1
|
Xu L, Cui Y, Xing J, Mi Q, Wang Z, Wang X, Zeng W, Xiang H, Jiang J, Deng L, Wang K, Yang J, Gao Q. Functional analysis of NtPDX2 in Nicotiana tabacum L. associated with stem development. FRONTIERS IN PLANT SCIENCE 2025; 16:1547677. [PMID: 40330128 PMCID: PMC12052705 DOI: 10.3389/fpls.2025.1547677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/26/2025] [Indexed: 05/08/2025]
Abstract
Vitamin B6 is a water-soluble vitamin that is essential for all living organisms in their life activities. Among its forms, pyridoxal 5'-phosphate (PLP) is the primary metabolically active form of Vitamin B6, which usually plays a crucial role in the metabolism of proteins, fatty acids, and carbohydrates. To date, although the molecular functions of genes involved in vitamin B6 biosynthesis, including Pdx1, Pdx2, Pdx3, and Sos4, have been reported in various plants, no studies have yet explored the functions of NtPDX1 and NtPDX2 in tobacco. This study used the Nicotiana tabacum L. as material to clone the CDS sequence of the NtPDXs. Through bioinformatics analysis, we predicted the phylogenetic relationships and functions of these genes; the subcellular localization of NtPDX2 was found to be in the cytoplasmic structures. By conducting both constitutive overexpression and homozygous knockout studies of the NtPDX2, we observed a significant increase in vitamin B6 content in the stem tissues of overexpressing plants (up to 150%), while knockout plants showed a decrease to 60%. This led to changes in agronomic traits such as plant height and stem thickness in tobacco plants. The overexpressing plants exhibited a significant increase in height (100.93 cm) and stem thickness (13.64 cm), whereas the knockout plants were shorter in height (73.10 cm) and had thinner stems (10.83 cm). By integrating transcriptome sequencing technology with molecular biology methods, we aim to elucidate the molecular mechanisms underlying the role of NtPDX2 in tobacco growth and development, thereby providing new genetic resources and a theoretical foundation for the cultivation of new tobacco varieties with superior quality for flue-cured tobacco.
Collapse
Affiliation(s)
- Li Xu
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
| | - Yuxin Cui
- Biotechnology Research Institute, Chinese Academy Agricultural Sciences, MOA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Beijing, China
| | - Jiaxin Xing
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
| | - Qili Mi
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
| | - Zhixing Wang
- Biotechnology Research Institute, Chinese Academy Agricultural Sciences, MOA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Beijing, China
| | - Xujing Wang
- Biotechnology Research Institute, Chinese Academy Agricultural Sciences, MOA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Beijing, China
| | - Wanli Zeng
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
| | - Haiying Xiang
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
| | - Jiarui Jiang
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
| | - Lele Deng
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
| | - Kunmiao Wang
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
| | - Jiangtao Yang
- Biotechnology Research Institute, Chinese Academy Agricultural Sciences, MOA Key Laboratory on Safety Assessment (Molecular) of Agri-GMO, Beijing, China
| | - Qian Gao
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
| |
Collapse
|
2
|
Jeyaraj A, Liu S, Han R, Zhao Y, Elango T, Wang Y, Chen X, Zhuang J, Li X. The regulation of auxin receptor gene CsAFB2 by csn-miR393a confers resistance against Colletotrichum gloeosporioides in tea plants. MOLECULAR PLANT PATHOLOGY 2025; 26:e13499. [PMID: 40151091 PMCID: PMC11950636 DOI: 10.1111/mpp.13499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/12/2024] [Accepted: 07/08/2024] [Indexed: 03/29/2025]
Abstract
Anthracnose, a severe disease caused by Colletotrichum, affects diverse crops and leads to significant economic losses through pronounced fruit/leaf lesions. MicroRNAs (miRNAs) play crucial roles in modulating gene expression in response to disease resistance, defence responses and plant immunity. However, the regulatory mechanisms of miRNAs in responses to Colletotrichum gloeosporioides remain unknown in tea plants. Our study revealed that csn-miR393a targets auxin receptor gene CsAFB2 during resistance to C. gloeosporioides in tea plants by comparing the resistant cultivar Zhongcha108 to the susceptible cultivar Longjing43. Through Nicotiana benthamiana leaf co-transformation assays, we demonstrated that csn-miR393a suppresses the expression of CsAFB2, and csn-miR393a target mimic blocks the function of csn-miR393a, leading to increase in the expression of CsAFB2. Repression of transcripts in tea leaves by antisense oligonucleotides demonstrated that csn-miR393a negatively affects the tea plant defence by regulating reactive oxygen species homoeostasis, PR gene expression and catechin accumulation. To further validate the regulatory mechanisms of csn-miR393a, we developed transgenic tea plants overexpressing CsAFB2, resulting in enhanced resistance responses against C. gloeosporioides. Additionally, transgenic N. benthamiana lines overexpressing a csn-miR393a target mimic provided further evidence that csn-miR393a negatively regulates the tea plant defence response against C. gloeosporioides by suppressing CsAFB2. Therefore, manipulating csn-miR393a or its target gene, CsAFB2, has the potential to strengthen the tea plant's resistance against tea anthracnose.
Collapse
Affiliation(s)
- Anburaj Jeyaraj
- College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Shujing Liu
- College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Rui Han
- College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Yuxin Zhao
- College of HorticultureNanjing Agricultural UniversityNanjingChina
| | | | - Yuhua Wang
- College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Xuan Chen
- College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Jing Zhuang
- College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Xinghui Li
- College of HorticultureNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
3
|
Ferraz R, Casimiro B, Cordeiro D, Canhoto J, Correia S. Mediated Transformation of Tamarillo ( Solanum betaceum) Callus Cell Suspension Cultures: A Novel Platform for Biotechnological Applications. PLANTS (BASEL, SWITZERLAND) 2025; 14:1028. [PMID: 40219096 PMCID: PMC11990222 DOI: 10.3390/plants14071028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025]
Abstract
Solanum betaceum Cav. (tamarillo) has a strong biotechnological potential given the ease of obtaining cell lines from it that can be genetically transformed. However, genetic transformation of tamarillo cell suspension cultures has not yet been described. This study presents a simple method for Agrobacterium-mediated transformation of these cells and demonstrates the successful insertion of the β-glucuronidase gene (gusA) and the yellow fluorescent protein gene (eyfp) in their genome. For the success of this protocol, the selection of actively growing sub-cultured callus as explant and isolation of bacterial colonies with a cell density OD600 of 0.6-0.8 were key steps. Also, the inoculation of the callus in a bacteria liquid culture, the use of sonication, and the addition of antioxidants were essential. The transient expression of the gusA gene in tamarillo callus was confirmed and quantified, and no significant differences were observed between using LBA4404 or EHA105 strains. Finally, the insertion of the eyfp gene in the tamarillo genome enabled the in vivo confirmation of the transformation success. The present study showed that tamarillo cell suspension cultures can be genetically modified, opening the way for metabolite production in transformed cells and future scaling-up in bioreactors.
Collapse
Affiliation(s)
- Ricardo Ferraz
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (R.F.); (B.C.); (D.C.); (S.C.)
- Laqv Requimte, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Bruno Casimiro
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (R.F.); (B.C.); (D.C.); (S.C.)
- Faculty of Science, Agriculture & Engineering (SAgE), Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Daniela Cordeiro
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (R.F.); (B.C.); (D.C.); (S.C.)
- Department of Life Sciences, University of Alcalá, 28805 Alcalá de Henares, Spain
| | - Jorge Canhoto
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (R.F.); (B.C.); (D.C.); (S.C.)
| | - Sandra Correia
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (R.F.); (B.C.); (D.C.); (S.C.)
- InnovPlantProtect CoLAb, Estrada de Gil Vaz, 7350-478 Elvas, Portugal
| |
Collapse
|
4
|
Kumar A, Priyanka, K. J, Kaushik M, Mulani E, S. M, Roy J, Phogat S, Sareen B, Madhavan J, Sevanthi AM, Solanke AU, Kumar P, Mandal PK. Low titre of agroinoculum with prolonged incubation period and low auxin concentration in the regeneration media are the key to high frequency of transformation in climate-resilient Aus-type rice genotype Nagina 22. 3 Biotech 2025; 15:53. [PMID: 39898234 PMCID: PMC11785844 DOI: 10.1007/s13205-025-04210-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/02/2025] [Indexed: 02/04/2025] Open
Abstract
Developing an efficient and reproducible regeneration protocol holds paramount significance for advancing genetic transformation technologies in rice, facilitating their utilisation in crop improvement. Nagina 22 (N22), a climate-resilient Aus-type rice genotype known for its tolerance against multiple stresses, lacks a standardised transformation protocol, limiting its utilisation as a background for genetic transformation. This study reports, for the first time, a highly efficient transformation and regeneration protocol for N22 using a CRISPR/Cas9 vector. Mature seeds were used to induce embryogenic calli on CHU(N6)-based callus induction media (CIM) with varying concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D). The highest callus induction efficiency (~ 94%) was achieved using 3 mgL-1 2,4-D. For regeneration, calli were transferred to different regeneration media-I (RM-Ia to RM-Ie), where a combination of 5 mgL-1 6-benzylaminopurine (BAP) and 0.02 mgL-1 naphthalene acetic acid (NAA) resulted in ~ 44% regeneration frequency. Subsequent optimisation of regeneration media-II (RM-II) with low NAA concentration enhanced shoot elongation and root development. Furthermore, reducing basal salt concentration in the resuspension media significantly enhanced transformation efficiency to 44%, achieved, by only using sterile distilled water (SDW) with 150 mM acetosyringone for calli infection. The optimised protocol was successfully validated using CRISPR/Cas9 vector, facilitating targeted gene knockouts for functional genomic studies. This approach addresses a critical gap in N22 genetic transformation, providing a reliable protocol for advancing rice improvement through gene editing. It offers valuable insights for future research and practical applications in genetic transformation of this elite rice genotype for various agronomic and scientific purposes. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-025-04210-y.
Collapse
Affiliation(s)
- Amit Kumar
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
- Amity Institute of Biotechnology, Amity University Uttar Pradesh (AUUP), Noida, UP 201313 India
| | - Priyanka
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Jeevanandhan K.
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Megha Kaushik
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Ekta Mulani
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Meena S.
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Jeet Roy
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Sachin Phogat
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Bhuvnesh Sareen
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012 India
| | - Jayanthi Madhavan
- Division of Genetics, ICAR-Indian Agriculture Research Institute, Pusa Campus, New Delhi, 110012 India
| | | | | | - Prabhanshu Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh (AUUP), Noida, UP 201313 India
| | | |
Collapse
|
5
|
Ye X, Qin K, Fernie AR, Zhang Y. Prospects for synthetic biology in 21 st Century agriculture. J Genet Genomics 2024:S1673-8527(24)00369-2. [PMID: 39742963 DOI: 10.1016/j.jgg.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
Plant synthetic biology has emerged as a transformative field in agriculture, offering innovative solutions to enhance food security, provide resilience to climate change, and transition to sustainable farming practices. By integrating advanced genetic tools, computational modeling, and systems biology, researchers can precisely modify plant genomes to enhance traits such as yield, stress tolerance, and nutrient use efficiency. The ability to design plants with specific characteristics tailored to diverse environmental conditions and agricultural needs holds great potential to address global food security challenges. Here, we highlight recent advancements and applications of plant synthetic biology in agriculture, focusing on key areas such as photosynthetic efficiency, nitrogen fixation, drought tolerance, pathogen resistance, nutrient use efficiency, biofortification, climate resilience, microbiology engineering, synthetic plant genomes, and the integration of artificial intelligence (AI) with synthetic biology. These innovations aim to maximize resource use efficiency, reduce reliance on external inputs, and mitigate environmental impacts associated with conventional agricultural practices. Despite challenges related to regulatory approval and public acceptance, the integration of synthetic biology in agriculture holds immense promise for creating more resilient and sustainable agricultural systems, contributing to global food security and environmental sustainability. Rigorous multi-field testing of these approaches will undoubtedly be required to ensure reproducibility.
Collapse
Affiliation(s)
- Xingyan Ye
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kezhen Qin
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Youjun Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Ontivero Y, Fuentes-Lillo E, Navarrete-Campos D, Vázquez-Villa D, Cabreras-Barjas G, Arroyo-Marín FB, Cuba-Díaz M. Preliminary assessment of seed heteromorfism as an adaptive strategy of Colobanthus quitensis under saline conditions. Sci Rep 2024; 14:31120. [PMID: 39730845 PMCID: PMC11680888 DOI: 10.1038/s41598-024-82381-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/04/2024] [Indexed: 12/29/2024] Open
Abstract
Colobanthus quitensis is known for enduring extreme conditions, such as high salinity in Antarctica, making it an excellent model for studying environmental stress. In plant families, variations in seed color heteromorphism have been linked to various germination under stress conditions. Preliminary laboratory observations indicated that dark brown seeds of C. quitensis had higher germination rates, suggesting that this phenotypic trait might offer a germination advantage, particularly under saline conditions. To investigate this, germination of heteromorphic seeds from Antarctic, sub-Antarctic, and Andean populations of C. quitensis was assessed under in vitro saline conditions. Among all populations, dark brown seeds exhibited greater germination and shorter germination time than other seeds in the absence of salinity. In the Antarctic population, dark brown seeds showed better salinity tolerance. In the sub-Antarctic La Marisma population, salt tolerance was not affect by seed color, showing the population was the most salt-tolerant. The other two populations showed very low germination even at low salinity concentration. This study is the first scientific report of seed heteromorphism in C. quitensis populations, offering insights into mechanisms of salinity tolerance and potentially other stress conditions that enhance the species' resilience. In addition, the identification of La Marisma populations as a salinity-tolerant population will holds biotechnological importance for agriculture.
Collapse
Affiliation(s)
- Yadiana Ontivero
- Laboratorio de Biotecnología y Estudios Ambientales, Departamento de Ciencias y Tecnología Vegetal, Escuela de Ciencias y Tecnologías, Universidad de Concepción, Campus Los Ángeles, 4440000, Concepción, Chile
- Facultad de Agronomía, Universidad de Concepción, Campus Chillán, 3812189, Chillán, Chile
| | - Eduardo Fuentes-Lillo
- Laboratorio de Invasiones Biológicas (LIB), Facultad de Ciencias Forestales, Universidad de Concepción, 4030000, Concepción, Chile
- Instituto de Ecología y Biodiversidad (IEB), Ñuñoa, 7800020, Santiago, Chile
| | - Darío Navarrete-Campos
- Laboratorio de Biotecnología y Estudios Ambientales, Departamento de Ciencias y Tecnología Vegetal, Escuela de Ciencias y Tecnologías, Universidad de Concepción, Campus Los Ángeles, 4440000, Concepción, Chile
| | - Dante Vázquez-Villa
- Laboratorio de Biotecnología y Estudios Ambientales, Departamento de Ciencias y Tecnología Vegetal, Escuela de Ciencias y Tecnologías, Universidad de Concepción, Campus Los Ángeles, 4440000, Concepción, Chile
| | - Gustavo Cabreras-Barjas
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Campus Las Tres Pascualas, Lientur 1439, 4080871, Concepción, Chile
| | - Francisca B Arroyo-Marín
- Laboratorio de Biotecnología y Estudios Ambientales, Departamento de Ciencias y Tecnología Vegetal, Escuela de Ciencias y Tecnologías, Universidad de Concepción, Campus Los Ángeles, 4440000, Concepción, Chile
| | - Marely Cuba-Díaz
- Laboratorio de Biotecnología y Estudios Ambientales, Departamento de Ciencias y Tecnología Vegetal, Escuela de Ciencias y Tecnologías, Universidad de Concepción, Campus Los Ángeles, 4440000, Concepción, Chile.
- Programa de Ciencia Antártica y Subantártica, Universidad de Concepción, 4030000, Concepción, Chile.
| |
Collapse
|
7
|
Feng Z, Liu N, Bu Y, Zhang G, Wang B, Gong Y. Promoter of Vegetable Pea PsPIP2-4 Responds to Abiotic Stresses in Transgenic Tobacco. Int J Mol Sci 2024; 25:13574. [PMID: 39769337 PMCID: PMC11676869 DOI: 10.3390/ijms252413574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Plasma membrane intrinsic proteins (PIPs), one sub-family of aquaporins (AQPs), are responsible for plant abiotic stress responses. However, little information is currently available about the stress responsiveness of the PIP promoter in vegetable pea. In the present study, one novel promoter of PsPIP2-4 which shared high similarity to the PIP2-type AQPs from other plants, was isolated. Quantitative real-time PCR (qRT-PCR) assays suggested that PsPIP2-4 was predominantly expressed in leaves and abundantly induced by abiotic stress treatments (polyethylene glycol (PEG) 6000, NaCl, and methyl jasmonate (MeJA)). Further, the promoter activity of PsPIP2-4 was verified in transgenic tobacco plants. Beta-glucuronidase (GUS) staining driven by the PsPIP2-4 promoter confirmed that it was mainly detected in the leaves of transgenic seedlings, especially in the guard cells. Exposure of transgenic seedlings to various environmental stimuli proved that the promoter activity of PsPIP2-4 was abundantly strengthened by osmotic, salt, and MeJA stresses. This research provides one stress-inducible promoter enabling targeted gene expression under abiotic stresses and demonstrates its usefulness in the genetic improvement of plant stress resistance.
Collapse
Affiliation(s)
| | | | | | | | | | - Yaming Gong
- Key Laboratory of Vegetable Legumes Germplasm Enhancement and Molecular Breeding in Southern China of Ministry of Agriculture and Rural Affairs, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Z.F.); (N.L.); (Y.B.); (G.Z.); (B.W.)
| |
Collapse
|
8
|
Lao X, Jin P, Yang R, Liang Y, Zhang D, Zeng Y, Li X. Establishment of Agrobacterium-Mediated Transient Transformation System in Desert Legume Eremosparton songoricum (Litv.) Vass. Int J Mol Sci 2024; 25:11934. [PMID: 39596004 PMCID: PMC11593363 DOI: 10.3390/ijms252211934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Eremosparton songoricum (Litv.) Vass. is a desert legume exhibiting extreme drought tolerance and the ability to withstand various harsh environments, making it a good candidate for investigating stress tolerance mechanisms and exploring valuable stress-resistant genes. However, the absence of a genetic transformation system for E. songoricum poses significant limitations for functionally validating these stress-resistant genes in situ. In this study, we developed an Agrobacterium-mediated transient transformation system for E. songoricum utilizing the β-glucuronidase (GUS) gene as a reporter. We investigated three types of explants (seedlings, assimilated branches and callus) and the effects of different Agrobacterium strains, seedling ages, OD600 values, acetosyringone (AS) concentrations, sucrose concentrations and infection times on the transformation efficiency. The results reveal that the optimal transformation system was infecting one-month-old regenerating assimilated branches with the Agrobacterium strain C58C1. The infection solution comprised 1/2 MS medium with 3% sucrose and 200 μM AS at an OD600 of 0.8, infection for 3 h and then followed by 2 days of dark cultivation, which achieving a maximum transformation rate of 97%. The maximum transformation rates of the seedlings and calluses were 57.17% and 39.51%, respectively. Moreover, we successfully utilized the assimilated branch transient transformation system to confirm the role of the previously reported transcription factor EsDREB2B in E. songoricum. The overexpression of EsDREB2B enhanced drought tolerance by increasing the plant's reactive oxygen species (ROS) scavenging capacity in situ. This study established the first transient transformation system for a desert legume woody plant, E. songoricum. This efficient system can be readily applied to investigate gene functions in E. songoricum. It will expedite the exploration of genetic resources and stress tolerance mechanisms in this species, offering valuable insights and serving as a reference for the transformation of other desert plants and woody legumes.
Collapse
Affiliation(s)
- Xi’an Lao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China;
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (P.J.); (R.Y.); (Y.L.); (D.Z.)
| | - Pei Jin
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (P.J.); (R.Y.); (Y.L.); (D.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruirui Yang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (P.J.); (R.Y.); (Y.L.); (D.Z.)
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Yuqing Liang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (P.J.); (R.Y.); (Y.L.); (D.Z.)
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (P.J.); (R.Y.); (Y.L.); (D.Z.)
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Youling Zeng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China;
| | - Xiaoshuang Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (P.J.); (R.Y.); (Y.L.); (D.Z.)
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
9
|
Bektaş Ü, Isak MA, Bozkurt T, Dönmez D, İzgü T, Tütüncü M, Simsek Ö. Genotype-specific responses to in vitro drought stress in myrtle ( Myrtus communis L.): integrating machine learning techniques. PeerJ 2024; 12:e18081. [PMID: 39391827 PMCID: PMC11466237 DOI: 10.7717/peerj.18081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/20/2024] [Indexed: 10/12/2024] Open
Abstract
Background Myrtle (Myrtus communis L.), native to the Mediterranean region of Türkiye, is a valuable plant with applications in traditional medicine, pharmaceuticals, and culinary practices. Understanding how myrtle responds to water stress is essential for sustainable cultivation as climate change exacerbates drought conditions. Methods This study investigated the performance of selected myrtle genotypes under in vitro drought stress by employing tissue culture techniques, rooting trials, and acclimatization processes. Genotypes were tested under varying polyethylene glycol (PEG) concentrations (1%, 2%, 4%, and 6%). Machine learning (ML) algorithms, including Gaussian process (GP), support vector machine (SVM), Random Forest (RF), and Extreme Gradient Boosting (XGBoost), were utilized to model and predict micropropagation and rooting efficiency. Results The research revealed a genotype-dependent response to drought stress. Black-fruited genotypes exhibited higher micropropagation rates compared to white-fruited ones under stress conditions. The application of ML models successfully predicted micropropagation and rooting efficiency, providing insights into genotype performance. Conclusions The findings suggest that selecting drought-tolerant genotypes is crucial for enhancing myrtle cultivation. The results underscore the importance of genotype selection and optimization of cultivation practices to address climate change impacts. Future research should explore the molecular mechanisms of stress responses to refine breeding strategies and improve resilience in myrtle and similar economically important crops.
Collapse
Affiliation(s)
- Ümit Bektaş
- Faculty of Agriculture, Department of Horticulture, Erciyes University, Kayseri, Turkey
| | - Musab A. Isak
- Graduate School of Natural and Applied Sciences, Agricultural Sciences and Technologies Department, Erciyes University, Kayseri, Turkey
| | - Taner Bozkurt
- Tekfen Agricultural Research Production and Marketing Inc., Adana, Turkey
| | - Dicle Dönmez
- Biotechnology Research and Application Center, Çukurova University, Adana, Turkey
| | - Tolga İzgü
- Institute of BioEconomy, National Research Council of Italy, Florence, Italy
| | - Mehmet Tütüncü
- Department of Horticulture, Ondokuz Mayis University Samsun, Samsun, Turkey
| | - Özhan Simsek
- Faculty of Agriculture, Department of Horticulture, Erciyes University, Kayseri, Turkey
- Graduate School of Natural and Applied Sciences, Agricultural Sciences and Technologies Department, Erciyes University, Kayseri, Turkey
| |
Collapse
|
10
|
Do VG, Kim S, Win NM, Kwon SI, Kweon H, Yang S, Park J, Do G, Lee Y. Efficient Regeneration of Transgenic Rice from Embryogenic Callus via Agrobacterium-Mediated Transformation: A Case Study Using GFP and Apple MdFT1 Genes. PLANTS (BASEL, SWITZERLAND) 2024; 13:2803. [PMID: 39409673 PMCID: PMC11478628 DOI: 10.3390/plants13192803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024]
Abstract
Genetic transformation is a critical tool for gene manipulation and functional analyses in plants, enabling the exploration of key phenotypes and agronomic traits at the genetic level. While dicotyledonous plants offer various tissues for in vitro culture and transformation, monocotyledonous plants, such as rice, have limited options. This study presents an efficient method for genetically transforming rice (Oryza sativa L.) using seed-derived embryogenic calli as explants. Two target genes were utilized to assess regeneration efficiency: green fluorescent protein (eGFP) and the apple FLOWERING LOCUS T (FT)-like gene (MdFT1). Antisense MdFT1 was cloned into a vector controlled by the rice α-amylase 3D (Ramy3D) promoter, while eGFP was fused to Cas9 under the Ubi promoter. These vectors were introduced separately into rice embryogenic calli from two Korean cultivars using Agrobacterium-mediated transformation. Transgenic seedlings were successfully regenerated via hygromycin selection using an in vitro cultivation system. PCR confirmed stable transgene integration in the transgenic calli and their progeny. Fluorescence microscopy revealed eGFP expression, and antisense MdFT1-expressing lines exhibited notable phenotypic changes, including variations in plant height and grain quality. High transformation efficiency and regeneration frequency were achieved for both tested cultivars. This study demonstrated the effective use of seed-derived embryogenic calli for rice transformation, offering a promising approach for developing transgenic plants in monocot species.
Collapse
Affiliation(s)
- Van Giap Do
- Apple Research Center, National Institute of Horticultural and Herbal Science, Rural Development Administration, Daegu 43100, Republic of Korea; (S.K.); (N.M.W.); (S.-I.K.); (H.K.); (S.Y.); (J.P.)
| | - Seonae Kim
- Apple Research Center, National Institute of Horticultural and Herbal Science, Rural Development Administration, Daegu 43100, Republic of Korea; (S.K.); (N.M.W.); (S.-I.K.); (H.K.); (S.Y.); (J.P.)
| | - Nay Myo Win
- Apple Research Center, National Institute of Horticultural and Herbal Science, Rural Development Administration, Daegu 43100, Republic of Korea; (S.K.); (N.M.W.); (S.-I.K.); (H.K.); (S.Y.); (J.P.)
| | - Soon-Il Kwon
- Apple Research Center, National Institute of Horticultural and Herbal Science, Rural Development Administration, Daegu 43100, Republic of Korea; (S.K.); (N.M.W.); (S.-I.K.); (H.K.); (S.Y.); (J.P.)
| | - Hunjoong Kweon
- Apple Research Center, National Institute of Horticultural and Herbal Science, Rural Development Administration, Daegu 43100, Republic of Korea; (S.K.); (N.M.W.); (S.-I.K.); (H.K.); (S.Y.); (J.P.)
| | - Sangjin Yang
- Apple Research Center, National Institute of Horticultural and Herbal Science, Rural Development Administration, Daegu 43100, Republic of Korea; (S.K.); (N.M.W.); (S.-I.K.); (H.K.); (S.Y.); (J.P.)
| | - Juhyeon Park
- Apple Research Center, National Institute of Horticultural and Herbal Science, Rural Development Administration, Daegu 43100, Republic of Korea; (S.K.); (N.M.W.); (S.-I.K.); (H.K.); (S.Y.); (J.P.)
| | - Gyungran Do
- Postharvest Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea;
| | - Youngsuk Lee
- Apple Research Center, National Institute of Horticultural and Herbal Science, Rural Development Administration, Daegu 43100, Republic of Korea; (S.K.); (N.M.W.); (S.-I.K.); (H.K.); (S.Y.); (J.P.)
| |
Collapse
|
11
|
Fallah Ziarani M, Tohidfar M, Hesami M. Choosing an appropriate somatic embryogenesis medium of carrot (Daucus carota L.) by data mining technology. BMC Biotechnol 2024; 24:68. [PMID: 39334143 PMCID: PMC11428924 DOI: 10.1186/s12896-024-00898-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
INTRODUCTION Developing somatic embryogenesis is one of the main steps in successful in vitro propagation and gene transformation in the carrot. However, somatic embryogenesis is influenced by different intrinsic (genetics, genotype, and explant) and extrinsic (e.g., plant growth regulators (PGRs), medium composition, and gelling agent) factors which cause challenges in developing the somatic embryogenesis protocol. Therefore, optimizing somatic embryogenesis is a tedious, time-consuming, and costly process. Novel data mining approaches through a hybrid of artificial neural networks (ANNs) and optimization algorithms can facilitate modeling and optimizing in vitro culture processes and thereby reduce large experimental treatments and combinations. Carrot is a model plant in genetic engineering works and recombinant drugs, and therefore it is an important plant in research works. Also, in this research, for the first time, embryogenesis in carrot (Daucus carota L.) using Genetic algorithm (GA) and data mining technology has been reviewed and analyzed. MATERIALS AND METHODS In the current study, data mining approach through multilayer perceptron (MLP) and radial basis function (RBF) as two well-known ANNs were employed to model and predict embryogenic callus production in carrot based on eight input variables including carrot cultivars, agar, magnesium sulfate (MgSO4), calcium dichloride (CaCl2), manganese (II) sulfate (MnSO4), 2,4-dichlorophenoxyacetic acid (2,4-D), 6-benzylaminopurine (BAP), and kinetin (KIN). To confirm the reliability and accuracy of the developed model, the result obtained from RBF-GA model were tested in the laboratory. RESULTS The results showed that RBF had better prediction efficiency than MLP. Then, the developed model was linked to a genetic algorithm (GA) to optimize the system. To confirm the reliability and accuracy of the developed model, the result of RBF-GA was experimentally tested in the lab as a validation experiment. The result showed that there was no significant difference between the predicted optimized result and the experimental result. CONCLUTIONS Generally, the results of this study suggest that data mining through RBF-GA can be considered as a robust approach, besides experimental methods, to model and optimize in vitro culture systems. According to the RBF-GA result, the highest somatic embryogenesis rate (62.5%) can be obtained from Nantes improved cultivar cultured on medium containing 195.23 mg/l MgSO4, 330.07 mg/l CaCl2, 18.3 mg/l MnSO4, 0.46 mg/l 2,4- D, 0.03 mg/l BAP, and 0.88 mg/l KIN. These results were also confirmed in the laboratory.
Collapse
Affiliation(s)
- Masoumeh Fallah Ziarani
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, 19839-69411, Iran
| | - Masoud Tohidfar
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, 19839-69411, Iran.
| | - Mohsen Hesami
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
12
|
Azizi-Dargahlou S, Pouresmaeil M. Agrobacterium tumefaciens-Mediated Plant Transformation: A Review. Mol Biotechnol 2024; 66:1563-1580. [PMID: 37340198 DOI: 10.1007/s12033-023-00788-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023]
Abstract
Agrobacterium tumefaciens-mediated plant transformation is the most dominant technique for the transformation of plants. It is used to transform monocotyledonous and dicotyledonous plants. A. tumefaciens apply for stable and transient transformation, random and targeted integration of foreign genes, as well as genome editing of plants. The Advantages of this method include cheapness, uncomplicated operation, high reproducibility, a low copy number of integrated transgenes, and the possibility of transferring larger DNA fragments. Engineered endonucleases such as CRISPR/Cas9 systems, TALENs, and ZFNs can be delivered with this method. Nowadays, Agrobacterium-mediated transformation is used for the Knock in, Knock down, and Knock out of genes. The transformation effectiveness of this method is not always desirable. Researchers applied various strategies to improve the effectiveness of this method. Here, a general overview of the characteristics and mechanism of gene transfer with Agrobacterium is presented. Advantages, updated data on the factors involved in optimizing this method, and other useful materials that lead to maximum exploitation as well as overcoming obstacles of this method are discussed. Moreover, the application of this method in the generation of genetically edited plants is stated. This review can help researchers to establish a rapid and highly effective Agrobacterium-mediated transformation protocol for any plant species.
Collapse
Affiliation(s)
| | - Mahin Pouresmaeil
- Department of Biotechnology, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
13
|
Isak MA, Bozkurt T, Tütüncü M, Dönmez D, İzgü T, Şimşek Ö. Leveraging machine learning to unravel the impact of cadmium stress on goji berry micropropagation. PLoS One 2024; 19:e0305111. [PMID: 38870239 PMCID: PMC11175477 DOI: 10.1371/journal.pone.0305111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/24/2024] [Indexed: 06/15/2024] Open
Abstract
This study investigates the influence of cadmium (Cd) stress on the micropropagation of Goji Berry (Lycium barbarum L.) across three distinct genotypes (ERU, NQ1, NQ7), employing an array of machine learning (ML) algorithms, including Multilayer Perceptron (MLP), Support Vector Machines (SVM), Random Forest (RF), Gaussian Process (GP), and Extreme Gradient Boosting (XGBoost). The primary motivation is to elucidate genotype-specific responses to Cd stress, which poses significant challenges to agricultural productivity and food safety due to its toxicity. By analyzing the impacts of varying Cd concentrations on plant growth parameters such as proliferation, shoot and root lengths, and root numbers, we aim to develop predictive models that can optimize plant growth under adverse conditions. The ML models revealed complex relationships between Cd exposure and plant physiological changes, with MLP and RF models showing remarkable prediction accuracy (R2 values up to 0.98). Our findings contribute to understanding plant responses to heavy metal stress and offer practical applications in mitigating such stress in plants, demonstrating the potential of ML approaches in advancing plant tissue culture research and sustainable agricultural practices.
Collapse
Affiliation(s)
- Musab A. Isak
- Department of Agricultural Science and Technology, Graduate School of Natural and Applied Sciences Erciyes University, Kayseri, Türkiye
| | - Taner Bozkurt
- Tekfen Agricultural Research Production and Marketing Inc., Adana, Türkiye
| | - Mehmet Tütüncü
- Department of Horticulture, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, Türkiye
| | - Dicle Dönmez
- Biotechnology Research and Application Center, Çukurova University, Adana, Türkiye
| | - Tolga İzgü
- Institute of BioEconomy, National Research Council of Italy (CNR), Florence, Italy
| | - Özhan Şimşek
- Department of Agricultural Science and Technology, Graduate School of Natural and Applied Sciences Erciyes University, Kayseri, Türkiye
- Department of Horticulture, Faculty of Agriculture, Erciyes University, Kayseri, Türkiye
| |
Collapse
|
14
|
Zarbakhsh S, Shahsavar AR, Soltani M. Optimizing PGRs for in vitro shoot proliferation of pomegranate with bayesian-tuned ensemble stacking regression and NSGA-II: a comparative evaluation of machine learning models. PLANT METHODS 2024; 20:82. [PMID: 38822411 PMCID: PMC11143642 DOI: 10.1186/s13007-024-01211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/17/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND The process of optimizing in vitro shoot proliferation is a complicated task, as it is influenced by interactions of many factors as well as genotype. This study investigated the role of various concentrations of plant growth regulators (zeatin and gibberellic acid) in the successful in vitro shoot proliferation of three Punica granatum cultivars ('Faroogh', 'Atabaki' and 'Shirineshahvar'). Also, the utility of five Machine Learning (ML) algorithms-Support Vector Regression (SVR), Random Forest (RF), Extreme Gradient Boosting (XGB), Ensemble Stacking Regression (ESR) and Elastic Net Multivariate Linear Regression (ENMLR)-as modeling tools were evaluated on in vitro multiplication of pomegranate. A new automatic hyperparameter optimization method named Adaptive Tree Pazen Estimator (ATPE) was developed to tune the hyperparameters. The performance of the models was evaluated and compared using statistical indicators (MAE, RMSE, RRMSE, MAPE, R and R2), while a specific Global Performance Indicator (GPI) was introduced to rank the models based on a single parameter. Moreover, Non‑dominated Sorting Genetic Algorithm‑II (NSGA‑II) was employed to optimize the selected prediction model. RESULTS The results demonstrated that the ESR algorithm exhibited higher predictive accuracy in comparison to other ML algorithms. The ESR model was subsequently introduced for optimization by NSGA‑II. ESR-NSGA‑II revealed that the highest proliferation rate (3.47, 3.84, and 3.22), shoot length (2.74, 3.32, and 1.86 cm), leave number (18.18, 19.76, and 18.77), and explant survival (84.21%, 85.49%, and 56.39%) could be achieved with a medium containing 0.750, 0.654, and 0.705 mg/L zeatin, and 0.50, 0.329, and 0.347 mg/L gibberellic acid in the 'Atabaki', 'Faroogh', and 'Shirineshahvar' cultivars, respectively. CONCLUSIONS This study demonstrates that the 'Shirineshahvar' cultivar exhibited lower shoot proliferation success compared to the other cultivars. The results indicated the good performance of ESR-NSGA-II in modeling and optimizing in vitro propagation. ESR-NSGA-II can be applied as an up-to-date and reliable computational tool for future studies in plant in vitro culture.
Collapse
Affiliation(s)
- Saeedeh Zarbakhsh
- Department of Horticultural Science, College of Agriculture, Faculty of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Reza Shahsavar
- Department of Horticultural Science, College of Agriculture, Faculty of Agriculture, Shiraz University, Shiraz, Iran.
| | | |
Collapse
|
15
|
Jafari M, Daneshvar MH. Machine learning-mediated Passiflora caerulea callogenesis optimization. PLoS One 2024; 19:e0292359. [PMID: 38266002 PMCID: PMC10807783 DOI: 10.1371/journal.pone.0292359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/19/2023] [Indexed: 01/26/2024] Open
Abstract
Callogenesis is one of the most powerful biotechnological approaches for in vitro secondary metabolite production and indirect organogenesis in Passiflora caerulea. Comprehensive knowledge of callogenesis and optimized protocol can be obtained by the application of a combination of machine learning (ML) and optimization algorithms. In the present investigation, the callogenesis responses (i.e., callogenesis rate and callus fresh weight) of P. caerulea were predicted based on different types and concentrations of plant growth regulators (PGRs) (i.e., 2,4-dichlorophenoxyacetic acid (2,4-D), 6-benzylaminopurine (BAP), 1-naphthaleneacetic acid (NAA), and indole-3-Butyric Acid (IBA)) as well as explant types (i.e., leaf, node, and internode) using multilayer perceptron (MLP). Moreover, the developed models were integrated into the genetic algorithm (GA) to optimize the concentration of PGRs and explant types for maximizing callogenesis responses. Furthermore, sensitivity analysis was conducted to assess the importance of each input variable on the callogenesis responses. The results showed that MLP had high predictive accuracy (R2 > 0.81) in both training and testing sets for modeling all studied parameters. Based on the results of the optimization process, the highest callogenesis rate (100%) would be obtained from the leaf explant cultured in the medium supplemented with 0.52 mg/L IBA plus 0.43 mg/L NAA plus 1.4 mg/L 2,4-D plus 0.2 mg/L BAP. The results of the sensitivity analysis showed the explant-dependent impact of the exogenous application of PGRs on callogenesis. Generally, the results showed that a combination of MLP and GA can display a forward-thinking aid to optimize and predict in vitro culture systems and consequentially cope with several challenges faced currently in Passiflora tissue culture.
Collapse
Affiliation(s)
- Marziyeh Jafari
- Department of Horticultural Science, College of Agriculture, Shiraz University, Shiraz, Iran
- Department of Horticultural Sciences, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| | - Mohammad Hosein Daneshvar
- Department of Horticultural Sciences, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| |
Collapse
|
16
|
Jafari M, Daneshvar MH. Prediction and optimization of indirect shoot regeneration of Passiflora caerulea using machine learning and optimization algorithms. BMC Biotechnol 2023; 23:27. [PMID: 37528396 PMCID: PMC10394921 DOI: 10.1186/s12896-023-00796-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Optimization of indirect shoot regeneration protocols is one of the key prerequisites for the development of Agrobacterium-mediated genetic transformation and/or genome editing in Passiflora caerulea. Comprehensive knowledge of indirect shoot regeneration and optimized protocol can be obtained by the application of a combination of machine learning (ML) and optimization algorithms. MATERIALS AND METHODS In the present investigation, the indirect shoot regeneration responses (i.e., de novo shoot regeneration rate, the number of de novo shoots, and length of de novo shoots) of P. caerulea were predicted based on different types and concentrations of PGRs (i.e., TDZ, BAP, PUT, KIN, and IBA) as well as callus types (i.e., callus derived from different explants including leaf, node, and internode) using generalized regression neural network (GRNN) and random forest (RF). Moreover, the developed models were integrated into the genetic algorithm (GA) to optimize the concentration of PGRs and callus types for maximizing indirect shoot regeneration responses. Moreover, sensitivity analysis was conducted to assess the importance of each input variable on the studied parameters. RESULTS The results showed that both algorithms (RF and GRNN) had high predictive accuracy (R2 > 0.86) in both training and testing sets for modeling all studied parameters. Based on the results of optimization process, the highest de novo shoot regeneration rate (100%) would be obtained from callus derived from nodal segments cultured in the medium supplemented with 0.77 mg/L BAP plus 2.41 mg/L PUT plus 0.06 mg/L IBA. The results of the sensitivity analysis showed the explant-dependent impact of exogenous application of PGRs on indirect de novo shoot regeneration. CONCLUSIONS A combination of ML (GRNN and RF) and GA can display a forward-thinking aid to optimize and predict in vitro culture systems and consequentially cope with several challenges faced currently in Passiflora tissue culture.
Collapse
Affiliation(s)
- Marziyeh Jafari
- Department of Horticultural Science, College of Agriculture, Shiraz University, Shiraz, 7144113131, Iran.
- Department of Horticultural Sciences, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, 6341773637, Iran.
| | - Mohammad Hosein Daneshvar
- Department of Horticultural Sciences, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, 6341773637, Iran
| |
Collapse
|
17
|
Tang Y, Zhang Z, Yang Z, Wu J. CRISPR/Cas9 and Agrobacterium tumefaciens virulence proteins synergistically increase efficiency of precise genome editing via homology directed repair in plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3518-3530. [PMID: 36919203 PMCID: PMC10797490 DOI: 10.1093/jxb/erad096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
CRISPR/Cas9 genome editing and Agrobacterium tumefaciens-mediated genetic transformation are widely-used plant biotechnology tools derived from bacterial immunity-related systems, each involving DNA modification. The Cas9 endonuclease introduces DNA double-strand breaks (DSBs), and the A. tumefaciens T-DNA is released by the VirD2 endonuclease assisted by VirDl and attached by VirE2, transferred to the plant nucleus and integrated into the genome. Here, we explored the potential for synergy between the two systems and found that Cas9 and three virulence (Vir) proteins achieve precise genome editing via the homology directed repair (HDR) pathway in tobacco and rice plants. Compared with Cas9T (Cas9, VirD1, VirE2) and CvD (Cas9-VirD2) systems, the HDR frequencies of a foreign GFPm gene in the CvDT system (Cas9-VirD2, VirD1, VirE2) increased 52-fold and 22-fold, respectively. Further optimization of the CvDT process with a donor linker (CvDTL) achieved a remarkable increase in the efficiency of HDR-mediated genome editing. Additionally, the HDR efficiency of the three rice endogenous genes ACETOLACTATE SYNTHASE (ALS), PHYTOENE DESATURASE (PDS), and NITROGEN TRANSPORTER 1.1 B (NRT1.1B) increased 24-, 32- and 16-fold, respectively, in the CvDTL system, compared with corresponding Cas9TL (Cas9T process with a donor linker). Our results suggest that collaboration between CRISPR/Cas9 and Agrobacterium-mediated genetic transformation can make great progress towards highly efficient and precise genome editing via the HDR pathway.
Collapse
Affiliation(s)
- Ye Tang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhennan Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhiyuan Yang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jiahe Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Rezaei H, Mirzaie-asl A, Abdollahi MR, Tohidfar M. Comparative analysis of different artificial neural networks for predicting and optimizing in vitro seed germination and sterilization of petunia. PLoS One 2023; 18:e0285657. [PMID: 37167278 PMCID: PMC10174541 DOI: 10.1371/journal.pone.0285657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/27/2023] [Indexed: 05/13/2023] Open
Abstract
The process of optimizing in vitro seed sterilization and germination is a complicated task since this process is influenced by interactions of many factors (e.g., genotype, disinfectants, pH of the media, temperature, light, immersion time). This study investigated the role of various types and concentrations of disinfectants (i.e., NaOCl, Ca(ClO)2, HgCl2, H2O2, NWCN-Fe, MWCNT) as well as immersion time in successful in vitro seed sterilization and germination of petunia. Also, the utility of three artificial neural networks (ANNs) (e.g., multilayer perceptron (MLP), radial basis function (RBF), and generalized regression neural network (GRNN)) as modeling tools were evaluated to analyze the effect of disinfectants and immersion time on in vitro seed sterilization and germination. Moreover, non‑dominated sorting genetic algorithm‑II (NSGA‑II) was employed for optimizing the selected prediction model. The GRNN algorithm displayed superior predictive accuracy in comparison to MLP and RBF models. Also, the results showed that NSGA‑II can be considered as a reliable multi-objective optimization algorithm for finding the optimal level of disinfectants and immersion time to simultaneously minimize contamination rate and maximize germination percentage. Generally, GRNN-NSGA-II as an up-to-date and reliable computational tool can be applied in future plant in vitro culture studies.
Collapse
Affiliation(s)
- Hamed Rezaei
- Department of Plant Biotechnology, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Asghar Mirzaie-asl
- Department of Plant Biotechnology, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Reza Abdollahi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Masoud Tohidfar
- Department of Plant Biotechnology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
19
|
Han L, Wu X, Hou K, Zhang H, Liang X, Chen C, Wang Z, Shen C. Identification and functional analysis of calcium sensor calmodulins from heavy metal hyperaccumulator Noccaea caerulescens. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:294-302. [PMID: 36683141 DOI: 10.1071/fp22243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Noccaea caerulescens (J. Presl & C. Presl) F. K. Mey. is a heavy metal hyperaccumulator exhibiting extreme tolerance to various environmental stresses. To date, the functional role of Ca2+ -binding protein in this plant is largely unknown. To investigate the function of calmodulins (CaMs) in N. caerulescens , CaM2 , a Ca2+ sensor encoding gene, was identified and functionally characterised. Protein structure analysis showed that NcCaM2 contains four classic exchange factor (EF)-hand motifs with high sequence similarity to the CaM proteins from model plant Arabidopsis thaliana L. Tissue specific expression analysis showed that NcCaM2 is constitutively expressed in stems, leaves, and roots. Expression level of NcCaM2 was significantly upregulated under various environmental stimulus, indicating a potential involvement of NcCaM2 in the tolerance to abiotic stresses. The heterologous expression of NcCaM2 in a yeast mutant strain increased the heavy metal tolerance in yeast cells. Furthermore, the constitutive expression of NcCaM2 enhanced the heavy metal tolerance capability of transgenic tobacco (Nicotiana tabacum L.) plants. Our data suggested an important role of NcCaM2 in the responses to environmental stresses and provided a potential target gene to enhance of the ability to hyperaccumulate metals.
Collapse
Affiliation(s)
- Lu Han
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; and Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Xiaohua Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; and Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Kailin Hou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| | - Hongshan Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| | - Xueshuang Liang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| | - Cheng Chen
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhijing Wang
- College of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; and Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| |
Collapse
|
20
|
Cordeiro D, Alves A, Ferraz R, Casimiro B, Canhoto J, Correia S. An Efficient Agrobacterium-Mediated Genetic Transformation Method for Solanum betaceum Cav. Embryogenic Callus. PLANTS (BASEL, SWITZERLAND) 2023; 12:1202. [PMID: 36904062 PMCID: PMC10005457 DOI: 10.3390/plants12051202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Somatic embryogenesis in Solanum betaceum (tamarillo) has proven to be an effective model system for studying morphogenesis, since optimized plant regeneration protocols are available, and embryogenic competent cell lines can be induced from different explants. Nevertheless, an efficient genetic transformation system for embryogenic callus (EC) has not yet been implemented for this species. Here, an optimized faster protocol of genetic transformation using Agrobacterium tumefaciens is described for EC. The sensitivity of EC to three antibiotics was determined, and kanamycin proved to be the best selective agent for tamarillo callus. Two Agrobacterium strains, EHA105 and LBA4404, both harboring the p35SGUSINT plasmid, carrying the reporter gene for β-glucuronidase (gus) and the marker gene neomycin phosphotransferase (nptII), were used to test the efficiency of the process. To increase the success of the genetic transformation, a cold-shock treatment, coconut water, polyvinylpyrrolidone and an appropriate selection schedule based on antibiotic resistance were employed. The genetic transformation was evaluated by GUS assay and PCR-based techniques, and a 100% efficiency rate was confirmed in the kanamycin-resistant EC clumps. Genetic transformation with the EHA105 strain resulted in higher values for gus insertion in the genome. The protocol presented provides a useful tool for functional gene analysis and biotechnology approaches.
Collapse
Affiliation(s)
- Daniela Cordeiro
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Ana Alves
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| | - Ricardo Ferraz
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Bruno Casimiro
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Jorge Canhoto
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Sandra Correia
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- InnovPlantProtect CoLab, Estrada de Gil Vaz, 7350-478 Elvas, Portugal
| |
Collapse
|
21
|
Current status and future prospects in cannabinoid production through in vitro culture and synthetic biology. Biotechnol Adv 2023; 62:108074. [PMID: 36481387 DOI: 10.1016/j.biotechadv.2022.108074] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/27/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
For centuries, cannabis has been a rich source of fibrous, pharmaceutical, and recreational ingredients. Phytocannabinoids are the most important and well-known class of cannabis-derived secondary metabolites and display a broad range of health-promoting and psychoactive effects. The unique characteristics of phytocannabinoids (e.g., metabolite likeness, multi-target spectrum, and safety profile) have resulted in the development and approval of several cannabis-derived drugs. While most work has focused on the two main cannabinoids produced in the plant, over 150 unique cannabinoids have been identified. To meet the rapidly growing phytocannabinoid demand, particularly many of the minor cannabinoids found in low amounts in planta, biotechnology offers promising alternatives for biosynthesis through in vitro culture and heterologous systems. In recent years, the engineered production of phytocannabinoids has been obtained through synthetic biology both in vitro (cell suspension culture and hairy root culture) and heterologous systems. However, there are still several bottlenecks (e.g., the complexity of the cannabinoid biosynthetic pathway and optimizing the bioprocess), hampering biosynthesis and scaling up the biotechnological process. The current study reviews recent advances related to in vitro culture-mediated cannabinoid production. Additionally, an integrated overview of promising conventional approaches to cannabinoid production is presented. Progress toward cannabinoid production in heterologous systems and possible avenues for avoiding autotoxicity are also reviewed and highlighted. Machine learning is then introduced as a powerful tool to model, and optimize bioprocesses related to cannabinoid production. Finally, regulation and manipulation of the cannabinoid biosynthetic pathway using CRISPR- mediated metabolic engineering is discussed.
Collapse
|
22
|
Khan UM, Shaheen N, Farooq A, Maqbool R, Khan SH, Azhar MT, Rana IA, Seo H. Optimization of Regeneration and Agrobacterium-Mediated Transformation Protocols for Bi and Multilocular Varieties of Brassica rapa. PLANTS (BASEL, SWITZERLAND) 2022; 12:161. [PMID: 36616290 PMCID: PMC9824786 DOI: 10.3390/plants12010161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The regeneration of the high-yielding multilocular types has not been attempted, although successful regeneration and transformation in brassica have been done. Here, we report efficient regeneration and transformation protocols for two B. rapa genotypes; UAF11 and Toria. The B. rapa cv UAF11 is a multilocular, non-shattering, and high-yielding genotype, while Toria is the bilocular type. For UAF11 8 shoots and for Toria 7 shoots, explants were observed on MS supplemented with 3 mg/L BAP + 0.4 mg/L NAA + 0.01 mg/L GA3 + 5 mg/L AgNO3 + 0.75 mg/L Potassium Iodide (KI), MS salt supplemented with 1 mg/L IBA and 0.37 mg/L KI produced an equal number of roots (3) in UAF11 and Toria. For the establishment of transformation protocols, Agrobacterium-mediated floral dip transformation was attempted using different induction media, infection time, and flower stages. The induction medium III yielded a maximum of 7.2% transformants on half-opened flowers and 5.2% transformants on fully opened flowers in UAF11 and Toria, respectively, with 15 min of inoculation. This study would provide the basis for the improvement of tissue culture and transformation protocols in multilocular and bilocular Brassica genotypes.
Collapse
Affiliation(s)
- Uzair Muhammad Khan
- Center for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad 38040, Pakistan
| | - Nabeel Shaheen
- Center for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad 38040, Pakistan
| | - Ayesha Farooq
- Center for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad 38040, Pakistan
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38040, Pakistan
| | - Rizwana Maqbool
- Center for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad 38040, Pakistan
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38040, Pakistan
| | - Sultan Habibullah Khan
- Center for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad 38040, Pakistan
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Tehseen Azhar
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38040, Pakistan
| | - Iqrar Ahmad Rana
- Center for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad 38040, Pakistan
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad 38040, Pakistan
| | - Hyojin Seo
- Korea Soybean Research Institute, Jinju 52840, Republic of Korea
| |
Collapse
|
23
|
Ben-Amar A, Daldoul S, Allel D, Wetzel T, Mliki A. Ectopic expression of a grapevine alkaline α-galactosidase seed imbibition protein VvSIP enhanced salinity tolerance in transgenic tobacco plants. Funct Integr Genomics 2022; 23:12. [PMID: 36547729 DOI: 10.1007/s10142-022-00945-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Alpha-galactosidase seed imbibition protein (VvSIP) isolated from Vitis vinifera is up-regulated upon salt stress and mediates osmotic stress responses in a tolerant grapevine cultivar. So far, little is known about the putative role of this stress-responsive gene. In the present study, VvSIP function was investigated in model tobacco plants via Agrobacterium-mediated genetic transformation. Our results showed that overexpression of VvSIP exhibited increased tolerance to salinity at germination and late vegetative stage in transgenic Nicotiana benthamiana compared to the nontransgenic plants based on the measurement of the germination rate and biomass production. High salt concentrations of 200 and 400 mM NaCl in greenhouse-grown pot assay resulted in better relative water content, higher leaf osmotic potential, and leaf water potential in transgenic lines when compared to the wild-type (WT) plants. These physiological changes attributed to efficient osmotic adjustment improved plant performance and tolerance to salinity compared to the WT. Moreover, the VvSIP-expressing lines SIP1 and SIP2 showed elevated amounts of chlorophyll with lower malondialdehyde content indicating a reduced lipid peroxidation required to maintain membrane stability. When subjected to high salinity conditions, the transgenic tobacco VvSIP exhibited higher soluble sugar content, which may suggest an enhancement of the carbohydrate metabolism. Our findings indicate that the VvSIP is involved in plant salt tolerance by functioning as a positive regulator of osmotic adjustment and sugar metabolism, both of which are responsible for stress mitigation. Such a candidate gene is highly suitable to alleviate environmental stresses and thus could be a promising candidate for crop improvement.
Collapse
Affiliation(s)
- Anis Ben-Amar
- Department of Plant Molecular Physiology, Centre of Biotechnology of Borj Cedria, Science and Technology Park, P.O. Box. 901, 2050, Hammam-Lif, Tunisia.
| | - Samia Daldoul
- Department of Plant Molecular Physiology, Centre of Biotechnology of Borj Cedria, Science and Technology Park, P.O. Box. 901, 2050, Hammam-Lif, Tunisia
| | - Dorsaf Allel
- Department of Plant Molecular Physiology, Centre of Biotechnology of Borj Cedria, Science and Technology Park, P.O. Box. 901, 2050, Hammam-Lif, Tunisia
| | - Thierry Wetzel
- Institute of Plant Protection, DLR Rheinpfalz, Breitenweg 71, 67435, Neustadt an Der Weinstrasse, Germany
| | - Ahmed Mliki
- Department of Plant Molecular Physiology, Centre of Biotechnology of Borj Cedria, Science and Technology Park, P.O. Box. 901, 2050, Hammam-Lif, Tunisia
| |
Collapse
|
24
|
Modeling and optimizing in vitro percentage and speed callus induction of carrot via Multilayer Perceptron-Single point discrete GA and radial basis function. BMC Biotechnol 2022; 22:34. [PMCID: PMC9636657 DOI: 10.1186/s12896-022-00764-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Abstract
Background
Callus induction is the first step in optimizing plant regeneration. Fit embryogenesis and shooting rely on callus induction. In addition, using artificial intelligence models in combination with an algorithm can be helpful in the optimization of in vitro culture. The present study aimed to evaluate the percentage and speed of callus induction optimization in carrot with a Multilayer Perceptron-Single point discrete genetic algorithm (GA).
Materials and methods
In this study, the outputs included callus induction percentage and speed, while inputs were different types and concentrations of plant growth regulator (0. 5, 0.2 mg/l 2,4-D, 0.3, 0.2, 0.5 mg/l BAP, 1, 0.2 mg/l Kin, and 2 mg/l NAA), different explants (shoot, root, leaf, and nodal), a different concentration compound of MS medium (1 × MS, 4× MS, and 8× MS) and time of sampling. The data were obtained in the laboratory, and multilayer perceptron (MLP) and radial basis function (RBF), two well-known ANNs, were employed to model. Then, GA was used for optimization, and sensitivity analysis was performed to indicate the inputs’ importance.
Results
The results showed that MLP had better prediction efficiency than RBF. Based on the results, R2 in training and testing data was 95 and 95% for the percentage of callus induction, while it was 94 and 95% for the speed of callus induction, respectively. In addition, a concentration compound of MS had high sensitivity, while times of sampling had low sensitivity. Based on the MLP-Single point discrete GA, the best results were obtained for shoot explants, 1× MS media, and 0.5 mg/l 2, 4-D + 0.5 mg/l BAP. Further, a non-significant difference was observed between the test result and predicted MLP.
Conclusions
Generally, MLP-Single point discrete GA is considered a potent tool for predicting treatment and fit model results used in plant tissue culture and selecting the best medium for callus induction.
Collapse
|
25
|
Zarbakhsh S, Shahsavar AR. Artificial neural network-based model to predict the effect of γ-aminobutyric acid on salinity and drought responsive morphological traits in pomegranate. Sci Rep 2022; 12:16662. [PMID: 36198905 PMCID: PMC9534893 DOI: 10.1038/s41598-022-21129-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/22/2022] [Indexed: 11/20/2022] Open
Abstract
Recently, γ-Aminobutyric acid (GABA) has been introduced as a treatment with high physiological activity induction to enhance the ability of plants against drought and salinity stress, which led to a decline in plant growth. Since changes in morphological traits to drought and salinity stress are influenced by multiple factors, advanced computational analysis has great potential for computing nonlinear and multivariate data. In this work, the effect of four input variables including GABA concentration, pomegranate cultivars, days of treatment, and drought and salinity stress evaluated to predict and modeling of morphological traits using artificial neural network (ANN) models including multilayer perceptron (MLP) and radial basis function (RBF). Image processing technique was used to measure the LLI, LWI, and LAI parameters. Among the ANNs applied, the MLP algorithm was chosen as the best model based on the highest accuracy. Furthermore, to predict and estimate the optimal values of input variables for achieving the best morphological parameters, the MLP algorithm was linked to a non-dominated sorting genetic algorithm-II (NSGA-II). Based on the results of MLP-NSGA-II, the best values of crown diameter (18.42 cm), plant height (151.82 cm), leaf length index (5.67 cm), leaf width index (1.76 cm), and leaf area index (13.82 cm) could be achieved with applying 10.57 mM GABA on ‘Atabaki’ cultivar under control (non-stress) condition after 20.8 days. The results of modeling and optimization can be helpful to predict the morphological responses to drought and salinity conditions.
Collapse
Affiliation(s)
- Saeedeh Zarbakhsh
- Department of Horticultural Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Reza Shahsavar
- Department of Horticultural Science, College of Agriculture, Shiraz University, Shiraz, Iran.
| |
Collapse
|
26
|
Fakhrzad F, Jowkar A, Hosseinzadeh J. Mathematical modeling and optimizing the in vitro shoot proliferation of wallflower using multilayer perceptron non-dominated sorting genetic algorithm-II (MLP-NSGAII). PLoS One 2022; 17:e0273009. [PMID: 36083887 PMCID: PMC9462766 DOI: 10.1371/journal.pone.0273009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 07/29/2022] [Indexed: 12/05/2022] Open
Abstract
Novel computational methods such as artificial neural networks (ANNs) can facilitate modeling and predicting results of tissue culture experiments and thereby decrease the number of experimental treatments and combinations. The objective of the current study is modeling and predicting in vitro shoot proliferation of Erysimum cheiri (L.) Crantz, which is an important bedding flower and medicinal plant. Its micropropagation has not been investigated before and as a case study multilayer perceptron- non-dominated sorting genetic algorithm-II (MLP-NSGAII) can be applied. MLP was used for modeling three outputs including shoots number (SN), shoots length (SL), and callus weight (CW) based on four variables including 6-benzylaminopurine (BAP), kinetin (Kin), 1-naphthalene acetic acid (NAA) and gibberellic acid (GA3). The R2 correlation values of 0.84, 0.99 and 0.93 between experimental and predicted data were obtained for SN, SL, and CW, respectively. These results proved the high accuracy of MLP model. Afterwards the model connected to Non-dominated Sorting Genetic Algorithm-II (NSGA-II) was used to optimize input variables for obtaining the best predicted outputs. The results of sensitivity analysis indicated that SN and CW were more sensitive to BA, followed by Kin, NAA and GA. For SL, more sensitivity was obtained for GA3 than NAA. The validation experiment indicated that the difference between the validation data and MLP-NSGAII predicted data were negligible. Generally, MLP-NSGAII can be considered as a powerful method for modeling and optimizing in vitro studies.
Collapse
Affiliation(s)
- Fazilat Fakhrzad
- Department of Horticultural Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Abolfazl Jowkar
- Department of Horticultural Science, College of Agriculture, Shiraz University, Shiraz, Iran
- * E-mail:
| | - Javad Hosseinzadeh
- Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
27
|
Tanvir R, Ping W, Sun J, Cain M, Li X, Li L. AtQQS orphan gene and NtNF-YC4 boost protein accumulation and pest resistance in tobacco (Nicotiana tabacum). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 317:111198. [PMID: 35193747 DOI: 10.1016/j.plantsci.2022.111198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/07/2021] [Accepted: 01/26/2022] [Indexed: 05/19/2023]
Abstract
Qua-Quine Starch (QQS), an orphan gene exclusively found in Arabidopsis thaliana, interacts with Nuclear Factor Y subunit C4 (NF-YC4) and regulates carbon and nitrogen allocation in different plant species. Several studies uncovered its potential in increasing total protein and resistance against pathogens/pests in Arabidopsis and soybean. However, it is still unclear if these attributes QQS offers are universal in all flowering plants. Here we studied AtQQS and Nicotiana tabacum NF-YC4's (NtNF-YC4) influence on starch/protein content and pest resistance in tobacco. Our results showed both AtQQS and NtNF-YC4 had a positive impact on the plant's total protein accumulation. Simultaneously, we have also observed reduced starch biosynthesis and increased resistance against common pests like whiteflies (Bemisia tabaci) and aphids (Myzus persicae) in tobacco plants expressing AtQQS or overexpressing NtNF-YC4. Real-time PCR also revealed increased NF-YC4 expression after aphid infestation in tobacco varieties with higher pest resistance but decreased/unchanged NF-YC4 expression in varieties susceptible to pests. Further analysis revealed that QQS expression and overexpression of NtNF-YC4 strongly repressed expression of genes such as sugar transporter SWEET10 and Flowering Locus T (FT), suggesting involvement of SWEET10 and FT in the QQS and NF-YC4 mediated carbon and nitrogen allocation in tobacco. Our data suggested that the activity of species-specific orphan genes may not be limited to the original species or its close relatives. Sequence alignment revealed the conserved sequence of the NF-YC4s in different plant species that may be responsible for the resulting shift in metabolism, pest resistance. Cis-acting DNA element analysis of NtNF-YC4 promoter region may outline potential mechanisms for these phenotypic changes.
Collapse
Affiliation(s)
- Rezwan Tanvir
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Wenli Ping
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA; Institute of Tobacco, Henan Academy of Agricultural Sciences, Key Laboratory for Green Preservation & Control of Tobacco Diseases and Pests in Huanghuai Growing Area, Zhengzhou, Henan 450002, China
| | - Jiping Sun
- Institute of Tobacco, Henan Academy of Agricultural Sciences, Key Laboratory for Green Preservation & Control of Tobacco Diseases and Pests in Huanghuai Growing Area, Zhengzhou, Henan 450002, China
| | - Morgan Cain
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Xuejun Li
- Institute of Tobacco, Henan Academy of Agricultural Sciences, Key Laboratory for Green Preservation & Control of Tobacco Diseases and Pests in Huanghuai Growing Area, Zhengzhou, Henan 450002, China
| | - Ling Li
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA.
| |
Collapse
|
28
|
Li M, Wang D, Long X, Hao Z, Lu Y, Zhou Y, Peng Y, Cheng T, Shi J, Chen J. Agrobacterium-Mediated Genetic Transformation of Embryogenic Callus in a Liriodendron Hybrid ( L. Chinense × L. Tulipifera). FRONTIERS IN PLANT SCIENCE 2022; 13:802128. [PMID: 35371158 PMCID: PMC8970691 DOI: 10.3389/fpls.2022.802128] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
A highly efficient genetic transformation system of Liriodendron hybrid embryogenic calli through Agrobacterium-mediated genetic transformation was established and optimized. The Agrobacterium tumefaciens strain EHA105, harboring the plasmid pBI121, which contained the ß-glucuronidase (GUS) gene and neomycin phosphotransferase II (npt II) gene under the control of the CaMV35S promoter, was used for transformation. Embryogenic calli were used as the starting explant to study several factors affecting the Agrobacterium-mediated genetic transformation of the Liriodendron hybrid, including the effects of various media, selection by different Geneticin (G418) concentrations, pre-culture period, Agrobacterium optical density, infection duration, co-cultivation period, and delayed selection. Transformed embryogenic calli were obtained through selection on medium containing 90 mg L-1 G418. Plant regeneration was achieved and selected via somatic embryogenesis on medium containing 15 mg L-1 G418. The optimal conditions included a pre-culture time of 2 days, a co-culture time of 3 days, an optimal infection time of 10 min, and a delayed selection time of 7 days. These conditions, combined with an OD600 value of 0.6, remarkably enhanced the transformation rate. The results of GUS chemical tissue staining, polymerase chain reaction (PCR), and southern blot analysis demonstrated that the GUS gene was successfully expressed and integrated into the Liriodendron hybrid genome. A transformation efficiency of 60.7% was achieved for the regenerated callus clumps. Transgenic plantlets were obtained in 5 months, and the PCR analysis showed that 97.5% of plants from the tested G418-resistant lines were PCR positive. The study of the Liriodendron hybrid reported here will facilitate the insertion of functional genes into the Liriodendron hybrid via Agrobacterium-mediated transformation.
Collapse
Affiliation(s)
- Meiping Li
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Dan Wang
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xiaofei Long
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Zhaodong Hao
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Ye Lu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yanwei Zhou
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Ye Peng
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Tielong Cheng
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Jisen Shi
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Jinhui Chen
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
29
|
Song H, Ahn JY, Yan F, Ran Y, Koo O, Lee GJ. Genetic Dissection of CRISPR-Cas9 Mediated Inheritance of Independently Targeted Alleles in Tobacco α-1,3-Fucosyltransferase 1 and β-1,2-Xylosyltransferase 1 Loci. Int J Mol Sci 2022; 23:2450. [PMID: 35269602 PMCID: PMC8910323 DOI: 10.3390/ijms23052450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 11/17/2022] Open
Abstract
We determined the specificity of mutations induced by the CRISPR-Cas9 gene-editing system in tobacco (Nicotiana benthamiana) alleles and subsequent genetic stability. For this, we prepared 248 mutant plants using an Agrobacterium-delivered CRISPR-Cas9 system targeting α-1,3-fucosyltransferase 1 (FucT1) and β-1,2-xylosyltransferase1 (XylT1) genes, for which the mutation rates were 22.5% and 25%, respectively, with 20.5% for both loci. Individuals with wild-type (WT) alleles at the NbFucT1 locus in T0 were further segregated into chimeric progeny (37-54%) in the next generation, whereas homozygous T0 mutants tended to produce more (~70%) homozygotes than other bi-allelic and chimeric progenies in the T1 generation. Approximately 81.8% and 77.4% of the homozygous and bi-allelic mutations in T0 generation, respectively, were stably inherited in the next generation, and approximately 50% of the Cas9-free mutants were segregated in T2 generation. One homozygous mutant (Ta 161-1) with a +1 bp insertion in NbFucT1 and a -4 bp deletion in NbXylT1 was found to produce T2 progenies with the same alleles, indicating no activity of the integrated Cas9 irrespective of the insertion or deletion type. Our results provide empirical evidence regarding the genetic inheritance of alleles at CRISPR-targeted loci in tobacco transformants and indicate the potential factors contributing to further mutagenesis.
Collapse
Affiliation(s)
- Hayoung Song
- Department of Horticulture, Chungnam National University, Daejeon 34134, Korea;
| | - Ju-Young Ahn
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Korea; (J.-Y.A.); (F.Y.)
| | - Fanzhuang Yan
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Korea; (J.-Y.A.); (F.Y.)
| | - Yidong Ran
- Genovo Biotechnology Co., Ltd., Tianjin 301700, China;
| | | | - Geung-Joo Lee
- Department of Horticulture, Chungnam National University, Daejeon 34134, Korea;
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Korea; (J.-Y.A.); (F.Y.)
| |
Collapse
|
30
|
An Efficient Agrobacterium-Mediated Transformation Method for Hybrid Poplar 84K (Populus alba × P. glandulosa) Using Calli as Explants. Int J Mol Sci 2022; 23:ijms23042216. [PMID: 35216331 PMCID: PMC8879841 DOI: 10.3390/ijms23042216] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/02/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
A highly efficient Agrobacterium-mediated transformation method is needed for the molecular study of model tree species such as hybrid poplar 84K (Populus alba × P. glandulosa cv. ‘84K’). In this study, we report a callus-based transformation method that exhibits high efficiency and reproducibility. The optimized callus induction medium (CIM1) induced the development of calli from leaves with high efficiency, and multiple shoots were induced from calli growing on the optimized shoot induction medium (SIM1). Factors affecting the transformation frequency of calli were optimized as follows: Agrobacterium concentration sets at an OD600 of 0.6, Agrobacterium infective suspension with an acetosyringone (AS) concentration of 100 µM, infection time of 15 min, cocultivation duration of 2 days and precultivation duration of 6 days. Using this method, transgenic plants are obtained within approximately 2 months with a transformation frequency greater than 50%. Polymerase chain reaction (PCR), reverse transcription-PCR (RT-PCR) and β-galactosidase (GUS) histochemical staining analyses confirmed the successful generation of stable transformants. Additionally, the calli from leaves were subcultured and used to obtain new explants; the high transformation efficiency was still maintained in subcultured calli after 6 cycles. This method provides a reference for developing effective transformation protocols for other poplar species.
Collapse
|