1
|
Chen M, Henderson M, Liu B, Zhou W, Ma R, Huang W, Dou Z. Winter climate change mediates the sensitivity of vegetation leaf-out to spring warming in high latitudes in China. FRONTIERS IN PLANT SCIENCE 2024; 15:1476576. [PMID: 39687319 PMCID: PMC11646735 DOI: 10.3389/fpls.2024.1476576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024]
Abstract
Global warming has significantly altered plant phenology by advancing the timing of leaf emergence, impacting vegetation productivity and adaptability. Winter and spring temperatures have commonly been used to explain spring phenology shifts, but we still lack a solid understanding of the effects of interactions between conditions in different seasons. This study utilizes normalized difference vegetation index (NDVI) and meteorological data to examine the effects of changes in winter and spring temperatures and precipitation on the start of the vegetation growing season (SOS) at high latitudes in China from 1982 to 2015. We found that SOS in Northeast China, as a whole, showed a weak advancing trend (moving earlier in the year), but with obvious regional differences. Even within the same vegetation type, changes in SOS were faster in the cold north (1.9 days/decade) and the cold and dry northwest (1.6 days/decade) than the regional averages for deciduous needleleaf forests (DNF; 1.2 days/decade) and grasslands (0.6 days/decade). Increases in spring temperatures dominate forest SOS advancement, while grassland SOS is mainly influenced by winter and spring precipitation. Decreases in winter minimum temperature (Tmin) enhance the spring temperature sensitivity of SOS. The way that winter precipitation regulates the spring temperature sensitivity of SOS differs among vegetation types: increasing sensitivity in grasslands but suppressing it in DNF. The moderating effects of winter conditions account for the greatest part of the regional differences in the magnitude of change in SOS. Our findings highlight that, although rising spring temperatures significantly affect SOS, winter Tmin and precipitation are crucial for understanding spatial SOS differences, particularly in cold, arid high-latitude regions. Winter conditions play an essential role in regulating the response of vegetation SOS to spring climate at high latitudes. These results suggest that considering the moderating effect of winter climate can facilitate more accurate predictions of temperature-driven phenological changes under future climate change.
Collapse
Affiliation(s)
- Mingyang Chen
- College of Forestry, The Northeast Forestry University, Harbin, China
| | - Mark Henderson
- Mills College, Northeastern University, Oakland, CA, United States
| | - Binhui Liu
- College of Forestry, The Northeast Forestry University, Harbin, China
| | - Wanying Zhou
- College of Forestry, The Northeast Forestry University, Harbin, China
| | - Rong Ma
- College of Forestry, The Northeast Forestry University, Harbin, China
| | - Weiwei Huang
- College of Forestry, The Northeast Forestry University, Harbin, China
| | - Zeyu Dou
- College of Forestry, The Northeast Forestry University, Harbin, China
| |
Collapse
|
2
|
Rzanny M, Mäder P, Wittich HC, Boho D, Wäldchen J. Opportunistic plant observations reveal spatial and temporal gradients in phenology. NPJ BIODIVERSITY 2024; 3:5. [PMID: 39242728 PMCID: PMC11332049 DOI: 10.1038/s44185-024-00037-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/17/2024] [Indexed: 09/09/2024]
Abstract
Opportunistic plant records provide a rapidly growing source of spatiotemporal plant observation data. Here, we used such data to explore the question whether they can be used to detect changes in species phenologies. Examining 19 herbaceous and one woody plant species in two consecutive years across Europe, we observed significant shifts in their flowering phenology, being more pronounced for spring-flowering species (6-17 days) compared to summer-flowering species (1-6 days). Moreover, we show that these data are suitable to model large-scale relationships such as "Hopkins' bioclimatic law" which quantifies the phenological delay with increasing elevation, latitude, and longitude. Here, we observe spatial shifts, ranging from -5 to 50 days per 1000 m elevation to latitudinal shifts ranging from -1 to 4 days per degree northwards, and longitudinal shifts ranging from -1 to 1 day per degree eastwards, depending on the species. Our findings show that the increasing volume of purely opportunistic plant observation data already provides reliable phenological information, and therewith can be used to support global, high-resolution phenology monitoring in the face of ongoing climate change.
Collapse
Affiliation(s)
- Michael Rzanny
- Department Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany.
| | - Patrick Mäder
- Data-Intensive Systems and Visualisation, Technische Universität Ilmenau, Ilmenau, Germany
- Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
- iDiv, Leipzig, Germany
| | - Hans Christian Wittich
- Data-Intensive Systems and Visualisation, Technische Universität Ilmenau, Ilmenau, Germany
| | - David Boho
- Data-Intensive Systems and Visualisation, Technische Universität Ilmenau, Ilmenau, Germany
| | - Jana Wäldchen
- Department Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany
- iDiv, Leipzig, Germany
| |
Collapse
|
3
|
Beiter CM, Crimmins TM. How consistently do species leaf-out or flower in the same order? Understanding the factors that shape this characteristic of plant communities. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2023:10.1007/s00484-023-02477-5. [PMID: 37186257 DOI: 10.1007/s00484-023-02477-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023]
Abstract
Plant species are frequently reported to undergo leaf-out and flowering in a consistent order from 1 year to the next; however, only a limited number of these findings arise from studies encompassing many species or sites. Here, we evaluate the consistency in the order species leafed out in the northeastern United States using observations contributed to the USA National Phenology Network's Nature's Notebook platform. We repeated this analysis for flowering, evaluating a total of 132 species across 84 sites. We documented a relatively high degree of consistency in the order of both events among individual plants, with higher consistency in flowering. A small number of species pairs exhibited very high consistency in phenological order across several sites. The majority of species pairs exhibited variability in how consistently they underwent either leaf-out or flowering from site to site, which could be the result of either plastic or locally adaptive responses. Our investigation revealed that neither functional type nor seasonal position played a major role in shaping how consistently species leafed out or flowered in the same order. Instead, we found the number of days separating the events and interannual variability in timing to be the most influential factors driving the consistency in ordering.
Collapse
Affiliation(s)
- Caryn M Beiter
- Department of Biology, Miami University, 501 E High St, Oxford, OH, 45056, USA.
| | - Theresa M Crimmins
- USA National Phenology Network, School of Natural Resources and the Environment University of Arizona, 1311 E. 4Th. St., Suite 325, Tucson, AZ, 85721, USA
| |
Collapse
|
4
|
Yu P, Meng P, Tong X, Zhang Y, Li J, Zhang J, Liu P. Temperature sensitivity of leaf flushing in 12 common woody species in eastern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160337. [PMID: 36574556 DOI: 10.1016/j.scitotenv.2022.160337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/27/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Leaf phenology is one of the most reliable indicators of global warming in temperate regions because it is highly sensitive to temperatures. Temperature sensitivity (ST) is defined as the values of changed days of leaf flushing date (LUD) per degree increase in temperatures. Climate warming substantially advanced LUD in the temperate region, but its effect on ST of LUD is still not clear. We used spring phenological records of 12 woody plants in eastern China in the years of 1983-2014 to explore temporal and spatial changes of LUD and ST. Furthermore, we compared the difference of ST and preseason temperatures in two periods (1983-1997 and 2000-2014), and explored the main factors regulating ST. The results showed that the average LUD significantly advanced (-2.7 days per decade). The mean LUD over the period 1983-2014 was in day of the year (DOY) 87 ± 7 across sites and species for the early leaf flushing species (EFS), and mean DOY 102 ± 5 for the late leaf flushing species (LFS). LUD was earlier in low latitude than that in high latitude. ST of Armeniaca vulgaris was the most sensitive to temperature across all sites (-3.66 d °C-1), while Firmiana simplex was the most insensitive (-2.37 d °C-1). LUD of EFS was more sensitive to temperature warming than that of LFS. At the same site, LUD of EFS would advance more obviously than that of LFS under global warming. For all species, ST decreased significantly with shorter preseason length and warmer temperatures at the preseason end. Our results had demonstrated a strong relationship between ST and the preseason length (mean temperature at the preseason end).
Collapse
Affiliation(s)
- Peiyang Yu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Ping Meng
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Xiaojuan Tong
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China.
| | - Yingjie Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China.
| | - Jun Li
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingru Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Peirong Liu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
5
|
Qin J, Ma M, Shi J, Ma S, Wu B, Su X. The Time-Lag Effect of Climate Factors on the Forest Enhanced Vegetation Index for Subtropical Humid Areas in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:799. [PMID: 36613120 PMCID: PMC9819476 DOI: 10.3390/ijerph20010799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Forests represent the greatest carbon reservoir in terrestrial ecosystems. Climate change drives the changes in forest vegetation growth, which in turn influences carbon sequestration capability. Exploring the dynamic response of forest vegetation to climate change is thus one of the most important scientific questions to be addressed in the precise monitoring of forest resources. This paper explores the relationship between climate factors and vegetation growth in typical forest ecosystems in China from 2007 to 2019 based on long-term meteorological monitoring data from six forest field stations in different subtropical ecological zones in China. The time-varying parameter vector autoregressive model (TVP-VAR) was used to analyze the temporal and spatial differences of the time-lag effects of climate factors, and the impact of climate change on vegetation was predicted. The enhanced vegetation index (EVI) was used to measure vegetation growth. Monthly meteorological observations and solar radiation data, including precipitation, air temperature, relative humidity, and photosynthetic effective radiation, were provided by the resource sharing service platform of the national ecological research data center. It was revealed that the time-lag effect of climate factors on the EVI vanished after a half year, and the lag accumulation tended to be steady over time. The TVP-VAR model was found to be more suitable than the vector autoregressive model (VAR). The predicted EVI values using the TVP-VAR model were close to the true values with the root mean squares error (RMSE) < 0.05. On average, each site improved its prediction accuracy by 14.81%. Therefore, the TVP-VAR model can be used to analyze the relationship of climate factors and forest EVI as well as the time-lag effect of climate factors on vegetation growth in subtropical China. The results can be used to improve the predictability of the EVI for forests and to encourage the development of intensive forest management.
Collapse
Affiliation(s)
- Jushuang Qin
- School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Forestry-Oriented Intelligent Information Processing, National Forestry and Grassland Administration, Beijing 100083, China
| | - Menglu Ma
- School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Forestry-Oriented Intelligent Information Processing, National Forestry and Grassland Administration, Beijing 100083, China
| | - Jiabin Shi
- School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Forestry-Oriented Intelligent Information Processing, National Forestry and Grassland Administration, Beijing 100083, China
| | - Shurui Ma
- School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Forestry-Oriented Intelligent Information Processing, National Forestry and Grassland Administration, Beijing 100083, China
| | - Baoguo Wu
- School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China
- Research Institute of Forestry Informatization, Beijing Forestry University, Beijing 100083, China
| | - Xiaohui Su
- School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center for Forestry-Oriented Intelligent Information Processing, National Forestry and Grassland Administration, Beijing 100083, China
| |
Collapse
|
6
|
Stomatal Limitation Is Able to Modulate Leaf Coloration Onset of Temperate Deciduous Tree. FORESTS 2022. [DOI: 10.3390/f13071099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Autumn phenology, determined mainly by temperature and photoperiod, is essential for ecosystem carbon sequestration. Usually, the variations in the maximum rate of Rubisco (Vcmax) and the maximum rate of ribulose-bisphosphate regeneration (Jmax) are taken as the mechanism regulating the seasonal pattern of photosynthetic rates and autumn phenology. In this study, we used Quercus mongolicus seedlings as an example to examine the photosynthetically physiological mechanism of leaf coloration onset (LCO) responding to different warming and photoperiod treatments based on experimental data acquired from large artificial climate simulation chambers. The results indicated that: (1) LCO and the net CO2 assimilation rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), Vcmax, and Jmax of Quercus mongolicus seedlings were significantly affected by the changes of photoperiod. (2) LCO was significantly correlated only with the Pn approach, supporting the view that leaf senescence is the result of a trade-off between nutrient resorption and reserves. (3) The major variation in stomatal conductance (Gs) is the mechanism by which photoperiod regulates the seasonal pattern of photosynthetic rates, implying that both limitations of stomatal and photosynthetical capacity (Vcmax and Jmax, non-stomatal limitation) are able to modulate LCO. Our study riches the knowledge of phenology and provides a reference for phenological modelling and ecosystem carbon estimation.
Collapse
|