1
|
Gao X, Tie J, Yang X, Yang J, Wang G, Lyu J, Hu L, Yu J. Brassinosteroid-induced S-nitrosylation of fructose-1,6-bisphosphate aldolase increased ATP synthesis under low temperatures in mini Chinese cabbage seedlings. Int J Biol Macromol 2025; 308:142626. [PMID: 40169041 DOI: 10.1016/j.ijbiomac.2025.142626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/03/2025]
Abstract
Low temperature causes an imbalance in plant energy metabolism homeostasis. Brassinosteroids (BRs) are a class of hormones with important regulatory functions in plant responses to low temperature. S-nitrosylation of proteins is a key pathway for nitric oxide-mediated regulation of plant stress. In this study, we investigated whether S-nitrosylation proteins are involved in regulating energy metabolism in mini Chinese cabbage seedlings at low temperature. Low temperature inhibited the transcriptional accumulation of BrFBA2, BrGAPDH, BrPGK, and BrPK. However, applying exogenous BR and S-nitrosoglutathione significantly upregulated the transcription of these genes and accelerated the release of ATP. Exogenous BR significantly upregulated the S-nitrosylation level of fructose-1,6-bisphosphate aldolase 2 (FBA2) at low temperatures. FBA2 protein S-nitrosylation modification occurred in vitro at Cys-197. OE-BrFBA2 lines showed enhanced S-nitrosylation at low temperatures. Applying exogenous BR enhanced the S-nitrosylation of FBA2 and accelerated ATP release in TRV2-BrFBA2 lines. Exogenous BR treatment was conducive to maintaining the homeostasis of cell energy metabolism in mini Chinese cabbage seedlings at low temperature.
Collapse
Affiliation(s)
- Xueqin Gao
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Jianzhong Tie
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Xin Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Jiaojiao Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Guangzheng Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Jian Lyu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China; College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| | - Linli Hu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China; College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| | - Jihua Yu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China; College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
2
|
Khandal H, Horev G, van den Herik B, Soroka Y, Lahav T, Avin-Wittenberg T, Ten Tusscher K, Savaldi-Goldstein S. Root growth and branching are enabled by brassinosteroid-regulated growth anisotropy and carbon allocation. Nat Commun 2025; 16:3985. [PMID: 40295528 PMCID: PMC12037908 DOI: 10.1038/s41467-025-59202-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 04/14/2025] [Indexed: 04/30/2025] Open
Abstract
Plants function as an integrated system of interconnected organs, with shoots and roots mutually influencing each other. Brassinosteroid (BR) signaling is essential for whole-plant growth, yet the relative importance of shoot versus root BR function in shaping root system architecture (RSA) remains unclear. Here, we directly tackle this question using micro-grafts between wild-type and BR-null mutants in both Arabidopsis and tomato, assisted by phenotyping, transcriptomics, metabolic profiling, transmission electron microscopy, and modeling approaches. These analyses demonstrate that shoot BR, by determining root carbon availability, allows for a full rescue of mutant root biomass, while loss of shoot BR attenuates root growth. In parallel, root BR dictates the spatial distribution of carbon along the root, through local regulation of growth anisotropy and cell wall thickness, shaping root morphology. A newly developed "grow and branch" simulation model demonstrates that these shoot- and root-derived BR effects are sufficient to explain and predict root growth dynamics and branching phenotype in wild-type, BR-deficient mutants, and micro-graft combinations. Our interdisciplinary approach, applied to two plant species and integrating shoot and root hormonal functions, provides a new understanding of how RSA is modulated at various scales.
Collapse
Affiliation(s)
- Hitaishi Khandal
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Guy Horev
- MIGAL-Galilee Research Institute, Kiryat Shmona, Israel
| | - Bas van den Herik
- Computational Developmental Biology Group, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Yoram Soroka
- Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamar Lahav
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tamar Avin-Wittenberg
- Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kirsten Ten Tusscher
- Computational Developmental Biology Group, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Experimental and Computational Plant Development Group, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
3
|
Yan X, Shan S, Li X, Xu Q, Yan X, Ruan R, Cheng P. Carbon and energy metabolism for the mixotrophic culture of Chlorella vulgaris using sodium acetate as a carbon source. Front Microbiol 2024; 15:1436264. [PMID: 39507339 PMCID: PMC11537992 DOI: 10.3389/fmicb.2024.1436264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
There has been an emergence of a diversity of microalgal mixotrophic synergistic mechanisms due to substrate differences. In this study, the effects of the mixotrophic culture of Chlorella vulgaris were examined. The maximum values of cell density, specific growth rate, and cell dry weight of Chlorella vulgaris were 3.52*107 cells/mL, 0.75 d-1, and 3.48 g/L in the mixotrophic mode, respectively. These were higher than the corresponding values of photoautotrophic or heterotrophic modes. Moreover, it was found that the concentrations of sodium bicarbonate consumed by the Chlorella vulgaris under mixotrophic and photoautotrophic modes were 635 mg/L/d and 505 mg/L/d, respectively; the concentrations of sodium acetate consumed by the Chlorella vulgaris under mixotrophic and heterotrophic modes were 614 mg/L/d and 645 mg/L/d, respectively. The activity of Rubisco was 9.36 U/mL in the mixotrophic culture, which was 3.09 and 4.85 times higher than that of the photoautotrophic and heterotrophic modes, respectively. This indicated that the differences for the carbon source absorption efficiency of Chlorella vulgaris in the mixotrophy led to different internal metabolic efficiencies when compared to photoautotroph or heterotrophy. Additionally, Chlorella vulgaris exhibits a more rapid energy metabolism efficiency when operating in the mixotrophic mode.
Collapse
Affiliation(s)
- Xi Yan
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, China
| | - Shengzhou Shan
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, China
| | - Xiaohui Li
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, China
| | - Qingshan Xu
- Lijiang Cheng Hai Bao Er Biological Development Co., Ltd., Lijiang, Yunnan, China
| | - Xiaojun Yan
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Roger Ruan
- Center for Biorefining, and Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN, United States
| | - Pengfei Cheng
- College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
4
|
Croce R, Carmo-Silva E, Cho YB, Ermakova M, Harbinson J, Lawson T, McCormick AJ, Niyogi KK, Ort DR, Patel-Tupper D, Pesaresi P, Raines C, Weber APM, Zhu XG. Perspectives on improving photosynthesis to increase crop yield. THE PLANT CELL 2024; 36:3944-3973. [PMID: 38701340 PMCID: PMC11449117 DOI: 10.1093/plcell/koae132] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 05/05/2024]
Abstract
Improving photosynthesis, the fundamental process by which plants convert light energy into chemical energy, is a key area of research with great potential for enhancing sustainable agricultural productivity and addressing global food security challenges. This perspective delves into the latest advancements and approaches aimed at optimizing photosynthetic efficiency. Our discussion encompasses the entire process, beginning with light harvesting and its regulation and progressing through the bottleneck of electron transfer. We then delve into the carbon reactions of photosynthesis, focusing on strategies targeting the enzymes of the Calvin-Benson-Bassham (CBB) cycle. Additionally, we explore methods to increase carbon dioxide (CO2) concentration near the Rubisco, the enzyme responsible for the first step of CBB cycle, drawing inspiration from various photosynthetic organisms, and conclude this section by examining ways to enhance CO2 delivery into leaves. Moving beyond individual processes, we discuss two approaches to identifying key targets for photosynthesis improvement: systems modeling and the study of natural variation. Finally, we revisit some of the strategies mentioned above to provide a holistic view of the improvements, analyzing their impact on nitrogen use efficiency and on canopy photosynthesis.
Collapse
Affiliation(s)
- Roberta Croce
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, theNetherlands
| | | | - Young B Cho
- Carl R. Woese Institute for Genomic Biology, Department of Plant Biology, University of Illinois, Urbana, IL 61801, USA
| | - Maria Ermakova
- School of Biological Sciences, Faculty of Science, Monash University, Melbourne, VIC 3800, Australia
| | - Jeremy Harbinson
- Laboratory of Biophysics, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Alistair J McCormick
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- Centre for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, Department of Plant Biology, University of Illinois, Urbana, IL 61801, USA
| | - Dhruv Patel-Tupper
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Paolo Pesaresi
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Christine Raines
- School of Life Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf 40225, Germany
| | - Xin-Guang Zhu
- Key Laboratory of Carbon Capture, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
5
|
Zeng G, Wan Z, Xie R, Lei B, Li C, Gao F, Zhang Z, Xi Z. 24-epibrassinolide enhances drought tolerance in grapevine (Vitis vinifera L.) by regulating carbon and nitrogen metabolism. PLANT CELL REPORTS 2024; 43:219. [PMID: 39155298 DOI: 10.1007/s00299-024-03283-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/10/2024] [Indexed: 08/20/2024]
Abstract
KEY MESSAGE Exogenous application of 24-epibrassinolide can alleviate oxidative damage, improve photosynthetic capacity, and regulate carbon and nitrogen assimilation, thus improving the tolerance of grapevine (Vitis vinifera L.) to drought stress. Brassinosteroids (BRs) are a group of plant steroid hormones in plants and are involved in regulating plant tolerance to drought stress. This study aimed to investigate the regulation effects of BRs on the carbon and nitrogen metabolism in grapevine under drought stress. The results indicated that drought stress led to the accumulation of superoxide radicals and hydrogen peroxide and an increase in lipid peroxidation. A reduction in oxidative damage was observed in EBR-pretreated plants, which was probably due to the improved antioxidant concentration. Moreover, exogenous EBR improved the photosynthetic capacity and sucrose phosphate synthase activity, and decreased the sucrose synthase, acid invertase, and neutral invertase, resulting in improved sucrose (190%) and starch (17%) concentrations. Furthermore, EBR pretreatment strengthened nitrate reduction and ammonium assimilation. A 57% increase in nitrate reductase activity and a 13% increase in glutamine synthetase activity were observed in EBR pretreated grapevines. Meanwhile, EBR pretreated plants accumulated a greater amount of proline, which contributed to osmotic adjustment and ROS scavenging. In summary, exogenous EBR enhanced drought tolerance in grapevines by alleviating oxidative damage and regulating carbon and nitrogen metabolism.
Collapse
Affiliation(s)
- Guihua Zeng
- College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhuowu Wan
- College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Rui Xie
- College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Bingyuan Lei
- School of Food Science and Technology, Shihezi University, Shihezi, 832061, Xinjiang, China
| | - Chan Li
- College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Feifei Gao
- School of Food Science and Technology, Shihezi University, Shihezi, 832061, Xinjiang, China
| | - Zhenwen Zhang
- College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, 712100, Shaanxi, China.
| | - Zhumei Xi
- College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
6
|
Wang J, Dou J, Yue Z, Wang J, Chen T, Li J, Dai H, Dou T, Yu J, Liu Z. Effect of hydrogen sulfide on cabbage photosynthesis under black rot stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108453. [PMID: 38417309 DOI: 10.1016/j.plaphy.2024.108453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 03/01/2024]
Abstract
Hydrogen sulfide (H2S), as a potential gaseous signaling molecule, is involved in mediating biotic and abiotic stress in plants. Currently, there are no studies investigating the mechanism by which H2S improves photosynthesis under black rot (BR) stress caused by Xanthomonas campestris pv. Campestris (Xcc). In this study, we investigated the effect of exogenous H2S on Xcc induced photosynthetic impairment in cabbage seedlings. BR has an inhibitory effect on the photosynthetic ability of cabbage seedlings. Xcc infection can significantly reduce the chlorophyll content, photosynthetic characteristics, chlorophyll fluorescence, Calvin cycle related enzyme activity and gene expression in cabbage leaves. The use of H2S can alleviate this inhibitory effect, reduce chlorophyll decomposition, improve gas exchange, enhance the activity of Calvin cycle related enzymes, and increase the expression of related genes. Transcriptome analysis showed that all differential genes related to photosynthesis were up regulated under H2S treatment compared to normal inoculation. Therefore, spraying exogenous H2S can improve the photosynthetic capacity of cabbage seedlings, reduce Xcc induced photoinhibition, and improve plant resistance.
Collapse
Affiliation(s)
- Jie Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jianhua Dou
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhibin Yue
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jue Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Tongyan Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jinbao Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Haojie Dai
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Tingting Dou
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China; Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Zeci Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
7
|
Liu S, Zenda T, Tian Z, Huang Z. Metabolic pathways engineering for drought or/and heat tolerance in cereals. FRONTIERS IN PLANT SCIENCE 2023; 14:1111875. [PMID: 37810398 PMCID: PMC10557149 DOI: 10.3389/fpls.2023.1111875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 09/04/2023] [Indexed: 10/10/2023]
Abstract
Drought (D) and heat (H) are the two major abiotic stresses hindering cereal crop growth and productivity, either singly or in combination (D/+H), by imposing various negative impacts on plant physiological and biochemical processes. Consequently, this decreases overall cereal crop production and impacts global food availability and human nutrition. To achieve global food and nutrition security vis-a-vis global climate change, deployment of new strategies for enhancing crop D/+H stress tolerance and higher nutritive value in cereals is imperative. This depends on first gaining a mechanistic understanding of the mechanisms underlying D/+H stress response. Meanwhile, functional genomics has revealed several stress-related genes that have been successfully used in target-gene approach to generate stress-tolerant cultivars and sustain crop productivity over the past decades. However, the fast-changing climate, coupled with the complexity and multigenic nature of D/+H tolerance suggest that single-gene/trait targeting may not suffice in improving such traits. Hence, in this review-cum-perspective, we advance that targeted multiple-gene or metabolic pathway manipulation could represent the most effective approach for improving D/+H stress tolerance. First, we highlight the impact of D/+H stress on cereal crops, and the elaborate plant physiological and molecular responses. We then discuss how key primary metabolism- and secondary metabolism-related metabolic pathways, including carbon metabolism, starch metabolism, phenylpropanoid biosynthesis, γ-aminobutyric acid (GABA) biosynthesis, and phytohormone biosynthesis and signaling can be modified using modern molecular biotechnology approaches such as CRISPR-Cas9 system and synthetic biology (Synbio) to enhance D/+H tolerance in cereal crops. Understandably, several bottlenecks hinder metabolic pathway modification, including those related to feedback regulation, gene functional annotation, complex crosstalk between pathways, and metabolomics data and spatiotemporal gene expressions analyses. Nonetheless, recent advances in molecular biotechnology, genome-editing, single-cell metabolomics, and data annotation and analysis approaches, when integrated, offer unprecedented opportunities for pathway engineering for enhancing crop D/+H stress tolerance and improved yield. Especially, Synbio-based strategies will accelerate the development of climate resilient and nutrient-dense cereals, critical for achieving global food security and combating malnutrition.
Collapse
Affiliation(s)
- Songtao Liu
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| | - Zaimin Tian
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| | - Zhihong Huang
- Hebei Key Laboratory of Quality & Safety Analysis-Testing for Agro-Products and Food, Hebei North University, Zhangjiakou, China
| |
Collapse
|
8
|
Otani Y, Kawanishi M, Kamimura M, Sasaki A, Nakamura Y, Nakamura T, Okamoto S. Behavior and possible function of Arabidopsis BES1/BZR1 homolog 2 in brassinosteroid signaling. PLANT SIGNALING & BEHAVIOR 2022; 17:2084277. [PMID: 35695417 PMCID: PMC9196799 DOI: 10.1080/15592324.2022.2084277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Affiliation(s)
- Yui Otani
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Mika Kawanishi
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Miyu Kamimura
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Azusa Sasaki
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Yasushi Nakamura
- Department of Japanese Food Culture, Faculty of Letters, Kyoto Prefectural University, Kyoto, Japan
| | - Takako Nakamura
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Shigehisa Okamoto
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
9
|
Zhang QC, Wang J, Wang JG. Use of plant growth regulators to reduce 2-methyl-4-chlorophenoxy acetic acid-Na (MPCA-Na) damage in cotton (Gossypium hirsutum). BMC PLANT BIOLOGY 2022; 22:533. [PMID: 36380296 PMCID: PMC9667669 DOI: 10.1186/s12870-022-03917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND 2-methyl-4-chlorophenoxy acetic acid-Na (MPCA-Na) is a phenoxy carboxylic acid selective hormone herbicide that is widely used in the crop fields. However, drift of MPCA-Na during application is highly damaging to cotton (Gossypium hirsutum) and other crop plants. This study was carried out from 2019 to 2020 to determine the effects of different concentrations of MPCA-Na on physiological and metabolic activities besides growth and yield of cotton plants at seedling, budding, flowering and boll stages. Moreover, we evaluated the different combinations of 24-epibrassinolide, gibberellin (GA3), phthalanilic acid and seaweed fertilizer to ameliorate herbicide damage. RESULTS 2-methyl-4-chlorophenoxy acetic acid-Na (MPCA-Na) exposure caused a decrease in the chlorophyll content, and an increase in the soluble protein content, Malondialdehyde (MDA) content and protective enzyme activity. It also caused significant reductions in plant height, boll number and the single boll weight at the seedling and budding stages, but had little effects on plant height and the single boll weight at flowering and boll stage. Under the maximum recommended dose of MPCA-Na (130 g/L), the number of cotton bolls at seedling and budding stages decreased by 75.33 and 79.50%, respectively, and the single boll weight decreased by 46.42 and 36.31%, respectively. Nevertheless, the number of G. hirsutum bolls and single boll weight at flowering and boll stage decreased by 48.15 and 5.38%, respectively. Application of plant growth regulators decreased the MDA content, and increased chlorophyll, soluble protein content and protective enzyme activity, and alleviated MCPA-Na toxicity. Positive effects in case of growth regulators treated plants were also observed in terms of G. hirsutum yield. Phthalanilic acid + seaweed fertilizer, 24-epibrassinolide + seaweed fertilizer, and GA3 + seaweed fertilizer should be used at the seedling, budding, and flowering and boll stages, respectively. CONCLUSIONS The results of current study suggest that certain plant growth regulators could be used to alleviate MPCA-Na damage and maintain G. hirsutum yield. When the cotton exposed to MCPA-Na at the seedling stage, it should be treated with phthalanilic acid + seaweed fertilizer, while plants exposed at the budding stage should be treated with 24-epibrassinolide + seaweed fertilizer, and those exposed at the flowering and boll stages should be treated with GA3 + seaweed fertilizer to mitigate stress.
Collapse
Affiliation(s)
- Quan-Cheng Zhang
- College of Agriculture, Shihezi University, Shihezi, 832003, China
| | - Jing Wang
- College of Agriculture, Shihezi University, Shihezi, 832003, China
| | - Jun-Gang Wang
- College of Agriculture, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
10
|
Raines CA. Improving plant productivity by re-tuning the regeneration of RuBP in the Calvin-Benson-Bassham cycle. THE NEW PHYTOLOGIST 2022; 236:350-356. [PMID: 35860861 PMCID: PMC9833393 DOI: 10.1111/nph.18394] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/30/2022] [Indexed: 05/03/2023]
Abstract
The Calvin-Benson-Bassham (CBB) cycle is arguably the most important pathway on earth, capturing CO2 from the atmosphere and converting it into organic molecules, providing the basis for life on our planet. This cycle has been intensively studied over the 50 yr since it was elucidated, and it is highly conserved across nature, from cyanobacteria to the largest of our land plants. Eight out of the 11 enzymes in this cycle catalyse the regeneration of ribulose-1-5 bisphosphate (RuBP), the CO2 acceptor molecule. The potential to manipulate RuBP regeneration to improve photosynthesis has been demonstrated in a number of plant species, and the development of new technologies, such as omics and synthetic biology provides exciting future opportunities to improve photosynthesis and increase crop yields.
Collapse
Affiliation(s)
- Christine A. Raines
- School of Life SciencesUniversity of EssexWivenhoe ParkColchesterEssexCO3 4JEUK
| |
Collapse
|
11
|
Maize ZmBES1/BZR1-3 and -9 Transcription Factors Negatively Regulate Drought Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2022; 23:ijms23116025. [PMID: 35682705 PMCID: PMC9181540 DOI: 10.3390/ijms23116025] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 01/27/2023] Open
Abstract
The BRI1-EMS suppressor 1 (BES1)/brassinazole-resistant 1(BZR1) transcription factors play crucial roles in plant growth, development, and stress response. However, little is known about the function of maize’s BES1/BZR1s. In this study, the ZmBES1/BZR1-3 and ZmBES1/BZR1-9 genes were cloned from maize’s inbred line, B73, and they were functionally evaluated by analyzing their expression pattern, subcellular localization, transcriptional activation activity, as well as their heterologous expression in Arabidopsis, respectively. The results of the qRT-PCR showed that the ZmBES1/BZR1-3 and ZmBES1/BZR1-9 genes were predominantly expressed in the root, and their expression was significantly down-regulated by drought stress. The ZmBES1/BZR1-3 and ZmBES1/BZR1-9 proteins localized in the nucleus but showed no transcriptional activation activity as a monomer. Subsequently, it was found that the heterologous expression of the ZmBES1/BZR1-3 and ZmBES1/BZR1-9 genes in Arabidopsis decreased drought tolerance, respectively. The transgenic lines showed a more serious wilting phenotype, shorter root length, lower fresh weight, and higher relative electrolyte leakage (REL) and malondialdehyde (MDA) content compared to the control under drought stress. The RNA-sequencing data showed that the 70.67% and 93.27% differentially expressed genes (DEGs) were significantly down-regulated in ZmBES1/BZR1-3 and ZmBES1/BZR1-9 transgenic Arabidopsis, respectively. The DEGs of ZmBES1/BZR1-3 gene’s expressing lines were mainly associated with oxidative stress response and amino acid metabolic process and enriched in phenylpropanoid biosynthesis and protein processing in the endoplasmic reticulum. But the DEGs of the ZmBES1/BZR1-9 gene’s expressing lines were predominantly annotated with water deprivation, extracellular stimuli, and jasmonic acid and enriched in phenylpropanoid biosynthesis and plant hormone signal transduction. Moreover, ZmBES1/BZR1-9 increased stomatal aperture in transgenic Arabidopsis under drought stress. This study indicates that ZmBES1/BZR1-3 and ZmBES1/BZR1-9 negatively regulate drought tolerance via different pathways in transgenic Arabidopsis, and it provides insights into the underlying the function of BES1/BZR1s in crops.
Collapse
|