayor
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| |
Collapse
|
9
|
Yang Y, Ding L, Zhou Y, Guo Z, Yu R, Zhu J. Establishment of recombinant Catharanthus roseus stem cells stably overexpressing ORCA4 for terpenoid indole alkaloids biosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:783-792. [PMID: 36848864 DOI: 10.1016/j.plaphy.2023.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/10/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Catharanthus roseus is a perennial herb of the Apocynaceae family, from which about 200 kinds of alkaloids have been characterized. Most alkaloids from C. roseus are terpenoid indole alkaloids (TIAs), such as vinblastine and vincristine, which are widely used in the clinic for their good antitumor activity. However, they were only biosynthesized in C. roseus, and their content in C. roseus is extremely low. The access to these valuable compounds is by plant extraction or chemical semisynthesis from their precursors catharanthine and vindoline. Since catharanthine and vindoline are also obtained from C. roseus, the supply of vinblastine and vincristine makes it difficult to meet market demands. Therefore, how to improve the yield of TIAs is an attractive issue. In this study, we compared the regulatory effect of two critical transcription factors, octadecanoid-derivative responsive Catharanthus AP2-domain protein 3 (ORCA3) and octadecanoid-derivative responsive Catharanthus AP2-domain protein 4 (ORCA4), on the biosynthesis of TIAs in C. roseus. The results showed that overexpressing both two transcription factors could increase the accumulation of TIAs. The effect was more significant when ORCA4 was overexpressed. To acquire C. roseus TIAs on a continuous and consistent basis, we then created and acquired C. roseus stem cells stably overexpressing ORCA4. This is the first time a recombinant C. roseus stem cell system with stable ORCA4 overexpression has been developed, which not only provides new ideas for future research in this area but also breaches new life into the industrial application of using plant cell culture to obtain natural products.
Collapse
Affiliation(s)
- Yuanjian Yang
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, 510632, China
| | - Liuyu Ding
- Department of Natural Product Chemistry, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Ying Zhou
- Department of Natural Product Chemistry, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Zizheng Guo
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, 510632, China
| | - Rongmin Yu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, 510632, China; Department of Natural Product Chemistry, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.
| | - Jianhua Zhu
- Biotechnological Institute of Chinese Materia Medica, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
10
|
Li F, Bordeleau S, Kim KH, Turcotte J, Davis B, Liu L, Bayen S, De Luca V, Dastmalchi M. A lesion-mimic mutant of Catharanthus roseus accumulates the opioid agonist, akuammicine. PHYTOCHEMISTRY 2022; 203:113422. [PMID: 36055422 DOI: 10.1016/j.phytochem.2022.113422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Catharanthus roseus is a medicinal plant that produces an abundance of monoterpenoid indole alkaloids (MIAs), notably including the anticancer compounds vinblastine and vincristine. While the canonical pathway leading to these drugs has been resolved, the regulatory and catalytic mechanisms controlling many lateral branches of MIA biosynthesis remain largely unknown. Here, we describe an ethyl methanesulfonate (EMS) C. roseus mutant (M2-117523) that accumulates high levels of MIAs. The mutant exhibited stunted growth, partially chlorotic leaves, with deficiencies in chlorophyll biosynthesis, and a lesion-mimic phenotype. The lesions were sporadic and spontaneous, appearing after the first true bifoliate and continuing throughout development. The lesions are also the site of high concentrations of akuammicine, a minor constituent of wild type C. roseus leaves. In addition to akuammicine, the lesions were enriched in 25 other MIAs, resulting, in part, from a higher metabolic flux through the pathway. The unique metabolic shift was associated with significant upregulation of biosynthetic and regulatory genes involved in the MIA pathway, including the transcription factors WRKY1, CrMYC2, and ORCA2, and the biosynthetic genes STR, GO, and Redox1. Following the lesion-mimic mutant (LMM) phenotype, the accumulation of akuammicine is jasmonate (JA)-inducible, suggesting a role in plant defence response. Akuammicine is medicinally significant, as a weak opioid agonist, with a preference for the κ-opioid receptor, and a potential anti-diabetic. Further study of akuammicine biosynthesis and regulation can guide plant and heterologous engineering for medicinal uses.
Collapse
Affiliation(s)
- Fanfan Li
- Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Stephen Bordeleau
- Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Kyung Hee Kim
- Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Jonathan Turcotte
- Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Benjamin Davis
- Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Lan Liu
- Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Stéphane Bayen
- Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Vincenzo De Luca
- Biological Sciences, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Mehran Dastmalchi
- Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
11
|
Godbole RC, Pable AA, Singh S, Barvkar VT. Interplay of transcription factors orchestrating the biosynthesis of plant alkaloids. 3 Biotech 2022; 12:250. [PMID: 36051988 PMCID: PMC9424429 DOI: 10.1007/s13205-022-03316-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
Plants produce a range of secondary metabolites primarily as defence molecules. A plant has to invest considerable energy to synthesise alkaloids, and sometimes they are even toxic to themselves. Hence, the biosynthesis of alkaloids is a spatiotemporally regulated process under quantitative feedback regulation which is accomplished by the signal reception, transcriptional/translational regulation, transport, storage and accumulation. The transcription factors (TFs) initiate the biosynthesis of alkaloids after appropriate cues. The present study recapitulates last decade understanding of the role of TFs in alkaloid biosynthesis. The present review discusses TF families, viz. AP2/ERF, bHLH, WRKY, MYB involved in the biosynthesis of various types of alkaloids. It also highlights the role of the jasmonic acid cascade and post-translational modifications of TF proteins. A thorough understanding of TFs will help us to decide a strategy to facilitate successful pathway manipulation and in vitro production.
Collapse
Affiliation(s)
- Rucha C. Godbole
- Department of Botany, Savitribai Phule Pune University, Pune, 411007 India
| | - Anupama A. Pable
- Department of Microbiology, Savitribai Phule Pune University, Pune, 411007 India
| | - Sudhir Singh
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre (BARC), Mumbai, 400085 India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094 India
| | - Vitthal T. Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune, 411007 India
| |
Collapse
|
12
|
Morey KJ, Peebles CAM. Hairy roots: An untapped potential for production of plant products. FRONTIERS IN PLANT SCIENCE 2022; 13:937095. [PMID: 35991443 PMCID: PMC9389236 DOI: 10.3389/fpls.2022.937095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
While plants are an abundant source of valuable natural products, it is often challenging to produce those products for commercial application. Often organic synthesis is too expensive for a viable commercial product and the biosynthetic pathways are often so complex that transferring them to a microorganism is not trivial or feasible. For plants not suited to agricultural production of natural products, hairy root cultures offer an attractive option for a production platform which offers genetic and biochemical stability, fast growth, and a hormone free culture media. Advances in metabolic engineering and synthetic biology tools to engineer hairy roots along with bioreactor technology is to a point where commercial application of the technology will soon be realized. We discuss different applications of hairy roots. We also use a case study of the advancements in understanding of the terpenoid indole alkaloid pathway in Catharanthus roseus hairy roots to illustrate the advancements and challenges in pathway discovery and in pathway engineering.
Collapse
|
13
|
Singh SK, Patra B, Singleton JJ, Liu Y, Paul P, Sui X, Suttipanta N, Pattanaik S, Yuan L. Identification and Characterization of Transcription Factors Regulating Terpenoid Indole Alkaloid Biosynthesis in Catharanthus roseus. Methods Mol Biol 2022; 2505:203-221. [PMID: 35732947 DOI: 10.1007/978-1-0716-2349-7_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Biosynthesis of the therapeutically valuable terpenoid indole alkaloids (TIAs), in the medicinal plant Catharanthus roseus, is one of the most elaborate and complex metabolic processes. Although genomic and transcriptomic resources have significantly accelerated gene discovery in the TIA pathway, relatively few genes of transcription factors (TFs) have been identified and characterized thus far. Systematic identification of TFs and elucidation of their functions are crucial for understanding TIA pathway regulation. The successful discovery of TFs in the TIA pathway has relied mostly on three different approaches, (1) identification of cis-regulatory motifs (CRMs) present in the pathway gene promoters as they often provide clues on potential TFs that bind to the promoters, (2) co-expression analysis, based on the assumption that TFs regulating a metabolic or developmental pathway exhibit similar spatiotemporal expression as the pathway genes, and (3) isolation of homologs of TFs known to regulate structurally similar or diverse specialized metabolites in different plant species. TFs regulating TIA pathway have been isolated using either an individual or a combination of the three approaches. Here we describe transcriptome-based coexpression analysis and cis-element determination to identify TFs in C. roseus. In addition, we describe the protocols for generation of transgenic hairy roots, Agrobacterium infiltration of flowers, and electrophoretic mobility shift assay (EMSA). The methods described here are useful for the identification and characterization of potential TFs involved in the regulation of special metabolism in other medicinal plants.
Collapse
Affiliation(s)
- Sanjay K Singh
- Department of Plant and Soil Sciences, and the Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, USA
| | - Barunava Patra
- Department of Plant and Soil Sciences, and the Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, USA
| | - Joshua J Singleton
- Department of Plant and Soil Sciences, and the Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, USA
| | - Yongliang Liu
- Department of Plant and Soil Sciences, and the Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, USA
| | - Priyanka Paul
- Department of Plant and Soil Sciences, and the Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, USA
| | - Xueyi Sui
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan, China
| | - Nitima Suttipanta
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubonratchathani, Thailand
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences, and the Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, USA.
| | - Ling Yuan
- Department of Plant and Soil Sciences, and the Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
14
|
Biosynthesis and Modulation of Terpenoid Indole Alkaloids in Catharanthus roseus: A Review of Targeting Genes and Secondary Metabolites. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.4.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The medicinal plant C. roseus synthesizes biologically active alkaloids via the terpenoid indole alkaloid (TIAs) biosynthetic pathway. Most of these alkaloids have high therapeutic value, such as vinblastine and vincristine. Plant signaling components, plant hormones, precursors, growth hormones, prenylated proteins, and transcriptomic factors regulate the complex networks of TIA biosynthesis. For many years, researchers have been evaluating the scientific value of the TIA biosynthetic pathway and its potential in commercial applications for market opportunities. Metabolic engineering has revealed the major blocks in metabolic pathways regulated at the molecular level, unknown structures, metabolites, genes, enzyme expression, and regulatory genes. Conceptually, this information is necessary to create transgenic plants and microorganisms for the commercial production of high-value dimer alkaloids, such as vinca alkaloids, vinblastine, and vincristine In this review, we present current knowledge of the regulatory mechanisms of these components in the C. roseus TIA pathway, from genes to metabolites.
Collapse
|
15
|
Marzban M, Farahani F, Atyabi SM, Noormohammadi Z. Induced genetic and chemical changes in medicinally important plant Catharanthus roseus (L.) G. Don: cold plasma and phytohormones. Mol Biol Rep 2021; 49:31-38. [PMID: 34773551 DOI: 10.1007/s11033-021-06789-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/17/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Catharanthus roseus (L.) G. Donis a medicinal plant species belonging to the Apocynaceae family, which produces vinblastine and vincristine along with 100 other monoterpenoid indole alkaloids. The process of biosynthesis of C. roseus alkaloids is complex, in which many genes, enzymes, and regulators are involved. Induced mutations may be considered as a potential source for producing a higher amount of vinblastine and vincristine in this plant species. Therefore, the objective of the present study was to examine the effects of different treatments utilized on the induced genetic changes in C. roseus plants and enzyme activities. METHODS AND RESULTS Spermine, jasmonic acid, methyjasmonate, putrescine, and cold plasma treatments were used for seed treatments. Different molecular markers, namely inter simple sequence repeat, inter retrotransposon amplified polymorphism, and retrotransposon microsatellite amplified polymorphism were employed to reveal the induced genetic changes. Antioxidant enzyme activities were also studied. The treated plants showed genetic variability and a significant increase in antioxidant enzyme activity compared to the control plants. The putrescine treatment resulted in the highest level of activity in superoxidase. A significant positive correlation occurred between the molecular markers data and antioxidant enzyme activities in treated plants. CONCLUSION Our data revealed that the different phytohormones and cold plasma treatments could induce both genetic and chemical content changes in C. roseus plants.
Collapse
Affiliation(s)
- Maryam Marzban
- Biology Department, Science and Research Branch, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Farah Farahani
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Islamic Republic of Iran
| | - Seyed Mohammad Atyabi
- Department of Nano Biotechnology, Pasteur Institute of Iran, Tehran, Islamic Republic of Iran.
| | - Zahra Noormohammadi
- Biology Department, Science and Research Branch, Islamic Azad University, Tehran, Islamic Republic of Iran.
| |
Collapse
|