1
|
Zhu L, Li H, Tao Z, Ma F, Wu S, Miao X, Cao L, Shi Z. The microRNA OsmiR393 regulates rice brown planthopper resistance by modulating the auxin-ROS signaling cross-talk. SCIENCE ADVANCES 2025; 11:eadu6722. [PMID: 40378225 PMCID: PMC12083543 DOI: 10.1126/sciadv.adu6722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 04/10/2025] [Indexed: 05/18/2025]
Abstract
Auxin plays critical roles in plant development and stress response. However, the roles of auxin and the immune signaling factor, reactive oxygen species (ROS), in resistance to the brown planthopper (BPH), a notorious rice-specific piercing-sucking insect that causes severe yield losses, remain unclear. We revealed that moderate naphthalene acetic acid treatment activates rice resistance to BPH, BPH infestation induces ROS accumulation, and increase in ROS content promotes BPH resistance. Underlying these phenomena, the auxin receptors OsTIR1 and OsAFB2 positively, whereas the posttranscriptional regulator OsmiR393 negatively, regulate BPH resistance. Downstream of the OsmiR393/OsTIR1 module, through successive genetic function analysis of each gene, solid genetic relationship analysis, and various biochemical assays, we established an OsmiR393/OsTIR1-OsIAA10-OsARF12-OsRbohB genetic pathway that mediates BPH resistance, in which ROS are integral. Such cross-talk between auxin and ROS reveals the intricate signaling network underlying BPH resistance, which might assist with BPH resistance breeding.
Collapse
Affiliation(s)
- Lin Zhu
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haichao Li
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhihuan Tao
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feilong Ma
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China
| | - Shujun Wu
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Xuexia Miao
- Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Liming Cao
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Zhenying Shi
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| |
Collapse
|
2
|
Gebretsadik KG, Liu Z, Yang J, Liu H, Qin A, Zhou Y, Guo E, Song X, Gao P, Xie Y, Vincent N, Tran LSP, Sun X. Plant-aphid interactions: recent trends in plant resistance to aphids. STRESS BIOLOGY 2025; 5:28. [PMID: 40299207 PMCID: PMC12041410 DOI: 10.1007/s44154-025-00214-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 04/30/2025]
Abstract
Aphids are highly destructive agricultural pests characterized by complex life cycles and phenotypic variability, facilitating their adaptation to diverse climates and host plants. Their feeding behavior leads to plant deformation, wilting, stunted growth, disease transmission, and significant yield losses. Given the economic risks aphids pose, regular updates on their seasonal behaviors, adaptive mechanisms, and destructive activities are critical for improving management strategies to mitigate crop losses. This review comprehensively synthesizes recent studies on aphids as plant pests, the extrinsic factors influencing their life cycles, and the intricate interactions between aphids and their hosts. It also highlights recent advancements in biological control measures, including natural enemies, antibiosis, and antixenosis. Additionally, we explore plant defense mechanisms against aphids, focusing on the roles of cell wall components such as lignin, pectin and callose deposition and the genetic regulations underlying these defenses. Aphids, however, can evolve specialized strategies to overcome general plant defenses, prompting the development of targeted mechanisms in plants, such as the use of resistance (R) genes against specific aphid species. Additionally, plant pattern recognition receptors (PRRs) recognize compounds in aphid saliva, which triggers enhanced phloem sealing and more focused immune responses. This work enhances understanding of aphid-plant interaction and plant resistance and identifies key research gaps for future studies.
Collapse
Affiliation(s)
- Kifle Gebreegziabiher Gebretsadik
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street 85 Minglun Street, Kaifeng, 475001, People's Republic of China
- Tigray Agricultural Research Institute (TARI), Mekelle, 5637, Ethiopia
| | - Zhixin Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street 85 Minglun Street, Kaifeng, 475001, People's Republic of China
| | - Jincheng Yang
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street 85 Minglun Street, Kaifeng, 475001, People's Republic of China
| | - Hao Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street 85 Minglun Street, Kaifeng, 475001, People's Republic of China
| | - Aizhi Qin
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street 85 Minglun Street, Kaifeng, 475001, People's Republic of China
| | - Yaping Zhou
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street 85 Minglun Street, Kaifeng, 475001, People's Republic of China
| | - Enzhi Guo
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street 85 Minglun Street, Kaifeng, 475001, People's Republic of China
| | - Xiao Song
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street 85 Minglun Street, Kaifeng, 475001, People's Republic of China
| | - Peibo Gao
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street 85 Minglun Street, Kaifeng, 475001, People's Republic of China
| | - Yajie Xie
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street 85 Minglun Street, Kaifeng, 475001, People's Republic of China
| | - Ninkuu Vincent
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street 85 Minglun Street, Kaifeng, 475001, People's Republic of China
| | - Lam-Son Phan Tran
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Xuwu Sun
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street 85 Minglun Street, Kaifeng, 475001, People's Republic of China.
| |
Collapse
|
3
|
Goldstein Y, Han J, Kunk D, Batushansky A, Nalam V, Tzin V. Diurnal rhythms in durum wheat triggered by Rhopalosiphum padi (bird cherry-oat aphid). BMC PLANT BIOLOGY 2025; 25:459. [PMID: 40211135 PMCID: PMC11984048 DOI: 10.1186/s12870-025-06100-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 01/13/2025] [Indexed: 04/12/2025]
Abstract
Wheat is a staple crop and one of the most widely consumed grains globally. Wheat yields can experience significant losses due to the damaging effects of herbivore infestation. However, little is known about the effect aphids have on the natural diurnal rhythms in plants. Our time-series transcriptomics and metabolomics study reveals intriguing molecular changes occurring in plant diurnal rhythmicity upon aphid infestation. Under control conditions, 15,366 out of the 66,559 genes in the tetraploid wheat cultivar Svevo, representing approximately 25% of the transcriptome, exhibited diurnal rhythmicity. Upon aphid infestation, 5,682 genes lost their rhythmicity, while 5,203 genes began to exhibit diurnal rhythmicity. The aphid-induced rhythmic genes were enriched in GO terms associated with plant defense, such as protein phosphorylation and cellular response to ABA and were enriched with motifs of the WRKY transcription factor families. In contrast, the genes that lost rhythmicity due to aphid infestation were enriched with motifs of the TCP and ERF transcription factor families. While the core circadian clock genes maintain their rhythmicity during infestation, we observed that approximately 60% of rhythmic genes experience disruptions in their rhythms during aphid infestation. These changes can influence both the plant's growth and development processes as well as defense responses. Furthermore, analysis of rhythmic metabolite composition revealed that several monoterpenoids gained rhythmic activity under infestation, while saccharides retained their rhythmic patterns. Our findings highlight the ability of insect infestation to disrupt the natural diurnal cycles in plants, expanding our knowledge of the complex interactions between plants and insects.
Collapse
Affiliation(s)
- Yoshiahu Goldstein
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 8499000, Israel.
| | - Jinlong Han
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Daniel Kunk
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
- Department of Cell and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Albert Batushansky
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Vamsi Nalam
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Vered Tzin
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 8499000, Israel.
| |
Collapse
|
4
|
Chamani M, Dadpour M, Dehghanian Z, Panahirad S, Chenari Bouket A, Oszako T, Kumar S. From Digestion to Detoxification: Exploring Plant Metabolite Impacts on Insect Enzyme Systems for Enhanced Pest Control. INSECTS 2025; 16:392. [PMID: 40332876 PMCID: PMC12027622 DOI: 10.3390/insects16040392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/02/2025] [Accepted: 04/05/2025] [Indexed: 05/08/2025]
Abstract
This review provides an in-depth examination of the intricate interactions between plant metabolites and the digestive and antioxidative enzymes in insects, highlighting their essential roles in shaping insect herbivory and adaptation strategies. Plants have evolved a diverse arsenal of secondary metabolites to defend against herbivorous insects, which, in response, have developed sophisticated adaptations to overcome these defenses and efficiently exploit plant resources. We outline the importance of digestive enzymes, such as proteases and amylases, which allow insects to break down complex plant compounds and access vital nutrients. Additionally, the review focuses on antioxidative enzymes in the insect midgut, including superoxide dismutase and catalase, which play a crucial role in mitigating oxidative stress generated during digestion and other metabolic processes. Synthesizing findings from various studies, this review also considers how environmental factors, such as heavy metal exposure and temperature changes, influence these enzymes' activity levels. It highlights the dual function of antioxidative enzymes in detoxifying harmful plant-derived compounds while preserving cellular stability. The implications of these biochemical interactions for pest management are discussed, with an emphasis on the potential for developing biopesticides that target specific enzymatic pathways to disrupt insect feeding and growth. By elucidating the biochemical mechanisms that underlie plant-insect interactions, this review enhances our understanding of co-evolutionary dynamics and offers insights into sustainable agricultural practices that could leverage these interactions for effective pest control. Finally, the review proposes future research directions aimed at identifying novel plant metabolites with enzyme-modulating properties and exploring the ecological impacts of enzyme-targeted pest management approaches.
Collapse
Affiliation(s)
- Masoud Chamani
- Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran
| | - MohammadReza Dadpour
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz 51666-14838, Iran;
| | - Zahra Dehghanian
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz 53751-71379, Iran;
| | - Sima Panahirad
- Department of Horticultural Sciences and Landscape Engineering, Faculty of Agriculture, University of Tabriz, Tabriz 51666-14838, Iran;
| | - Ali Chenari Bouket
- East Azarbaijan Agricultural and Natural Resources Research and Education Centre, Plant Protection Research Department, Agricultural Research, Education and Extension Organization (AREEO), Tabriz 53551-79854, Iran;
| | - Tomasz Oszako
- Department of Forest Protection, Forest Research Institute in Sekocin Stary, 05-090 Raszyn, Poland;
| | - Sumit Kumar
- KVK, Mau, Acharya Narendra Deva University of Agriculture and Technology, Ayodhya 224229, UP, India;
| |
Collapse
|
5
|
Sonbol H, Korany SM, Nhs M, Abdi I, Maridueña-Zavala MG, Alsherif EA, Aldailami DA, Elsheikh SYS. Exploring the benefits of AMF colonization for improving wheat growth, physiology and metabolism, and antimicrobial activity under biotic stress from aphid infection. BMC PLANT BIOLOGY 2025; 25:198. [PMID: 39953402 PMCID: PMC11827367 DOI: 10.1186/s12870-025-06196-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND This study examines the effectiveness of arbuscular mycorrhizal fungi (AMF, Rhizophagus irregularis) as a bioprotection strategy to improve wheat's physiological and biochemical responses. This study utilized soil inoculation with AMF and plant-controlled infestation with aphids, conducted over four weeks with three replicates per treatment. RESULTS Although aphid infestation reduced root colonization by 26.8% and hyphal length by 30.7%, with no effect on arbuscular numbers (p < 0.05), AMF treatment improved growth, physiology, and metabolism of AMF-treated plants, especially under aphid infestation. AMF-treated plants showed a 51% increase in fresh weight and a 38% improvement in photosynthetic rates under infestation, indicating enhanced photosynthetic efficiency compared to controls. At the metabolism level, AMF application, particularly in infested plants, increased the levels of several amino acids, such as asparagine and glutamine, which increased by 23% and 20%, respectively. AMF treatment significantly boosted nitrogen metabolism enzymes, with activity increasing up to 4.8-fold in infested plants and arginase activity rising by 49% in infested and 290% in non-infested conditions. This metabolic shift elevated antioxidant levels, increasing flavonoids by 40% and polyphenols by 95% under aphid infestation. Additionally, antimicrobial efficacy improved, with AMF-treated plant extracts showing 30-67% larger inhibition zones against pathogens like Staphylococcus epidermidis and Salmonella typhimurium than untreated plants (p < 0.05). CONCLUSIONS This research examined the potential of AMF as a sustainable pest management tool, specifically focusing on its ability to enhance crop health and boost defenses against biotic stress. The study further highlights how AMF treatment improves antimicrobial efficacy, which can be integrated into farming practices to maintain plant growth while offering distinct advantages over conventional pest management strategies.
Collapse
Affiliation(s)
- Hana Sonbol
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Shereen Magdy Korany
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Mousa Nhs
- Botany and Microbiology Department, Faculty of Science, Assiut University, Cairo, 71515, Egypt
| | - Insaf Abdi
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 4030, Jubail, 35816, Saudi Arabia
| | - Maria Gabriela Maridueña-Zavala
- Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Km. 30.5 Vía Perimetral, Guayaquil, 090902, Ecuador.
| | - Emad A Alsherif
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Danyah A Aldailami
- Public Health Department, College of Health Sciences, Saudi Electronic University, Riyadh, 23442, Saudi Arabia
| | | |
Collapse
|
6
|
Dilip D, Modupalli N, Rahman MM, Kariyat R. Atmospheric cold plasma alters plant traits and negatively affects the growth and development of fall armyworm in rice. Sci Rep 2025; 15:3680. [PMID: 39881156 PMCID: PMC11779975 DOI: 10.1038/s41598-025-87560-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025] Open
Abstract
Plasma is considered as the fourth state of matter, and atmospheric cold plasma (cold plasma) is a type of plasma consisting of ionized gases containing excited species of atoms, molecules, ions, and free radicals at near room temperature. Cold plasma is generated by applying high voltage to gases, causing it to ionize thus forming plasma. Although cold plasma has been found to break seed dormancy and improve germination rate, only a few studies have explored the potential of cold plasma against insect herbivory. Given that cold plasma produces reactive oxygen and nitrogen species that can activate plant signalling molecules, it is plausible that cold plasma can have differential effects against insect herbivores. To test this, we evaluated the effectiveness of cold plasma on a polyphagous lepidopteran pest, Fall armyworm (FAW) [Spodoptera frugiperda (Lepidoptera: Noctuidae)] on rice (Oryza sativa L.) using an atmospheric plasma jet reactor that generated cold plasma using ambient air as the source gas. We treated rice seeds from two commonly grown Arkansas cultivars (Jewel and Diamond) with cold plasma, followed by irrigation with Cold Plasma-Activated Water (PAW). We then independently tested FAW growth on an artificial diet partially made with PAW. Our results show that cold plasma significantly affected the feeding, growth, and development of FAW, irrespective of the rice varieties. The effects of cold plasma treatment resulted in reduced damage by FAW, lower mass gain and longer pupation period on FAW compared to the untreated control. However, the effects of cold plasma on rice growth and development were dependent on the rice varieties. Cold plasma treatment also induced detrimental effects on FAW leading to ~ 25% mortality on cold plasma-treated plants when compared to untreated controls. Collectively, these findings offer significant evidence of the potential of cold plasma as a novel component for sustainable pest management.
Collapse
Affiliation(s)
- Deepak Dilip
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Nikitha Modupalli
- Department of Food Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Md Mahfuzur Rahman
- Department of Food Science, University of Arkansas, Fayetteville, AR, 72701, USA.
| | - Rupesh Kariyat
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
7
|
Zu H, Zhang J, Bai W, Kuai P, Cheng J, Lu J, Lou Y, Li R. Jasmonate-mediated polyamine oxidase 6 drives herbivore-induced polyamine catabolism in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2000-2013. [PMID: 39432737 DOI: 10.1111/tpj.17094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/16/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
Polyamines (PAs) along with their conjugated forms, are important mediators of plant defense mechanisms against both biotic and abiotic stresses. Flavin-containing polyamine oxidases (PAOs) regulate PA levels through terminal oxidation. To date, the role of PAOs in plant-herbivore interaction remains poorly understood. We discovered that infestation by the brown planthopper (BPH) disrupts PA homeostasis within the leaf sheaths of rice plants, which co-occurs with the upregulation of OsPAO6, a tissue-specific inducible, apoplast-localized enzyme that regulates the terminal catabolism of spermidine (Spd) and spermine. Functional analysis using CRISPR-Cas9 genome-edited plants revealed that pao6 mutants accumulated significantly higher levels of Spd and phenylpropanoid-conjugated Spd in response to BPH infestation compared to wild-type controls. In addition, BPH feeding on pao6 mutants led to increased honeydew excretion and plant damage by female adults, consistent with in vitro experiments in which Spd enhanced BPH feeding. Furthermore, OsPAO6 transcription is regulated by jasmonate (JA) signaling, and it is dependent on MYC2, which directly binds to the G-box-like motif in the OsPAO6 promoter. Our findings reveal an important role of OsPAO6 in regulating polyamine catabolism in JA-induced responses triggered by herbivore attacks in rice.
Collapse
Affiliation(s)
- Hongyue Zu
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310057, China
| | - Weiwei Bai
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Peng Kuai
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jingli Cheng
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Jing Lu
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yonggen Lou
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ran Li
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
8
|
Zhang H, Chi Y, Chen S, Lv X, Jia D, Chen Q, Wei T. Scavenging H 2O 2 of plant host by saliva catalase of leafhopper vector benefits viral transmission. THE NEW PHYTOLOGIST 2024; 243:2368-2384. [PMID: 39075808 DOI: 10.1111/nph.19988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024]
Abstract
Catalase (CAT) is the main reactive oxygen species (ROS)-scavenging enzyme in plants and insects. However, it remains elusive whether and how insect saliva CAT suppresses ROS-mediated plant defense, thereby promoting initial virus transmission by insect vectors. Here, we investigated how leafhopper Recilia dorsalis catalase (RdCAT) was secreted from insect salivary glands into rice phloem, and how it was perceived by rice chaperone NO CATALASE ACTIVITY1 (OsNCA1) to scavenge excessive H2O2 during insect-to-plant virus transmission. We found that the interaction of OsNCA1 with RdCAT activated its enzymatic activity to decompose H2O2 in rice plants during leafhopper feeding. However, initial insect feeding did not significantly change rice CATs transcripts. Knockout of OsNCA1 in transgenic lines decreased leafhopper feeding-activated CAT activity and caused higher H2O2 accumulation. A devastating rice reovirus activated RdCAT expression and promoted the cosecretion of virions and RdCAT into leafhopper salivary cavities and ultimately into the phloem. Virus-mediated increase of RdCAT secretion suppressed excessive H2O2, thereby promoting host attractiveness to insect vectors and initial virus transmission. Our findings provide insights into how insect saliva CAT is secreted and perceived by plant chaperones to suppress the early H2O2 burst during insect feeding, thereby facilitating viral transmission.
Collapse
Affiliation(s)
- Hongxiang Zhang
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Yunhua Chi
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Siyu Chen
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Xinwei Lv
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Dongsheng Jia
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Qian Chen
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Taiyun Wei
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| |
Collapse
|
9
|
Đurić M, Jevremović S, Trifunović-Momčilov M, Milošević S, Subotić A, Jerinić-Prodanović D. Physiological and oxidative stress response of carrot (Daucus carota L.) to jumping plant-louse Bactericera trigonica Hodkinson (Hemiptera: Psylloidea) infestation. BMC PLANT BIOLOGY 2024; 24:243. [PMID: 38575896 PMCID: PMC10993497 DOI: 10.1186/s12870-024-04946-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Carrot is an important vegetable crop grown worldwide. The major economic problem in carrot cultivation is yellow disease caused by Bactericera trigonica, which induces biotic stress and has the greatest impact on crop productivity. Comprehensive studies on the mechanism of carrot defense response to biotic stress caused by B. trigonica infestation have yet to be conducted. METHODS The changes in photosynthetic pigments, proline, TPC, H2O2 and MDA content, DPPH radical scavenging ability, and antioxidant enzyme activity of SOD, CAT, and POX in carrot leaves in response to insect sex (female and male), rapid response (during the first six hours), and long-term response to B. trigonica infestation were evaluated. RESULTS The results of our study strongly suggest that B. trigonica infestation causes significant changes in primary and secondary metabolism and oxidative status of carrot leaves. Photosynthetic pigment content, TPC, and DPPH and CAT activities were significantly reduced in carrot leaves in response to insect infestation. On the other hand, proline, H2O2 content, and the activity of the antioxidant enzymes superoxide dismutase and peroxidase were increased in carrot leaves after B. trigonica infestation. The results indicate that B. trigonica attenuates and delays the oxidative stress responses of carrot, allowing long-term feeding without visible changes in the plant. Carrot responded to long-term B. trigonica infestation with an increase in SOD and POX activity, suggesting that these enzymes may play a key role in plant defense mechanisms. CONCLUSIONS This is the first comprehensive study strongly suggesting that B. trigonica infestation causes significant changes in primary and secondary metabolism and an attenuated ROS defense response in carrot leaves that enables long-term insect feeding. The information provides new insights into the mechanisms of carrot protection against B. trigonica infestation.
Collapse
Affiliation(s)
- Marija Đurić
- Department for Plant Physiology at the Institute for Biological Research "Siniša Stanković", - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, Belgrade, 11108, Serbia
| | - Slađana Jevremović
- Department for Plant Physiology at the Institute for Biological Research "Siniša Stanković", - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, Belgrade, 11108, Serbia.
| | - Milana Trifunović-Momčilov
- Department for Plant Physiology at the Institute for Biological Research "Siniša Stanković", - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, Belgrade, 11108, Serbia
| | - Snežana Milošević
- Department for Plant Physiology at the Institute for Biological Research "Siniša Stanković", - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, Belgrade, 11108, Serbia
| | - Angelina Subotić
- Department for Plant Physiology at the Institute for Biological Research "Siniša Stanković", - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, Belgrade, 11108, Serbia
| | - Dušanka Jerinić-Prodanović
- Department of Entomology and Agricultural Zoology, Faculty of Agriculture, University of Belgrade, Nemanjina 6, Belgrade, 11080, Serbia
| |
Collapse
|
10
|
Waksman T, Astin E, Fisher SR, Hunter WN, Bos JIB. Computational Prediction of Structure, Function, and Interaction of Myzus persicae (Green Peach Aphid) Salivary Effector Proteins. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:338-346. [PMID: 38171380 DOI: 10.1094/mpmi-10-23-0154-fi] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Similar to plant pathogens, phloem-feeding insects such as aphids deliver effector proteins inside their hosts that act to promote host susceptibility and enable feeding and infestation. Despite exciting progress toward identifying and characterizing effector proteins from these insects, their functions remain largely unknown. The recent groundbreaking development in protein structure prediction algorithms, combined with the availability of proteomics and transcriptomic datasets for agriculturally important pests, provides new opportunities to explore the structural and functional diversity of effector repertoires. In this study, we sought to gain insight into the infection strategy used by the Myzus persicae (green peach aphid) by predicting and analyzing the structures of a set of 71 effector candidate proteins. We used two protein structure prediction methods, AlphaFold and OmegaFold, that produced mutually consistent results. We observed a wide continuous spectrum of structures among the effector candidates, from disordered proteins to globular enzymes. We made use of the structural information and state-of-the-art computational methods to predict M. persicae effector protein properties, including function and interaction with host plant proteins. Overall, our investigation provides novel insights into prediction of structure, function, and interaction of M. persicae effector proteins and will guide the necessary experimental characterization to address new hypotheses. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Thomas Waksman
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, U.K
| | - Edmund Astin
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, U.K
| | - S Ronan Fisher
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, U.K
| | - William N Hunter
- Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, U.K
| | - Jorunn I B Bos
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, U.K
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, U.K
| |
Collapse
|
11
|
Pavithran S, Murugan M, Mannu J, Yogendra K, Balasubramani V, Sanivarapu H, Harish S, Natesan S. Identification of salivary proteins of the cowpea aphid Aphis craccivora by transcriptome and LC-MS/MS analyses. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 165:104060. [PMID: 38123026 DOI: 10.1016/j.ibmb.2023.104060] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Aphid salivary proteins mediate the interaction between aphids and their host plants. Moreover, these proteins facilitate digestion, detoxification of secondary metabolites, as well as activation and suppression of plant defenses. The cowpea aphid, Aphis craccivora, is an important sucking pest of leguminous crops worldwide. Although aphid saliva plays an important role in aphid plant interactions, knowledge of the cowpea aphid salivary proteins is limited. In this study, we performed transcriptomic and LC-MS/MS analyses to identify the proteins present in the salivary glands and saliva of A. craccivora. A total of 1,08,275 assembled transcripts were identified in the salivary glands of aphids. Of all these assembled transcripts, 53,714 (49.11%) and 53,577 (49.48%) transcripts showed high similarity to known proteins in the Nr and UniProt databases, respectively. A total of 2159 proteins were predicted as secretory proteins from the salivary gland transcriptome dataset, which contain digestive enzymes, detoxification enzymes, previously known effectors and elicitors, and potential proteins whose functions have yet to be determined. The proteomic analysis of aphid saliva resulted in the identification of 171 proteins. Tissue-specific expression of selected genes using RT-PCR showed that three genes were expressed only in the salivary glands. Overall, our results provide a comprehensive repertoire of cowpea aphid salivary proteins from the salivary gland and saliva, which will be a good resource for future effector functional studies and might also be useful for sustainable aphid management.
Collapse
Affiliation(s)
- Shanmugasundram Pavithran
- Department of Agricultural Entomology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Marimuthu Murugan
- Department of Agricultural Entomology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641003, India.
| | - Jayakanthan Mannu
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Kalenahalli Yogendra
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Venkatasamy Balasubramani
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Hemalatha Sanivarapu
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Sankarasubramanian Harish
- Department of Plant Pathology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India
| | - Senthil Natesan
- Department of Plant Molecular Biology and Bioinformatics, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| |
Collapse
|
12
|
Naalden D, Dermauw W, Ilias A, Baggerman G, Mastop M, Silven JJM, van Kleeff PJM, Dangol S, Gaertner NF, Roseboom W, Kwaaitaal M, Kramer G, van den Burg HA, Vontas J, Van Leeuwen T, Kant MR, Schuurink RC. Interaction of Whitefly Effector G4 with Tomato Proteins Impacts Whitefly Performance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:98-111. [PMID: 38051229 DOI: 10.1094/mpmi-04-23-0045-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The phloem-feeding insect Bemisia tabaci is an important pest, responsible for the transmission of several crop-threatening virus species. While feeding, the insect secretes a cocktail of effectors to modulate plant defense responses. Here, we present a set of proteins identified in an artificial diet on which B. tabaci was salivating. We subsequently studied whether these candidate effectors can play a role in plant immune suppression. Effector G4 was the most robust suppressor of an induced- reactive oxygen species (ROS) response in Nicotiana benthamiana. In addition, G4 was able to suppress ROS production in Solanum lycopersicum (tomato) and Capsicum annuum (pepper). G4 localized predominantly in the endoplasmic reticulum in N. benthamiana leaves and colocalized with two identified target proteins in tomato: REF-like stress related protein 1 (RSP1) and meloidogyne-induced giant cell protein DB141 (MIPDB141). Silencing of MIPDB141 in tomato reduced whitefly fecundity up to 40%, demonstrating that the protein is involved in susceptibility to B. tabaci. Together, our data demonstrate that effector G4 impairs tomato immunity to whiteflies by interfering with ROS production and via an interaction with tomato susceptibility protein MIPDB141. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Diana Naalden
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Wannes Dermauw
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
- Flanders Research Institute for Agriculture, Fisheries and Food, Plant Sciences Unit, 9820 Merelbeke, Belgium
| | - Aris Ilias
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece
| | - Geert Baggerman
- Centre for Proteomics, University of Antwerp, 2020 Antwerp, Belgium
- Unit Environmental Risk and Health, Flemish Institute for Technological Research, 2400 Mol, Belgium
| | - Marieke Mastop
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Juliette J M Silven
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Paula J M van Kleeff
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Sarmina Dangol
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Nicolas Frédéric Gaertner
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Winfried Roseboom
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Mark Kwaaitaal
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Gertjan Kramer
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Harrold A van den Burg
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 70013 Heraklion, Crete, Greece
- Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Merijn R Kant
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Robert C Schuurink
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
13
|
Zapałowska A, Matłok N, Piechowiak T, Szostek M, Puchalski C, Balawejder M. Physiological and Morphological Implications of Using Composts with Different Compositions in the Production of Cucumber Seedlings. Int J Mol Sci 2023; 24:14400. [PMID: 37762704 PMCID: PMC10531696 DOI: 10.3390/ijms241814400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
Compost has a broad application in terms of the improvement of the soil properties. This research work was conducted to present the molecular implications of using compost obtained from different substrates to improve soil parameters for cucumber seedlings cultivation. In the experiment, the following compost mixtures were used: sewage sludge (80%) + sawdust (20%); sewage sludge (40%) + sawdust (10%) + biodegradable garden and park waste (50%); biodegradable garden and park waste (90%) + sawdust (10%); sewage sludge (80%) + sawdust (20%) + Eisenia fetida; sewage sludge (40%) + sawdust (10%) + biodegradable garden and park waste (50%) + Eisenia fetida; biodegradable garden and park waste (90%) + sawdust (10%) + Eisenia fetida. The final substrate compositions consisted of compost mixtures and deacidified peat(O) (pH 6.97; Corg content-55%, N content-2.3%), serving as a structural additive, in different mass ratios (mass %). The produced plants underwent biometric and physiological measurements as well as enzymatic analyses of stress markers. Based on the conducted studies, it has been found that the substrate productivity depends not only on the content of nutrient components but also on their structure, which is moderated by the proportion of peat in the substrate. The most effective and promising substrate for cucumber seedling production was variant 2 (I), which consisted of 25% compost from sewage sludge (40%) + sawdust (10%) + biodegradable garden and park waste (50%) and 75% deacidified peat. Despite the richness of the other substrates, inferior parameters of the produced seedlings were observed. The analysis of the enzymatic activity of stress markers showed that these substrates caused stress in the plants produced. The study's results showed that this stress was caused by the presence of Eisenia fetida, which damaged the developing root system of plants in the limited volume of substrate (production containers). The adverse influence of Eisenia fetida on the plants produced could possibly be eliminated by thermal treatment of the compost, although this could lead to significant changes in composition.
Collapse
Affiliation(s)
- Anita Zapałowska
- Department of Agriculture and Waste Management, Collegium of Natural Sciences, University of Rzeszów, St. Ćwiklinskiej 1a, 35-601 Rzeszów, Poland
| | - Natalia Matłok
- Department of Food and Agriculture Production Engineering, Collegium of Natural Sciences, University of Rzeszów, St. Zelwerowicza 4, 35-601 Rzeszów, Poland;
| | - Tomasz Piechowiak
- Department of Chemistry and Food Toxicology, Collegium of Natural Sciences, University of Rzeszów, St. Ćwiklińskiej 1a, 35-601 Rzeszów, Poland; (T.P.); (M.B.)
| | - Małgorzata Szostek
- Department of Soil Science Environmental Chemistry and Hydrology, Collegium of Natural Sciences, University of Rzeszów, St. Zelwerowicza 8b, 35-601 Rzeszów, Poland;
| | - Czesław Puchalski
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, Collegium of Natural Sciences, University of Rzeszów, St. Ćwiklińskiej 2D, 35-601 Rzeszów, Poland;
| | - Maciej Balawejder
- Department of Chemistry and Food Toxicology, Collegium of Natural Sciences, University of Rzeszów, St. Ćwiklińskiej 1a, 35-601 Rzeszów, Poland; (T.P.); (M.B.)
| |
Collapse
|
14
|
Puri H, Grover S, Pingault L, Sattler SE, Louis J. Temporal transcriptomic profiling elucidates sorghum defense mechanisms against sugarcane aphids. BMC Genomics 2023; 24:441. [PMID: 37543569 PMCID: PMC10403856 DOI: 10.1186/s12864-023-09529-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/22/2023] [Indexed: 08/07/2023] Open
Abstract
BACKGROUND The sugarcane aphid (SCA; Melanaphis sacchari) has emerged as a key pest on sorghum in the United States that feeds from the phloem tissue, drains nutrients, and inflicts physical damage to plants. Previously, it has been shown that SCA reproduction was low and high on sorghum SC265 and SC1345 plants, respectively, compared to RTx430, an elite sorghum male parental line (reference line). In this study, we focused on identifying the defense-related genes that confer resistance to SCA at early and late time points in sorghum plants with varied levels of SCA resistance. RESULTS We used RNA-sequencing approach to identify the global transcriptomic responses to aphid infestation on RTx430, SC265, and SC1345 plants at early time points 6, 24, and 48 h post infestation (hpi) and after extended period of SCA feeding for 7 days. Aphid feeding on the SCA-resistant line upregulated the expression of 3827 and 2076 genes at early and late time points, respectively, which was relatively higher compared to RTx430 and SC1345 plants. Co-expression network analysis revealed that aphid infestation modulates sorghum defenses by regulating genes corresponding to phenylpropanoid metabolic pathways, secondary metabolic process, oxidoreductase activity, phytohormones, sugar metabolism and cell wall-related genes. There were 187 genes that were highly expressed during the early time of aphid infestation in the SCA-resistant line, including genes encoding leucine-rich repeat (LRR) proteins, ethylene response factors, cell wall-related, pathogenesis-related proteins, and disease resistance-responsive dirigent-like proteins. At 7 days post infestation (dpi), 173 genes had elevated expression levels in the SCA-resistant line and were involved in sucrose metabolism, callose formation, phospholipid metabolism, and proteinase inhibitors. CONCLUSIONS In summary, our results indicate that the SCA-resistant line is better adapted to activate early defense signaling mechanisms in response to SCA infestation because of the rapid activation of the defense mechanisms by regulating genes involved in monolignol biosynthesis pathway, oxidoreductase activity, biosynthesis of phytohormones, and cell wall composition. This study offers further insights to better understand sorghum defenses against aphid herbivory.
Collapse
Affiliation(s)
- Heena Puri
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Sajjan Grover
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Lise Pingault
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Scott E Sattler
- Wheat, Sorghum, and Forage Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Lincoln, NE, 68583, USA
| | - Joe Louis
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| |
Collapse
|
15
|
Wang Y, Li Y, Tian Z, Duan T. Arbuscular Mycorrhizal Fungus Alters Alfalfa ( Medicago sativa) Defense Enzyme Activities and Volatile Organic Compound Contents in Response to Pea Aphid ( Acyrthosiphon pisum) Infestation. J Fungi (Basel) 2022; 8:jof8121308. [PMID: 36547641 PMCID: PMC9787922 DOI: 10.3390/jof8121308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/22/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Pea aphid (Acyrthosiphon pisum) infestation leads to withering, reduced yield, and lower quality of the host plant. Arbuscular mycorrhizal (AM) fungi have been found to enhance their host plants’ nutrient uptake, growth, and resistance to biotic stresses, including pathogen infection and insect pest infestation. Therefore, we evaluated the effects of AM fungus Rhizophagus intraradices on alfalfa defense responses to pea aphid infestation. Aphid infestation did not affect the colonization of AM fungus. The inoculation of AM fungus, on average, enhanced alfalfa catalase and the contents of salicylic acid and trypsin inhibitor by 101, 9.05, and 7.89% compared with non-mycorrhizal alfalfa, respectively. In addition, polyphenol oxidase activities significantly increased by six-fold after aphid infestation in mycorrhizal alfalfa. Moreover, the fungus significantly (p < 0.05) improved alfalfa shoot N content, net photosynthetic and transpiration rates, and shoot dry weight in aphid infected treatment. The aphid infestation changed the total volatile organic compounds (VOCs) in alfalfa, while AM fungus enhanced the contents of methyl salicylate (MeSA). The co-expression network analysis of differentially expressed genes (DEGs) and differentially expressed VOCs analysis showed that three DEGs, namely MS.gene23894, MS.gene003889, and MS.gene012415, positively correlated with MeSA both in aphid and AM fungus groups. In conclusion, AM fungus increased alfalfa’s growth, defense enzyme activities, hormones, and VOCs content and up-regulated VOC-related genes to enhance the alfalfa’s resistance following aphid infestation.
Collapse
Affiliation(s)
- Yajie Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou Unviersity, Lanzhou 730020, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yingde Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou Unviersity, Lanzhou 730020, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Zhen Tian
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou Unviersity, Lanzhou 730020, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
- Center for Grassland Microbiome, Lanzhou University, Lanzhou 730000, China
| | - Tingyu Duan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou Unviersity, Lanzhou 730020, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
- Correspondence: ; Tel.: +86-152-1409-5029
| |
Collapse
|
16
|
Le Boulch P, Poëssel JL, Roux D, Lugan R. Molecular mechanisms of resistance to Myzus persicae conferred by the peach Rm2 gene: A multi-omics view. FRONTIERS IN PLANT SCIENCE 2022; 13:992544. [PMID: 36275570 PMCID: PMC9581297 DOI: 10.3389/fpls.2022.992544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
The transcriptomic and metabolomic responses of peach to Myzus persicae infestation were studied in Rubira, an accession carrying the major resistance gene Rm2 causing antixenosis, and GF305, a susceptible accession. Transcriptome and metabolome showed both a massive reconfiguration in Rubira 48 hours after infestation while GF305 displayed very limited changes. The Rubira immune system was massively stimulated, with simultaneous activation of genes encoding cell surface receptors involved in pattern-triggered immunity and cytoplasmic NLRs (nucleotide-binding domain, leucine-rich repeat containing proteins) involved in effector-triggered immunity. Hypersensitive reaction featured by necrotic lesions surrounding stylet punctures was supported by the induction of cell death stimulating NLRs/helpers couples, as well as the activation of H2O2-generating metabolic pathways: photorespiratory glyoxylate synthesis and activation of the futile P5C/proline cycle. The triggering of systemic acquired resistance was suggested by the activation of pipecolate pathway and accumulation of this defense hormone together with salicylate. Important reduction in carbon, nitrogen and sulphur metabolic pools and the repression of many genes related to cell division and growth, consistent with reduced apices elongation, suggested a decline in the nutritional value of apices. Finally, the accumulation of caffeic acid conjugates pointed toward their contribution as deterrent and/or toxic compounds in the mechanisms of resistance.
Collapse
Affiliation(s)
| | | | - David Roux
- UMR Qualisud, Avignon Université, Avignon, France
| | | |
Collapse
|
17
|
Taheri P. Crosstalk of nitro-oxidative stress and iron in plant immunity. Free Radic Biol Med 2022; 191:137-149. [PMID: 36075546 DOI: 10.1016/j.freeradbiomed.2022.08.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022]
Abstract
Accumulation of oxygen and nitrogen radicals and their derivatives, known as reactive oxygen species (ROS) and reactive nitrogen species (RNS), occurs throughout various phases of plant growth in association with biotic and abiotic stresses. One of the consequences of environmental stresses is disruption of homeostasis between production and scavenging of ROS and RNS, which leads to nitro-oxidative burst and affects other defense-related mechanisms, such as polyamines levels, phenolics, lignin and callose as defense components related to plant cell wall reinforcement. Although this subject has attracted huge interest, the cross-talk between these signaling molecules and iron, as a main metal element involved in the activity of various enzymes and numerous vital processes in the living cells, remains largely unexplored. Therefore, it seems necessary to pay more in depth attention to the mechanisms of plant resistance against various environmental stimuli for designing novel and effective plant protection strategies. This review is focused on advances in recent knowledge related to the role of ROS, RNS, and association of these signaling molecules with iron in plant immunity. Furthermore, the role of cell wall fortification as a main physical barrier involved in plant defense have been discussed in association with reactive species and iron ions.
Collapse
Affiliation(s)
- Parissa Taheri
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
18
|
Kou X, Bai S, Luo Y, Yu J, Guo H, Wang C, Zhang H, Chen C, Liu X, Ji W. Construction of a Modified Clip Cage and Its Effects on the Life-History Parameters of Sitobion avenae (Fabricius) and Defense Responses of Triticum aestivum. INSECTS 2022; 13:777. [PMID: 36135478 PMCID: PMC9503654 DOI: 10.3390/insects13090777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Clip cages are commonly used to confine aphids or other small insects to a single leaf when conducting plant-small insect interaction studies; however, clip cages are usually heavy or do not efficiently transmit light, which has an impact on leaf physiology, limiting their application. Here, simple, lightweight, and transparent modified clip cages were constructed using punched clear plastic cups, cut transparent polyvinyl chloride sheets, nylon organdy mesh, and bent duck-bill clips. These cages can be clipped directly onto dicot leaves or attached to monocot leaves with bamboo skewers and elastic bands. The weight, production time, and aphid escape rates of the modified clip cages were 3.895 ± 0.004 g, less than 3 min, and 2.154 ± 0.323%, respectively. The effects of the modified clip cage on the growth, development, and reproduction of the English grain aphid (Sitobion avenae Fabricius) in comparison with the whole cage were studied. The biochemical responses of wheat (Triticum aestivum) to the cages were also investigated. No significant differences were observed in the life table parameters, nymph mortality, and adult fecundity in S. avenae confined to clip cages and whole cages, but the clip cages were more time efficient than whole cages when conducting life table studies. Moreover, the hydrogen peroxide accumulation, callose deposition, and cell necrosis in wheat leaves covered by empty clip cages and empty whole cages were similar, and significantly lower than treatments where the aphids were inside the clip cage. The results demonstrate that the modified clip cages had negligible effects on the plant and aphid physiology, suggesting that they are effective for studying plant-small insect interactions.
Collapse
Affiliation(s)
- Xudan Kou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Shichao Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Yufeng Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Jiuyang Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Huan Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Chao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Hong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling 712100, China
| | - Chunhuan Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling 712100, China
| | - Xinlun Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling 712100, China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling 712100, China
| |
Collapse
|
19
|
Kloth KJ, Dicke M. Rapid systemic responses to herbivory. CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102242. [PMID: 35696775 DOI: 10.1016/j.pbi.2022.102242] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/26/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Rapid systemic signals travel within the first seconds and minutes after herbivore infestation to mount defense responses in distal tissues. Recent studies have revealed that wound-induced hydraulic pressure changes play an important role in systemic electrical signaling and subsequent calcium and reactive oxygen species waves. These insights raise new questions about signal specificity, the role of insect feeding guild and feeding style and the impact on longer term plant defenses. Here, we integrate the current molecular understanding of wound-induced rapid systemic signaling in the framework of insect-plant interactions.
Collapse
Affiliation(s)
- Karen J Kloth
- Laboratory of Entomology, Wageningen University & Research, PO Box 16, 6700 AA Wageningen, the Netherlands.
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University & Research, PO Box 16, 6700 AA Wageningen, the Netherlands
| |
Collapse
|