1
|
Islam MS, Ahmed MR, Noman M, Zhang Z, Wang J, Lu Z, Cai Y, Ahmed T, Li B, Wang Y, Golam Sarwar AKM, Wang J. Integrating RNA Interference and Nanotechnology: A Transformative Approach in Plant Protection. PLANTS (BASEL, SWITZERLAND) 2025; 14:977. [PMID: 40265933 PMCID: PMC11946571 DOI: 10.3390/plants14060977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/24/2025]
Abstract
RNA interference (RNAi) has emerged as a potent mechanism for combating pathogenic fungi and oomycetes over the past decades. It offers a promising gene-silencing approach by targeting crucial genes involved in diseases caused by economically and scientifically significant fungal pathogens, such as Botrytis cinerea and Fusarium species. Simultaneously, nano-agro-products have gained attention as alternatives to traditional fungicides in plant protection strategies. However, the instability of naked RNA molecules outside the cellular environment presents a challenge, as they degrade rapidly, limiting their efficacy for prolonged disease control. Concerns regarding the toxicity of protective nanoparticles to non-target organisms have also arisen. Integrating RNAi with nano-agro-products, particularly nanocarriers, to form RNA-nano complexes has demonstrated significant potential, providing enhanced RNA stability, reduced toxicity, and extended disease control. This review explores the mechanisms of RNA-nano complexes-mediated plant protection, addressing RNA stability and nano-toxicity issues while examining the prospects of RNA-nano complex research in plant pathogen management.
Collapse
Affiliation(s)
- Mohammad Shafiqul Islam
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.S.I.); (M.N.); (Z.Z.); (J.W.); (Z.L.); (Y.C.); (Y.W.)
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Md Robel Ahmed
- Department of Microbiology, College of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Muhammad Noman
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.S.I.); (M.N.); (Z.Z.); (J.W.); (Z.L.); (Y.C.); (Y.W.)
| | - Zhen Zhang
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.S.I.); (M.N.); (Z.Z.); (J.W.); (Z.L.); (Y.C.); (Y.W.)
| | - Jing Wang
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.S.I.); (M.N.); (Z.Z.); (J.W.); (Z.L.); (Y.C.); (Y.W.)
| | - Ziqi Lu
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.S.I.); (M.N.); (Z.Z.); (J.W.); (Z.L.); (Y.C.); (Y.W.)
| | - Yingying Cai
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.S.I.); (M.N.); (Z.Z.); (J.W.); (Z.L.); (Y.C.); (Y.W.)
| | - Temoor Ahmed
- Xianghu Laboratory, Hangzhou 311231, China;
- Department of Life Sciences, Western Caspian University, Baku 1001, Azerbaijan
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yanli Wang
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.S.I.); (M.N.); (Z.Z.); (J.W.); (Z.L.); (Y.C.); (Y.W.)
| | | | - Jiaoyu Wang
- State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (M.S.I.); (M.N.); (Z.Z.); (J.W.); (Z.L.); (Y.C.); (Y.W.)
| |
Collapse
|
2
|
Diaz C, Ayobahan SU, Simon S, Zühl L, Schiermeyer A, Eilebrecht E, Eilebrecht S. Classification of and detection techniques for RNAi-induced effects in GM plants. FRONTIERS IN PLANT SCIENCE 2025; 16:1535384. [PMID: 40123947 PMCID: PMC11925957 DOI: 10.3389/fpls.2025.1535384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/08/2025] [Indexed: 03/25/2025]
Abstract
RNA interference (RNAi) is a biotechnological tool used for gene silencing in plants, with both endogenous and exogenous applications. Endogenous approaches, such as host-induced gene silencing (HIGS), involve genetically modified (GM) plants, while exogenous methods include spray-induced gene silencing (SIGS). The RNAi mechanism hinges on the introduction of double-stranded RNA (dsRNA), which is processed into short interfering RNAs (siRNAs) that degrade specific messenger RNAs (mRNAs). However, unintended effects on non-target organisms and GM plants are a concern due to sequence homologies or siRNA-induced epigenetic changes. Regulatory bodies such as the EPA and EFSA emphasize the need for comprehensive risk assessments. Detecting unintended effects is complex, often relying on bioinformatic tools and untargeted analyses like transcriptomics and metabolomics, though these methods require extensive genomic data. This review aims to classify mechanisms of RNAi effects induced by short interfering RNA from different sources in plants and to identify technologies that can be used to detect these effects. In addition, practical case studies are summarized and discussed in which previously unintended RNAi effects in genetically modified plants have been investigated. Current literature is limited but suggests RNAi is relatively specific, with few unintended effects observed in GM crops. However, further studies are needed to fully understand and mitigate potential risks, particularly those related to transcriptional gene silencing (TGS) mechanisms, which are less predictable than post-transcriptional gene silencing (PTGS). Particularly the application of untargeted approaches such as small RNA sequencing and transcriptomics is recommended for thorough and comprehensive risk assessments.
Collapse
Affiliation(s)
- Cecilia Diaz
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Steve U. Ayobahan
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Samson Simon
- Division I 3.2 Synthetic Biology Assessment, Enforcement of Genetic Engineering Act, Federal Agency for Nature Conservation (BfN), Bonn, Germany
| | - Luise Zühl
- Division I 3.2 Synthetic Biology Assessment, Enforcement of Genetic Engineering Act, Federal Agency for Nature Conservation (BfN), Bonn, Germany
| | - Andreas Schiermeyer
- Department Plant Sciences & Bio-Hybrids, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Elke Eilebrecht
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Sebastian Eilebrecht
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| |
Collapse
|
3
|
Yang H, Zhang Y, Zhao Y, Shu Y, Xu Y, Liu Y, Du J, Wang W. Reduction of Plasmodiophora brassicae Infection on Brassica rapa Through Host-Induced Gene Silencing of Two Secreted Genes. PHYTOPATHOLOGY 2025; 115:299-305. [PMID: 39560981 DOI: 10.1094/phyto-09-23-0334-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Clubroot disease, caused by the biotrophic pathogen Plasmodiophora brassicae, is one of the most serious threats to cruciferous crops production worldwide. P. brassicae is known for rapid adaptive evolution to overcome plant resistance. The current prevention and control strategies are not effective against P. brassicae. Additionally, lack of genetic transformation has impeded the functional characteristic disclosure of virulence genes. In this study, we have identified two effectors, Pb48 and Pb52, that impact plant defense and are upregulated during the infection stage. To characterize the function of these virulence genes, we employed a transient method, host-induced gene silencing (HIGS). By instantaneously expressing a hairpin RNA interference construct with sequence homology to P. brassicae Pb48 or Pb52 in susceptible Brassica rapa, we successfully silenced the corresponding gene, resulting in reduced root gall size or enhanced host resistance to P. brassicae. Silencing Pb48 led to a decrease in the numbers of zoosporangia within root hair and epidermal cells, and silencing either Pb48 or Pb52 led to downregulated expressions of cytokinin biosynthesis gene IPT1 and auxin homeostasis GH3.5, which are associated with hormone regulation pathways involved in clubroot development. These findings validate HIGS as a practical tool for studying P. brassicae virulence genes. HIGS, by transiently expressing short interfering RNAs of P. brassicae, demonstrates its potential as an effective strategy against this pathogen. In the future, we can obtain durable disease resistance in susceptible host crops by developing a stable transformant.
Collapse
Affiliation(s)
- Hui Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Yihan Zhang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Yushan Zhao
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Yinping Shu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Yushu Xu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Yi Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Junbo Du
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Wenming Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Mosquera S, Ginésy M, Bocos-Asenjo IT, Amin H, Diez-Hermano S, Diez JJ, Niño-Sánchez J. Spray-induced gene silencing to control plant pathogenic fungi: A step-by-step guide. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:801-825. [PMID: 39912551 DOI: 10.1111/jipb.13848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 12/31/2024] [Indexed: 02/07/2025]
Abstract
RNA interference (RNAi)-based control technologies are gaining popularity as potential alternatives to synthetic fungicides in the ongoing effort to manage plant pathogenic fungi. Among these methods, spray-induced gene silencing (SIGS) emerges as particularly promising due to its convenience and feasibility for development. This approach is a new technology for plant disease management, in which double-stranded RNAs (dsRNAs) targeting essential or virulence genes are applied to plants or plant products and subsequently absorbed by plant pathogens, triggering a gene silencing effect and the inhibition of the infection process. Spray-induced gene silencing has demonstrated efficacy in laboratory settings against various fungal pathogens. However, as research progressed from the laboratory to the greenhouse and field environments, novel challenges arose, such as ensuring the stability of dsRNAs and their effective delivery to fungal targets. Here, we provide a practical guide to SIGS for the control of plant pathogenic fungi. This guide outlines the essential steps and considerations needed for designing and assessing dsRNA molecules. It also addresses key challenges inherent to SIGS, including delivery and stability of dsRNA molecules, and how nanoencapsulation of dsRNAs can aid in overcoming these obstacles. Additionally, the guide underscores existing knowledge gaps that warrant further research and aims to provide assistance to researchers, especially those new to the field, encouraging the advancement of SIGS for the control of a broad range of fungal pathogens.
Collapse
Affiliation(s)
- Sandra Mosquera
- Department of Plant Production and Forest Resources, Sustainable Forest Management Research Institute (iuFOR), College of Agricultural Engineering (ETSIIAA), University of Valladolid, Palencia, 34004, Spain
| | - Mireille Ginésy
- Department of Plant Production and Forest Resources, Sustainable Forest Management Research Institute (iuFOR), College of Agricultural Engineering (ETSIIAA), University of Valladolid, Palencia, 34004, Spain
| | - Irene Teresa Bocos-Asenjo
- Department of Plant Production and Forest Resources, Sustainable Forest Management Research Institute (iuFOR), College of Agricultural Engineering (ETSIIAA), University of Valladolid, Palencia, 34004, Spain
| | - Huma Amin
- Department of Plant Production and Forest Resources, Sustainable Forest Management Research Institute (iuFOR), College of Agricultural Engineering (ETSIIAA), University of Valladolid, Palencia, 34004, Spain
| | - Sergio Diez-Hermano
- Department of Plant Production and Forest Resources, Sustainable Forest Management Research Institute (iuFOR), College of Agricultural Engineering (ETSIIAA), University of Valladolid, Palencia, 34004, Spain
| | - Julio Javier Diez
- Department of Plant Production and Forest Resources, Sustainable Forest Management Research Institute (iuFOR), College of Agricultural Engineering (ETSIIAA), University of Valladolid, Palencia, 34004, Spain
| | - Jonatan Niño-Sánchez
- Department of Plant Production and Forest Resources, Sustainable Forest Management Research Institute (iuFOR), College of Agricultural Engineering (ETSIIAA), University of Valladolid, Palencia, 34004, Spain
| |
Collapse
|
5
|
Chen C, Imran M, Feng X, Shen X, Sun Z. Spray-induced gene silencing for crop protection: recent advances and emerging trends. FRONTIERS IN PLANT SCIENCE 2025; 16:1527944. [PMID: 40051878 PMCID: PMC11882566 DOI: 10.3389/fpls.2025.1527944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/27/2025] [Indexed: 03/09/2025]
Abstract
The RNA-based spray-induced gene silencing (SIGS) technology represents an ecologically sustainable approach to crop protection and pathogen management. Following the recent approval of Ledprona as the first sprayable double-stranded RNA (dsRNA) biopesticide by the EPA at the end of 2023, SIGS has emerged as a focal point in both academic and industrial sectors. This review analyzes recent advances and emerging trends in SIGS. The application of SIGS for crop protection, including the control of insects, fungal pathogens, and viruses, is briefly summarized. Distinguishing this review from others, we delve into practical aspects of the technology, such as the selection and screening of target genes, large-scale production methods, and delivery systems, highlighting major advancements in these areas and also addressing the remaining questions and issues, particularly concerning safety concerns and controlling harmful weeds. Finally, this review emphasizes the emerging trends in SIGS technology, particularly its integration with nanotechnology and other methodologies. Collectively, the rapid progress in SIGS studies is poised to accelerate the maturation and application of this technology.
Collapse
Affiliation(s)
- Can Chen
- Key Laboratory of Plant Genetics and Molecular Breeding, Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Muhammad Imran
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Xianyang Feng
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Xihui Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Zhongke Sun
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
6
|
Zheng Y, Moorlach B, Jakobs-Schönwandt D, Patel A, Pastacaldi C, Jacob S, Sede AR, Heinlein M, Poranen MM, Kogel KH, Ladera Carmona M. Exogenous dsRNA triggers sequence-specific RNAi and fungal stress responses to control Magnaporthe oryzae in Brachypodium distachyon. Commun Biol 2025; 8:121. [PMID: 39863769 PMCID: PMC11762700 DOI: 10.1038/s42003-025-07554-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
In vertebrates and plants, dsRNA plays crucial roles as PAMP and as a mediator of RNAi. How higher fungi respond to dsRNA is not known. We demonstrate that Magnaporthe oryzae (Mo), a globally significant crop pathogen, internalizes dsRNA across a broad size range of 21 to about 3000 bp. Incubation of fungal conidia with 10 ng/µL dsRNA, regardless of size or sequence, induced aberrant germ tube elongation, revealing a strong sequence-unspecific effect of dsRNA in this fungus. Accordingly, the synthetic dsRNA analogue poly(I:C) and dsRNA of various sizes and sequences elicited canonical fungal stress pathways, including nuclear accumulation of the stress marker mitogen-activated protein kinase Hog1p and production of ROS. Leaf application of dsRNA to the cereal model species Brachypodium distachyon suppressed the progression of leaf blast disease. Notably, the sequence-unspecific effect of dsRNA depends on higher doses, while pure sequence-specific effects were observed at low concentrations of dsRNA ( < 0.03 ng/µL). The protective effects of dsRNA were further enhanced by maintaining a gap of at least seven days between dsRNA application and inoculation, and by stabilising the dsRNA in alginate-chitosan nanoparticles. Overall, our study opens up additional possibilities for the development and use of dsRNA pesticides in agriculture.
Collapse
Affiliation(s)
- Ying Zheng
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392, Giessen, Germany
| | - Benjamin Moorlach
- Fermentation and Formulation of Biologicals and Chemicals, Bielefeld Institute of Applied Materials Research, Bielefeld University of Applied Sciences, Interaktion 1, 33619, Bielefeld, Germany
| | - Desiree Jakobs-Schönwandt
- Fermentation and Formulation of Biologicals and Chemicals, Bielefeld Institute of Applied Materials Research, Bielefeld University of Applied Sciences, Interaktion 1, 33619, Bielefeld, Germany
| | - Anant Patel
- Fermentation and Formulation of Biologicals and Chemicals, Bielefeld Institute of Applied Materials Research, Bielefeld University of Applied Sciences, Interaktion 1, 33619, Bielefeld, Germany
| | - Chiara Pastacaldi
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392, Giessen, Germany
| | - Stefan Jacob
- Institute of Biotechnology and Drug Research, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Ana R Sede
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | - Manfred Heinlein
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| | - Minna M Poranen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Karl-Heinz Kogel
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France.
| | - Maria Ladera Carmona
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and Nutrition, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392, Giessen, Germany.
| |
Collapse
|
7
|
Sundararajan P, Ghosh S, Kelbessa BG, Whisson SC, Dubey M, Chawade A, Vetukuri RR. The impact of spray-induced gene silencing on cereal phyllosphere microbiota. ENVIRONMENTAL MICROBIOME 2025; 20:1. [PMID: 39780216 PMCID: PMC11716504 DOI: 10.1186/s40793-024-00660-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Fusarium head blight (FHB) is a major disease affecting cereal crops including wheat, barley, rye, oats and maize. Its predominant causal agent is the ascomycete fungus Fusarium graminearum, which infects the spikes and thereby reduces grain yield and quality. The frequency and severity of FHB epidemics has increased in recent years, threatening global food security. Spray-induced gene silencing (SIGS) is an alternative technique for tackling this devastating disease through foliar spraying with exogenous double-stranded RNA (dsRNA) to silence specific pathogen genes via RNA interference. This has the advantage of avoiding transgenic approaches, but several aspects of the technology require further development to make it a viable field-level management tool. One such existing knowledge gap is how dsRNA spraying affects the microbiota of the host plants. RESULTS We found that the diversity, structure and composition of the bacterial microbiota are subject to changes depending on dsRNA targeted and host studied, while the fungal microbiota in the phyllosphere remained relatively unchanged upon spraying with dsRNA. Analyses of fungal co-occurrence patterns also showed that F. graminearum established itself among the fungal communities through negative interactions with neighbouring fungi. Through these analyses, we have also found bacterial and fungal genera ubiquitous in the phyllosphere, irrespective of dsRNA treatment. These results suggest that although rarer and less abundant microbial species change upon dsRNA spray, the ubiquitous bacterial and fungal components of the phyllosphere in wheat and barley remain unchanged. CONCLUSION We show for the first time the effects of exogenous dsRNA spraying on bacterial and fungal communities in the wheat and barley phyllospheres using a high-throughput amplicon sequencing approach. The results obtained further validate the safety and target-specificity of SIGS and emphasize its potential as an environmentally friendly option for managing Fusarium head blight in wheat and barley.
Collapse
Affiliation(s)
- Poorva Sundararajan
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Samrat Ghosh
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Bekele Gelena Kelbessa
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Stephen C Whisson
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, UK
| | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Ramesh Raju Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| |
Collapse
|
8
|
Zhang Y, Wu M, Zhang H, Li Y, Wang Y, Meng F, Zhao W, He S, Yin W, Luo CX. The Bacteria-Derived dsRNA Was Used for Spray-Induced Gene Silencing for Rice False Smut Control. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28246-28254. [PMID: 39663150 DOI: 10.1021/acs.jafc.4c05605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
False smut caused by Ustilaginoidea virens is one of the most destructive diseases in rice. The disease is primarily controlled with fungicides, leading to the development of fungicide resistance. Although spray-induced gene silencing (SIGS) has been utilized for disease management, it has not been applied to control rice false smut. In this study, we introduce a novel approach involving the in vivo synthesis and exogenous application of double-stranded RNA (dsRNA) to manage rice false smut disease. The UvCYP51, UvBI-1, and UvbZIP11 genes were selected as target genes and highly efficient fragments for gene silencing were identified through screening of silencing transformants. Although direct dsRNA uptake by U. virens was not observed, in vivo synthesis and application of dsRNA to rice effectively reduced the expression of target genes. Treatment with dsRNA targeting the genes resulted in a decrease in smut balls, providing a promising disease management strategy against rice false smut.
Collapse
Affiliation(s)
- Yujie Zhang
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengyao Wu
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Han Zhang
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Li
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yufu Wang
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fanzhu Meng
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Zhao
- Institute of Plant Protection and Agro-Product Safety, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Shun He
- The Center of Crop Nanobiotechnology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Weixiao Yin
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao-Xi Luo
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
9
|
Qi HY, Zhang DD, Liu B, Chen JY, Han D, Wang D. Leveraging RNA interference technology for selective and sustainable crop protection. FRONTIERS IN PLANT SCIENCE 2024; 15:1502015. [PMID: 39777080 PMCID: PMC11703868 DOI: 10.3389/fpls.2024.1502015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025]
Abstract
Double-stranded RNA (dsRNA) has emerged as key player in gene silencing for the past two decades. Tailor-made dsRNA is now recognized a versatile raw material, suitable for a wide range of applications in biopesticide formulations, including insect control to pesticide resistance management. The mechanism of RNA interference (RNAi) acts at the messenger RNA (mRNA) level, utilizing a sequence-dependent approach that makes it unique in term of effectiveness and specificity compared to conventional agrochemicals. Two primary categories of small RNAs, known as short interfering RNAs (siRNAs) and microRNAs (miRNAs), function in both somatic and germline lineages in a broad range of eukaryotic species to regulate endogenous genes and to defend the genome from invasive nucleic acids. Furthermore, the application of RNAi in crop protection can be achieved by employing plant-incorporated protectants through plant transformation, but also by non-transformative strategies such as the use of formulations of sprayable RNAs as direct control agents, resistance factor repressors or developmental disruptors. This review explores the agricultural applications of RNAi, delving into its successes in pest-insect control and considering its broader potential for managing plant pathogens, nematodes, and pests. Additionally, the use of RNAi as a tool for addressing pesticide-resistant weeds and insects is reviewed, along with an evaluation of production costs and environmental implications.
Collapse
Affiliation(s)
- Hong-Yue Qi
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dan-Dan Zhang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Binhui Liu
- Key Laboratory of Crop Drought Resistance Research of Hebei Province/Institute of Dryland Farming, Hebei Academy of Agriculture and Forestry Sciences, Hengshui, China
| | - Jie-Yin Chen
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Dongfei Han
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Dan Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
10
|
Shi L, Guo C, Fang M, Yang Y, Yin F, Shen Y. Cross-kingdom regulation of plant microRNAs: potential application in crop improvement and human disease therapeutics. FRONTIERS IN PLANT SCIENCE 2024; 15:1512047. [PMID: 39741676 PMCID: PMC11685121 DOI: 10.3389/fpls.2024.1512047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/03/2024] [Indexed: 01/03/2025]
Abstract
Plant microRNAs (miRNAs) are small non-coding RNA molecules that usually negatively regulate gene expression at the post-transcriptional level. Recent data reveal that plant miRNAs are not limited to individual plants but can transfer across different species, allowing for communication with the plant, animal, and microbial worlds in a cross-kingdom approach. This review discusses the differences in miRNA biosynthesis between plants and animals and summarizes the current research on the cross-species regulatory effects of plant miRNAs on nearby plants, pathogenic fungi, and insects, which can be applied to crop disease and pest resistance. In particular, this review highlights the latest findings regarding the function of plant miRNAs in the transboundary regulation of human gene expression, which may greatly expand the clinical applicability of plant miRNAs as intriguing tools in natural plant-based medicinal products in the future.
Collapse
Affiliation(s)
- Lei Shi
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, China
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Chao Guo
- School of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Miaomiao Fang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yingmei Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Fei Yin
- National Demonstration Center for Experimental (Aquaculture) Education, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yuan Shen
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, China
- School of Pharmacy, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
11
|
Sellamuthu G, Chakraborty A, Vetukuri RR, Sarath S, Roy A. RNAi-biofungicides: a quantum leap for tree fungal pathogen management. Crit Rev Biotechnol 2024:1-28. [PMID: 39647992 DOI: 10.1080/07388551.2024.2430478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/03/2024] [Accepted: 10/27/2024] [Indexed: 12/10/2024]
Abstract
Fungal diseases threaten the forest ecosystem, impacting tree health, productivity, and biodiversity. Conventional approaches to combating diseases, such as biological control or fungicides, often reach limits regarding efficacy, resistance, non-target organisms, and environmental impact, enforcing alternative approaches. From an environmental and ecological standpoint, an RNA interference (RNAi) mediated double-stranded RNA (dsRNA)-based strategy can effectively manage forest fungal pathogens. The RNAi approach explicitly targets and suppresses gene expression through a conserved regulatory mechanism. Recently, it has evolved to be an effective tool in combating fungal diseases and promoting sustainable forest management approaches. RNAi bio-fungicides provide efficient and eco-friendly disease control alternatives using species-specific gene targeting, minimizing the off-target effects. With accessible data on fungal disease outbreaks, genomic resources, and effective delivery systems, RNAi-based biofungicides can be a promising tool for managing fungal pathogens in forests. However, concerns regarding the environmental fate of RNAi molecules and their potential impact on non-target organisms require an extensive investigation on a case-to-case basis. The current review critically evaluates the feasibility of RNAi bio-fungicides against forest pathogens by delving into the accessible delivery methods, environmental persistence, regulatory aspects, cost-effectiveness, community acceptance, and plausible future of RNAi-based forest protection products.
Collapse
Affiliation(s)
- Gothandapani Sellamuthu
- Faculty of Forestry & Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Amrita Chakraborty
- Faculty of Forestry & Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Ramesh R Vetukuri
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Saravanasakthi Sarath
- Faculty of Forestry & Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Amit Roy
- Faculty of Forestry & Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
12
|
Fan S, Zhou Y, Zhu N, Meng Q, Zhao Y, Xu J, Tang Y, Dai S, Yuan X. Exogenous Application of dsRNA-Inducing Silencing of the Fusarium oxysporum Tup1 Gene and Reducing Its Virulence. Int J Mol Sci 2024; 25:10286. [PMID: 39408614 PMCID: PMC11476490 DOI: 10.3390/ijms251910286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Fusarium oxysporum is a widespread soil-borne fungal pathogen that can infect various plants, causing wilt and root rot diseases. The root rot disease of Atractylodes macrocephala caused by F. oxysporum is among the most serious diseases associated with continuous cropping, significantly hindering its sustainable development. In this study, we aimed to investigate the effect of exogenous application of double-stranded RNA (dsRNA) on silencing the F. oxysporum Tup1 gene to reduce its virulence and to evaluate its potential application in controlling root rot disease in A. macrocephala. The Tup1 gene was amplified from the F. oxysporum genome, and different lengths of Tup1-dsRNA were designed and synthesized. The uptake of dsRNA by the fungus was verified using Tup1-dsRNA labeled with fluorescein, and in vitro dsRNA treatment experiments were conducted to assess its impact on the growth and virulence of F. oxysporum. Additionally, Tup1-dsRNA was applied to the roots of A. macrocephala to evaluate its effectiveness in controlling root rot disease. The experimental results showed that F. oxysporum could effectively uptake exogenously applied Tup1-dsRNA, significantly reducing Tup1 gene expression. All lengths of Tup1-dsRNA inhibited fungal growth and caused morphological changes in the fungal hyphae. Further plant experiments and Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR) analysis indicated that Tup1-dsRNA treatment significantly reduced the incidence of root rot disease in A. macrocephala, which was supported by the reduction in peroxidase (POD) and catalase (CAT) enzyme activities, malondialdehyde (MDA) content, and proline (Pro) levels in treated root tissues. This study demonstrated that exogenous dsRNA could reduce the virulence of F. oxysporum by silencing the Tup1 gene and effectively mitigate the root rot disease it causes in A. macrocephala. The successful application of Tup1-dsRNA provided strong evidence for the potential of RNA interference (RNAi) technology in plant disease control. Future research could further optimize the design and application of dsRNA to enhance its practical value in agriculture.
Collapse
Affiliation(s)
- Sen Fan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310051, China; (S.F.); (Y.Z.); (N.Z.); (Q.M.); (Y.Z.); (J.X.); (Y.T.); (S.D.)
| | - Yanguang Zhou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310051, China; (S.F.); (Y.Z.); (N.Z.); (Q.M.); (Y.Z.); (J.X.); (Y.T.); (S.D.)
| | - Na Zhu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310051, China; (S.F.); (Y.Z.); (N.Z.); (Q.M.); (Y.Z.); (J.X.); (Y.T.); (S.D.)
| | - Qingling Meng
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310051, China; (S.F.); (Y.Z.); (N.Z.); (Q.M.); (Y.Z.); (J.X.); (Y.T.); (S.D.)
| | - Yujin Zhao
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310051, China; (S.F.); (Y.Z.); (N.Z.); (Q.M.); (Y.Z.); (J.X.); (Y.T.); (S.D.)
| | - Jingyan Xu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310051, China; (S.F.); (Y.Z.); (N.Z.); (Q.M.); (Y.Z.); (J.X.); (Y.T.); (S.D.)
| | - Yunjia Tang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310051, China; (S.F.); (Y.Z.); (N.Z.); (Q.M.); (Y.Z.); (J.X.); (Y.T.); (S.D.)
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Shijie Dai
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310051, China; (S.F.); (Y.Z.); (N.Z.); (Q.M.); (Y.Z.); (J.X.); (Y.T.); (S.D.)
| | - Xiaofeng Yuan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310051, China; (S.F.); (Y.Z.); (N.Z.); (Q.M.); (Y.Z.); (J.X.); (Y.T.); (S.D.)
| |
Collapse
|
13
|
Spada M, Pugliesi C, Fambrini M, Pecchia S. Challenges and Opportunities Arising from Host- Botrytis cinerea Interactions to Outline Novel and Sustainable Control Strategies: The Key Role of RNA Interference. Int J Mol Sci 2024; 25:6798. [PMID: 38928507 PMCID: PMC11203536 DOI: 10.3390/ijms25126798] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The necrotrophic plant pathogenic fungus Botrytis cinerea (Pers., 1794), the causative agent of gray mold disease, causes significant losses in agricultural production. Control of this fungal pathogen is quite difficult due to its wide host range and environmental persistence. Currently, the management of the disease is still mainly based on chemicals, which can have harmful effects not only on the environment and on human health but also because they favor the development of strains resistant to fungicides. The flexibility and plasticity of B. cinerea in challenging plant defense mechanisms and its ability to evolve strategies to escape chemicals require the development of new control strategies for successful disease management. In this review, some aspects of the host-pathogen interactions from which novel and sustainable control strategies could be developed (e.g., signaling pathways, molecules involved in plant immune mechanisms, hormones, post-transcriptional gene silencing) were analyzed. New biotechnological tools based on the use of RNA interference (RNAi) are emerging in the crop protection scenario as versatile, sustainable, effective, and environmentally friendly alternatives to the use of chemicals. RNAi-based fungicides are expected to be approved soon, although they will face several challenges before reaching the market.
Collapse
Affiliation(s)
- Maria Spada
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Marco Fambrini
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Susanna Pecchia
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
14
|
Lambou K, Tag A, Lassagne A, Collemare J, Clergeot PH, Barbisan C, Perret P, Tharreau D, Millazo J, Chartier E, De Vries RP, Hirsch J, Morel JB, Beffa R, Kroj T, Thomas T, Lebrun MH. The bZIP transcription factor BIP1 of the rice blast fungus is essential for infection and regulates a specific set of appressorium genes. PLoS Pathog 2024; 20:e1011945. [PMID: 38252628 PMCID: PMC10833574 DOI: 10.1371/journal.ppat.1011945] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/01/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
The rice blast fungus Magnaporthe oryzae differentiates specialized cells called appressoria that are required for fungal penetration into host leaves. In this study, we identified the novel basic leucine zipper (bZIP) transcription factor BIP1 (B-ZIP Involved in Pathogenesis-1) that is essential for pathogenicity. BIP1 is required for the infection of plant leaves, even if they are wounded, but not for appressorium-mediated penetration of artificial cellophane membranes. This phenotype suggests that BIP1 is not implicated in the differentiation of the penetration peg but is necessary for the initial establishment of the fungus within plant cells. BIP1 expression was restricted to the appressorium by both transcriptional and post-transcriptional control. Genome-wide transcriptome analysis showed that 40 genes were down regulated in a BIP1 deletion mutant. Most of these genes were specifically expressed in the appressorium. They encode proteins with pathogenesis-related functions such as enzymes involved in secondary metabolism including those encoded by the ACE1 gene cluster, small secreted proteins such as SLP2, BAS2, BAS3, and AVR-Pi9 effectors, as well as plant cuticle and cell wall degrading enzymes. Interestingly, this BIP1 network is different from other known infection-related regulatory networks, highlighting the complexity of gene expression control during plant-fungal interactions. Promoters of BIP1-regulated genes shared a GCN4/bZIP-binding DNA motif (TGACTC) binding in vitro to BIP1. Mutation of this motif in the promoter of MGG_08381.7 from the ACE1 gene cluster abolished its appressorium-specific expression, showing that BIP1 behaves as a transcriptional activator. In summary, our findings demonstrate that BIP1 is critical for the expression of early invasion-related genes in appressoria. These genes are likely needed for biotrophic invasion of the first infected host cell, but not for the penetration process itself. Through these mechanisms, the blast fungus strategically anticipates the host plant environment and responses during appressorium-mediated penetration.
Collapse
Affiliation(s)
- Karine Lambou
- CNRS-Bayer Crop Science, UMR 5240 MAP, Lyon, France
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Andrew Tag
- Department of Biology, Texas A&M University. College Station, Texas, United States of America
| | - Alexandre Lassagne
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Jérôme Collemare
- CNRS-Bayer Crop Science, UMR 5240 MAP, Lyon, France
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Pierre-Henri Clergeot
- CNRS-Bayer Crop Science, UMR 5240 MAP, Lyon, France
- ASP Bourgogne Franche-Comté, Dijon, France
| | | | - Philippe Perret
- Biochemistry Department, Bayer Crop Science SAS, Lyon, France
- Bayer S.A.S. Crop Science Division Global Toxicology- Sophia Antipolis Cedex, France
| | - Didier Tharreau
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
- Plant Health Institute of Montpellier (PHIM), CIRAD, Montpellier, France
| | - Joelle Millazo
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
- Plant Health Institute of Montpellier (PHIM), CIRAD, Montpellier, France
| | - Elia Chartier
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Ronald P. De Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Judith Hirsch
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
- Pathologie Végétale, INRAE, Montfavet, France
| | - Jean-Benoit Morel
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Roland Beffa
- Biochemistry Department, Bayer Crop Science SAS, Lyon, France
| | - Thomas Kroj
- Plant Health Institute of Montpellier (PHIM), Montpellier University, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Terry Thomas
- Department of Biology, Texas A&M University. College Station, Texas, United States of America
| | - Marc-Henri Lebrun
- CNRS-Bayer Crop Science, UMR 5240 MAP, Lyon, France
- Université Paris-Saclay, INRAE, UR 1290 BIOGER, Palaiseau, France
| |
Collapse
|
15
|
Pal G, Ingole KD, Yavvari PS, Verma P, Kumari A, Chauhan C, Chaudhary D, Srivastava A, Bajaj A, Vemanna RS. Exogenous application of nanocarrier-mediated double-stranded RNA manipulates physiological traits and defence response against bacterial diseases. MOLECULAR PLANT PATHOLOGY 2024; 25:e13417. [PMID: 38279851 PMCID: PMC10799200 DOI: 10.1111/mpp.13417] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/09/2023] [Accepted: 12/17/2023] [Indexed: 01/29/2024]
Abstract
Stability and delivery are major challenges associated with exogenous double-stranded RNA (dsRNA) application into plants. We report the encapsulation and delivery of dsRNA in cationic poly-aspartic acid-derived polymer (CPP6) into plant cells. CPP6 stabilizes the dsRNAs during long exposure at varied temperatures and pH, and protects against RNase A degradation. CPP6 helps dsRNA uptake through roots or foliar spray and facilitates systemic movement to induce endogenous gene silencing. The fluorescence of Arabidopsis GFP-overexpressing transgenic plants was significantly reduced after infiltration with gfp-dsRNA-CPP6 by silencing of the transgene compared to plants treated only with gfp-dsRNA. The plant endogenous genes flowering locus T (FT) and phytochrome interacting factor 4 (PIF4) were downregulated by a foliar spray of ft-dsRNA-CPP6 and pif4-dsRNA-CPP6 in Arabidopsis, with delayed flowering and enhanced biomass. The rice PDS gene targeted by pds-dsRNA-CPP6 through root uptake was effectively silenced and plants showed a dwarf and albino phenotype. The NaCl-induced OsbZIP23 was targeted through root uptake of bzip23-dsRNA-CPP6 and showed reduced transcripts and seedling growth compared to treatment with naked dsRNA. The negative regulators of plant defence SDIR1 and SWEET14 were targeted through foliar spray to provide durable resistance against bacterial leaf blight disease caused by Xanthomonas oryzae pv. oryzae (Xoo). Overall, the study demonstrates that transient silencing of plant endogenous genes using polymer-encapsulated dsRNA provides prolonged and durable resistance against Xoo, which could be a promising tool for crop protection and for sustaining productivity.
Collapse
Affiliation(s)
- Garima Pal
- Laboratory of Plant Functional GenomicsRegional Centre for Biotechnology, NCR Biotech Science ClusterFaridabadIndia
| | - Kishor D. Ingole
- Laboratory of Plant Functional GenomicsRegional Centre for Biotechnology, NCR Biotech Science ClusterFaridabadIndia
| | | | - Priyanka Verma
- Laboratory of Nanotechnology and Chemical BiologyRegional Centre for Biotechnology, NCR Biotech Science ClusterFaridabadIndia
| | - Ankit Kumari
- Plant Genetic Engineering LabCentre for Biotechnology, Maharshi Dayananda UniversityRohtakIndia
| | - Chetan Chauhan
- Laboratory of Plant Functional GenomicsRegional Centre for Biotechnology, NCR Biotech Science ClusterFaridabadIndia
| | - Darshna Chaudhary
- Plant Genetic Engineering LabCentre for Biotechnology, Maharshi Dayananda UniversityRohtakIndia
| | - Aasheesh Srivastava
- Department of ChemistryIndian Institute of Science Education and ResearchBhopalIndia
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical BiologyRegional Centre for Biotechnology, NCR Biotech Science ClusterFaridabadIndia
| | - Ramu S. Vemanna
- Laboratory of Plant Functional GenomicsRegional Centre for Biotechnology, NCR Biotech Science ClusterFaridabadIndia
| |
Collapse
|
16
|
Jing S, Xu J, Tang H, Li P, Yu B, Liu Q. The roles of small RNAs in rice-brown planthopper interactions. FRONTIERS IN PLANT SCIENCE 2023; 14:1326726. [PMID: 38078088 PMCID: PMC10701906 DOI: 10.3389/fpls.2023.1326726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/10/2023] [Indexed: 03/10/2025]
Abstract
Interactions between rice plants (Oryza sativa L.) and brown planthoppers (Nilaparvata lugens Stål, BPHs) are used as a model system to study the molecular mechanisms underlying plant-insect interactions. Small RNAs (sRNAs) regulate growth, development, immunity, and environmental responses in eukaryotic organisms, including plants and insects. Recent research suggests that sRNAs play significant roles in rice-BPH interactions by mediating post-transcriptional gene silencing. The focus of this review is to explore the roles of sRNAs in rice-BPH interactions and to highlight recent research progress in unraveling the mechanism of cross-kingdom RNA interference (ckRNAi) between host plants and insects and the application of ckRNAi in pest management of crops including rice. The research summarized here will aid in the development of safe and effective BPH control strategies.
Collapse
Affiliation(s)
| | | | | | | | - Bin Yu
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Qingsong Liu
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| |
Collapse
|
17
|
McLaughlin MS, Roy M, Abbasi PA, Carisse O, Yurgel SN, Ali S. Why Do We Need Alternative Methods for Fungal Disease Management in Plants? PLANTS (BASEL, SWITZERLAND) 2023; 12:3822. [PMID: 38005718 PMCID: PMC10675458 DOI: 10.3390/plants12223822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023]
Abstract
Fungal pathogens pose a major threat to food production worldwide. Traditionally, chemical fungicides have been the primary means of controlling these pathogens, but many of these fungicides have recently come under increased scrutiny due to their negative effects on the health of humans, animals, and the environment. Furthermore, the use of chemical fungicides can result in the development of resistance in populations of phytopathogenic fungi. Therefore, new environmentally friendly alternatives that provide adequate levels of disease control are needed to replace chemical fungicides-if not completely, then at least partially. A number of alternatives to conventional chemical fungicides have been developed, including plant defence elicitors (PDEs); biological control agents (fungi, bacteria, and mycoviruses), either alone or as consortia; biochemical fungicides; natural products; RNA interference (RNAi) methods; and resistance breeding. This article reviews the conventional and alternative methods available to manage fungal pathogens, discusses their strengths and weaknesses, and identifies potential areas for future research.
Collapse
Affiliation(s)
- Michael S. McLaughlin
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, NS B4N 1J5, Canada; (M.S.M.); (M.R.); (P.A.A.)
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 4H5, Canada
| | - Maria Roy
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, NS B4N 1J5, Canada; (M.S.M.); (M.R.); (P.A.A.)
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada
| | - Pervaiz A. Abbasi
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, NS B4N 1J5, Canada; (M.S.M.); (M.R.); (P.A.A.)
| | - Odile Carisse
- Saint-Jean-sur-Richelieu Research Development Centre, Science and Technology Branch, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 7B5, Canada;
| | - Svetlana N. Yurgel
- United States Department of Agriculture (USDA), Agricultural Research Service, Grain Legume Genetics and Physiology Research Unit, Prosser, WA 99350, USA;
| | - Shawkat Ali
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, NS B4N 1J5, Canada; (M.S.M.); (M.R.); (P.A.A.)
| |
Collapse
|
18
|
Bhagta S, Bhardwaj V, Kant A. Exogenous dsRNA trigger RNAi in Venturia inaequalis resulting in down regulation of target genes and growth reduction. Mol Biol Rep 2023; 50:8421-8429. [PMID: 37620739 DOI: 10.1007/s11033-023-08736-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Venturia inaequalis is an apple scab causing fungal pathogen. It is a highly contagious and destructive pathogen which rapidly spreads infection in the surrounding orchards if not managed. The management and control of disease require multiple fungicides to be sprayed at different development stages of the apple. Persistent applications of fungicides also raises environmental concerns. Here, we demonstrate the potential of using spray induced gene silencing (SIGS) by developing target specific gene constructs for the synthesis of corresponding double-stranded RNA (dsRNA). METHODS AND RESULTS The exogenous application of dsRNAs was found to reduce mycelial growth and spore formation of V. inaequalis on culture plates. Four genes of V. inaequalis viz. CIN1, CE5, VICE12 and VICE16 which get upregulated during infection, were selected as targets for the development of gene construct expressing the corresponding dsRNA. The effect of exogenously supplied in vitro synthesized dsRNA on V. inaequalis was assessed in culture bioassay experiments with respect to growth, and spore formation. The expression level of the target genes in treated and control fungus was evaluated using quantitative PCR. Fungus treated with VICE12 targeted dsRNA showed maximum reduction in colony size (~ 55%), conidia formation (~ 93%) and expression level of the corresponding gene (2.2 fold), which was followed by CIN1-dsRNA. VICE16-dsRNA treatment was least effective with 32% reduction in growth, the non-significant effect of conidial spore formation and 1.13 fold down regulation of corresponding target gene expression level. CONCLUSION The result of this investigation validates the hypothesis that RNAi is evoked in V. inaequalis by exogenously supplied dsRNA and spray induced gene silencing (SIGS) based solutions may reduce burden of fungicide usage on apple crop against apple scab disease in future.
Collapse
Affiliation(s)
- Suhani Bhagta
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173234, India
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Vinay Bhardwaj
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Anil Kant
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173234, India.
| |
Collapse
|
19
|
Mann CWG, Sawyer A, Gardiner DM, Mitter N, Carroll BJ, Eamens AL. RNA-Based Control of Fungal Pathogens in Plants. Int J Mol Sci 2023; 24:12391. [PMID: 37569766 PMCID: PMC10418863 DOI: 10.3390/ijms241512391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Our duty to conserve global natural ecosystems is increasingly in conflict with our need to feed an expanding population. The use of conventional pesticides not only damages the environment and vulnerable biodiversity but can also still fail to prevent crop losses of 20-40% due to pests and pathogens. There is a growing call for more ecologically sustainable pathogen control measures. RNA-based biopesticides offer an eco-friendly alternative to the use of conventional fungicides for crop protection. The genetic modification (GM) of crops remains controversial in many countries, though expression of transgenes inducing pathogen-specific RNA interference (RNAi) has been proven effective against many agronomically important fungal pathogens. The topical application of pathogen-specific RNAi-inducing sprays is a more responsive, GM-free approach to conventional RNAi transgene-based crop protection. The specific targeting of essential pathogen genes, the development of RNAi-nanoparticle carrier spray formulations, and the possible structural modifications to the RNA molecules themselves are crucial to the success of this novel technology. Here, we outline the current understanding of gene silencing pathways in plants and fungi and summarize the pioneering and recent work exploring RNA-based biopesticides for crop protection against fungal pathogens, with a focus on spray-induced gene silencing (SIGS). Further, we discuss factors that could affect the success of RNA-based control strategies, including RNA uptake, stability, amplification, and movement within and between the plant host and pathogen, as well as the cost and design of RNA pesticides.
Collapse
Affiliation(s)
- Christopher W. G. Mann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.W.G.M.); (A.S.); (B.J.C.)
| | - Anne Sawyer
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.W.G.M.); (A.S.); (B.J.C.)
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia; (D.M.G.); (N.M.)
| | - Donald M. Gardiner
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia; (D.M.G.); (N.M.)
| | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4072, Australia; (D.M.G.); (N.M.)
| | - Bernard J. Carroll
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (C.W.G.M.); (A.S.); (B.J.C.)
| | - Andrew L. Eamens
- School of Health, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| |
Collapse
|
20
|
Jiang C, Li Z, Zheng L, Yu Y, Niu D. Small RNAs: Efficient and miraculous effectors that play key roles in plant-microbe interactions. MOLECULAR PLANT PATHOLOGY 2023; 24:999-1013. [PMID: 37026481 PMCID: PMC10346379 DOI: 10.1111/mpp.13329] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Plants' response to pathogens is highly complex and involves changes at different levels, such as activation or repression of a vast array of genes. Recently, many studies have demonstrated that many RNAs, especially small RNAs (sRNAs), are involved in genetic expression and reprogramming affecting plant-pathogen interactions. The sRNAs, including short interfering RNAs and microRNAs, are noncoding RNA with 18-30 nucleotides, and are recognized as key genetic and epigenetic regulators. In this review, we summarize the new findings about defence-related sRNAs in the response to pathogens and our current understanding of their effects on plant-pathogen interactions. The main content of this review article includes the roles of sRNAs in plant-pathogen interactions, cross-kingdom sRNA trafficking between host and pathogen, and the application of RNA-based fungicides for plant disease control.
Collapse
Affiliation(s)
- Chun‐Hao Jiang
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
- Engineering Center of Bioresource Pesticide in Jiangsu ProvinceNanjingChina
| | - Zi‐Jie Li
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
- Engineering Center of Bioresource Pesticide in Jiangsu ProvinceNanjingChina
| | - Li‐Yu Zheng
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
- Engineering Center of Bioresource Pesticide in Jiangsu ProvinceNanjingChina
| | - Yi‐Yang Yu
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
- Engineering Center of Bioresource Pesticide in Jiangsu ProvinceNanjingChina
| | - Dong‐Dong Niu
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
- Engineering Center of Bioresource Pesticide in Jiangsu ProvinceNanjingChina
| |
Collapse
|
21
|
Ghosh S, Patra S, Ray S. A Combinatorial Nanobased Spray-Induced Gene Silencing Technique for Crop Protection and Improvement. ACS OMEGA 2023; 8:22345-22351. [PMID: 37396279 PMCID: PMC10308407 DOI: 10.1021/acsomega.3c01968] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/29/2023] [Indexed: 07/04/2023]
Abstract
Recent research reports have shown that plant pests and pathogens have depleted the crop yield widely, which has led to an increased dependence on commercial pesticides and fungicides. Increased usage of these pesticides has also shown adverse effects on the environment, therefore many techniques have been implemented for solving the issue, some of which include using nanobioconjugates, RNA(i), which put into use double-stranded RNAs to inhibit gene expression. A more innovative and eco-friendly strategy includes spray induced gene silencing, which is being increasingly implemented. This review delves into the eco-friendly approach of spray induced gene silencing (SIGS) in combination with nanobioconjugates, which have been used concerning various plant hosts and their pathogens to provide improved protection. Furthermore, nanotechnological advancements have been understood by addressing the scientific gaps to provide a rationale for the development of updated techniques in crop protection.
Collapse
Affiliation(s)
- Snigdha Ghosh
- Amity
Institute of Biotechnology, Amity University,
Kolkata, Plot No: 36, 37, and 38 Major Arterial Road, Action Area II, Kadampukur
Village, Rajarhat, Newtown, Kolkata, West Bengal-700135, India
| | - Snehanjana Patra
- Amity
Institute of Biotechnology, Amity University,
Kolkata, Plot No: 36, 37, and 38 Major Arterial Road, Action Area II, Kadampukur
Village, Rajarhat, Newtown, Kolkata, West Bengal-700135, India
| | - Sarmistha Ray
- Amity
Institute of Biotechnology, Amity University,
Kolkata, Plot No: 36, 37, and 38 Major Arterial Road, Action Area II, Kadampukur
Village, Rajarhat, Newtown, Kolkata, West Bengal-700135, India
| |
Collapse
|
22
|
Ray P, Sahu D, Aminedi R, Chandran D. Concepts and considerations for enhancing RNAi efficiency in phytopathogenic fungi for RNAi-based crop protection using nanocarrier-mediated dsRNA delivery systems. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:977502. [PMID: 37746174 PMCID: PMC10512274 DOI: 10.3389/ffunb.2022.977502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/19/2022] [Indexed: 09/26/2023]
Abstract
Existing, emerging, and reemerging strains of phytopathogenic fungi pose a significant threat to agricultural productivity globally. This risk is further exacerbated by the lack of resistance source(s) in plants or a breakdown of resistance by pathogens through co-evolution. In recent years, attenuation of essential pathogen gene(s) via double-stranded (ds) RNA-mediated RNA interference (RNAi) in host plants, a phenomenon known as host-induced gene silencing, has gained significant attention as a way to combat pathogen attack. Yet, due to biosafety concerns regarding transgenics, country-specific GMO legislation has limited the practical application of desirable attributes in plants. The topical application of dsRNA/siRNA targeting essential fungal gene(s) through spray-induced gene silencing (SIGS) on host plants has opened up a transgene-free avenue for crop protection. However, several factors influence the outcome of RNAi, including but not limited to RNAi mechanism in plant/fungi, dsRNA/siRNA uptake efficiency, dsRNA/siRNA design parameters, dsRNA stability and delivery strategy, off-target effects, etc. This review emphasizes the significance of these factors and suggests appropriate measures to consider while designing in silico and in vitro experiments for successful RNAi in open-field conditions. We also highlight prospective nanoparticles as smart delivery vehicles for deploying RNAi molecules in plant systems for long-term crop protection and ecosystem compatibility. Lastly, we provide specific directions for future investigations that focus on blending nanotechnology and RNAi-based fungal control for practical applications.
Collapse
Affiliation(s)
- Poonam Ray
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Debashish Sahu
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Raghavendra Aminedi
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Divya Chandran
- Laboratory of Plant-Microbe Interactions, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| |
Collapse
|
23
|
Wang M, Dean RA. Host induced gene silencing of Magnaporthe oryzae by targeting pathogenicity and development genes to control rice blast disease. FRONTIERS IN PLANT SCIENCE 2022; 13:959641. [PMID: 36035704 PMCID: PMC9403838 DOI: 10.3389/fpls.2022.959641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Rice blast disease caused by the hemi-biotrophic fungus Magnaporthe oryzae is the most destructive disease of rice world-wide. Traditional disease resistance strategies for the control of rice blast disease have not proved durable. HIGS (host induced gene silencing) is being developed as an alternative strategy. Six genes (CRZ1, PMC1, MAGB, LHS1, CYP51A, CYP51B) that play important roles in pathogenicity and development of M. oryzae were chosen for HIGS. HIGS vectors were transformed into rice calli through Agrobacterium-mediated transformation and T0, T1 and T2 generations of transgenic rice plants were generated. Except for PMC1 and LHS1, HIGS transgenic rice plants challenged with M. oryzae showed significantly reduced disease compared with non-silenced control plants. Following infection with M. oryzae of HIGS transgenic plants, expression levels of target genes were reduced as demonstrated by Quantitative RT-PCR. In addition, treating M. oryzae with small RNA derived from the target genes inhibited fungal growth. These findings suggest RNA silencing signals can be transferred from host to an invasive fungus and that HIGS has potential to generate resistant rice against M. oryzae.
Collapse
|
24
|
Wang Y, Xu H, Chen N, Yang J, Zhou H. LncRNA: A Potential Target for Host-Directed Therapy of Candida Infection. Pharmaceutics 2022; 14:pharmaceutics14030621. [PMID: 35335994 PMCID: PMC8954347 DOI: 10.3390/pharmaceutics14030621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
Despite various drugs work against Candida, candidiasis represents clinical management challenges worldwide due to the rising incidence and recurrence rate, as well as epidemics, of new drug-resistant pathogens. Recent insights into interactions between Candida and hosts contribute to exploring novel therapeutic strategies, termed host-directed therapies (HDTs). HDTs are viable adjuncts with good efficacy for the existing standard antifungal regimens. However, HDTs induce other response unintendedly, thus requiring molecular targets with highly specificity. Long noncoding RNAs (lncRNAs) with highly specific expression patterns could affect biological processes, including the immune response. Herein, this review will summarize recent advances of HDTs based on the Candida–host interaction. Especially, the findings and application strategies of lncRNAs related to the host response are emphasized. We propose it is feasible to target lncRNAs to modulate the host defense during Candida infection, which provides a new perspective in identifying options of HDTs for candidiasis.
Collapse
|