1
|
Wang C, Wang Y, Wang G, Zhang K, Liu Z, Li X, Xu W, Li Z, Qu S. The calcium-dependent protein kinase CmaCPK4 regulates sex determination in pumpkin (Cucurbita maxima D.). PLANT PHYSIOLOGY 2025; 197:kiae666. [PMID: 39700433 DOI: 10.1093/plphys/kiae666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/16/2024] [Accepted: 09/27/2024] [Indexed: 12/21/2024]
Abstract
Pumpkin (Cucurbita maxima D.) is typically monoecious with individual male and female flowers, and its yield is associated with the degree of femaleness, i.e. the ratio of female to male flowers produced by the plant. Subgynoecy represents a sex form with a high degree of femaleness, but the regulatory mechanisms in pumpkin remain poorly understood. In this study, using the F2 population crossed from the subgynoecious line 2013-12 and the monoecious line 9-6, we initially identified a recessive locus to control the subgynoecious trait and named it sg1. After bulked segregant analysis with whole-genome resequencing and molecular marker linkage analysis, the sg1 locus was mapped to pumpkin Chromosome 2. Genetic sequence analysis found a pumpkin calcium-dependent protein kinase (CPK) gene, CmaCPK4, in the mapping interval as the candidate gene. A retrotransposon insertion identified within the promoter elevated CmaCPK4 expression in 2013-12. Morphological characterization of near-isogenic lines containing the sg1 allele showed increases in the ratio of female flowers and high ethylene contents in terminal buds compared with the receptor parent. Heterologous overexpression of CmaCPK4 significantly increased the ratio of female flowers in cucumber (Cucumis sativus). Furthermore, CmaCPK4 directly interacts with and phosphorylates 1-aminocyclopropane-1-carboxylate synthase 5 (CmaACS5) and 1-aminocyclopropane-1-carboxylate synthase 7 (CmaACS7), resulting in increased ethylene content in 2013-12, which affected pumpkin sex determination. These findings provide insights into the role of the CmaCPK4-CmaACS5/CmaACS7 module in ethylene-induced sex determination in pumpkin.
Collapse
Affiliation(s)
- Chaojie Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Yunli Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Guichao Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Ke Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Zhe Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xiaopeng Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Wenlong Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Zheng Li
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Shuping Qu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
2
|
Monthony AS, de Ronne M, Torkamaneh D. Exploring ethylene-related genes in Cannabis sativa: implications for sexual plasticity. PLANT REPRODUCTION 2024; 37:321-339. [PMID: 38218931 DOI: 10.1007/s00497-023-00492-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/11/2023] [Indexed: 01/15/2024]
Abstract
KEY MESSAGE Presented here are model Yang cycle, ethylene biosynthesis and signaling pathways in Cannabis sativa. C. sativa floral transcriptomes were used to predict putative ethylene-related genes involved in sexual plasticity in the species. Sexual plasticity is a phenomenon, wherein organisms possess the ability to alter their phenotypic sex in response to environmental and physiological stimuli, without modifying their sex chromosomes. Cannabis sativa L., a medically valuable plant species, exhibits sexual plasticity when subjected to specific chemicals that influence ethylene biosynthesis and signaling. Nevertheless, the precise contribution of ethylene-related genes (ERGs) to sexual plasticity in cannabis remains unexplored. The current study employed Arabidopsis thaliana L. as a model organism to conduct gene orthology analysis and reconstruct the Yang Cycle, ethylene biosynthesis, and ethylene signaling pathways in C. sativa. Additionally, two transcriptomic datasets comprising male, female, and chemically induced male flowers were examined to identify expression patterns in ERGs associated with sexual determination and sexual plasticity. These ERGs involved in sexual plasticity were categorized into two distinct expression patterns: floral organ concordant (FOC) and unique (uERG). Furthermore, a third expression pattern, termed karyotype concordant (KC) expression, was proposed, which plays a role in sex determination. The study revealed that CsERGs associated with sexual plasticity are dispersed throughout the genome and are not limited to the sex chromosomes, indicating a widespread regulation of sexual plasticity in C. sativa.
Collapse
Affiliation(s)
- Adrian S Monthony
- Département de Phytologie, Université Laval, Québec City, Québec, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Québec, Canada
- Centre de Recherche et d'innovation sur les végétaux (CRIV), Université Laval, Québec City, Québec, Canada
- Institut intelligence et données (IID), Université Laval, Québec City, Québec, Canada
| | - Maxime de Ronne
- Département de Phytologie, Université Laval, Québec City, Québec, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Québec, Canada
- Centre de Recherche et d'innovation sur les végétaux (CRIV), Université Laval, Québec City, Québec, Canada
- Institut intelligence et données (IID), Université Laval, Québec City, Québec, Canada
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec City, Québec, Canada.
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, Québec, Canada.
- Centre de Recherche et d'innovation sur les végétaux (CRIV), Université Laval, Québec City, Québec, Canada.
- Institut intelligence et données (IID), Université Laval, Québec City, Québec, Canada.
| |
Collapse
|
3
|
Gautam K, Segura M, Alonso S, Pasadas R, García-Mina JM, Zamarreño AM, Martínez C, Jamilena M. Jasmonate-insensitive mutant jar1b prevents petal elongation and flower opening coupling with parthenocarpic fruit development in Cucurbita pepo. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108923. [PMID: 39002308 DOI: 10.1016/j.plaphy.2024.108923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
Jasmonates are growth regulators that play a key role in flower development, fruit ripening, root growth, and plant defence. The study explores the coordination of floral organ maturation to ensure proper flower opening for pollination and fertilization. A new mutant (jar1b) was discovered, lacking petal elongation and flower opening but showing normal pistil and stamen development, leading to parthenocarpic fruit development. The mutation also enhanced the elongation of roots while reducing the formation of root hairs. BSA sequencing showed that jar1b is a missense mutation in the gene CpJAR1B, which encodes the enzyme that catalyzes the conjugation between JA and the amino acid isoleucine. The loss of function mutation in CpJAR1B produced a deficiency in biologically active (+) -7-iso-jasmonoyl-L-isoleucine (JA-Ile), which was not complemented by the paralogous gene CpJAR1A or any other redundant gene. Exogenous application of methyl jasmonate (MeJA) demonstrated that jar1b is partially insensitive to JA in both flowers and roots. Further experimentation involving the combination of JA-Ile deficient and ethylene-deficient, and ET insensitive mutations in double mutants revealed that CpJAR1B mediated ET action in female petal maturation and flower opening, but JA and ET have independent additive effects as negative regulators of the set and development of squash fruits. CpJAR1B also regulated the aperture of male flowers in an ethylene-independent manner. The root phenotype of jar1b and effects of external MeJA treatments indicated that CpJAR1B has a dual role in root development, inhibiting the elongation of primary and secondary roots, but promoting the formation of root hairs.
Collapse
Affiliation(s)
- Keshav Gautam
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120, Almería, Spain
| | - María Segura
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120, Almería, Spain
| | - Sonsoles Alonso
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120, Almería, Spain
| | - Raúl Pasadas
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120, Almería, Spain
| | - José M García-Mina
- Universidad de Navarra, Facultad de Ciencias, Departamento de Biología Ambiental, Grupo Química y Biología Agrícola, Irunlarrea 1, 31008, Pamplona, Spain
| | - Angel M Zamarreño
- Universidad de Navarra, Facultad de Ciencias, Departamento de Biología Ambiental, Grupo Química y Biología Agrícola, Irunlarrea 1, 31008, Pamplona, Spain
| | - Cecilia Martínez
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120, Almería, Spain.
| | - Manuel Jamilena
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120, Almería, Spain.
| |
Collapse
|
4
|
Alonso S, Gautam K, Iglesias-Moya J, Martínez C, Jamilena M. Crosstalk between Ethylene, Jasmonate and ABA in Response to Salt Stress during Germination and Early Plant Growth in Cucurbita pepo. Int J Mol Sci 2024; 25:8728. [PMID: 39201415 PMCID: PMC11354493 DOI: 10.3390/ijms25168728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
The crosstalk of phytohormones in the regulation of growth and development and the response of plants to environmental stresses is a cutting-edge research topic, especially in crop species. In this paper, we study the role and crosstalk between abscisic acid (ABA), ethylene (ET), and jasmonate (JA) in the control of germination and seedling growth in water or in standard nutrient solution and under salt stress (supplemented with 100-200 mM NaCl). The roles of ET and JA were studied using squash ET- and JA-deficient mutants aco1a and lox3a, respectively, while the crosstalk between ET, JA, and ABA was determined by comparing the expression of the key ABA, JA, and ET genes in wild-type (WT) and mutant genotypes under standard conditions and salt stress. Data showed that ET and JA are positive regulators of squash germination, a function that was found to be mediated by downregulating the ABA biosynthesis and signaling pathways. Under salt stress, aco1a germinated earlier than WT, while lox3a showed the same germination rate as WT, indicating that ET, but not JA, restricts squash germination under unfavorable salinity conditions, a function that was also mediated by upregulation of ABA. ET and JA were found to be negative regulators of plant growth during seedling establishment, although ET inhibits both the aerial part and the root, while JA inhibits only the root. Both aco1a and lox3a mutant roots showed increased tolerance to salt stress, a phenotype that was found to be mainly mediated by JA, although we cannot exclude that it is also mediated by ABA.
Collapse
Affiliation(s)
| | | | | | - Cecilia Martínez
- Department of Biology and Geology, Agri-Food Campus of International Excellence (CeiA3) and Research Center CIAMBITAL, University of Almería, 04120 Almería, Spain; (S.A.); (K.G.); (J.I.-M.)
| | - Manuel Jamilena
- Department of Biology and Geology, Agri-Food Campus of International Excellence (CeiA3) and Research Center CIAMBITAL, University of Almería, 04120 Almería, Spain; (S.A.); (K.G.); (J.I.-M.)
| |
Collapse
|
5
|
Segura M, García A, Gamarra G, Benítez Á, Iglesias-Moya J, Martínez C, Jamilena M. The transcription factor CpMYB62 controls the genetic network that leads to the determination of female flowers in Cucurbita pepo. HORTICULTURE RESEARCH 2024; 11:uhae115. [PMID: 38919554 PMCID: PMC11197297 DOI: 10.1093/hr/uhae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/09/2024] [Indexed: 06/27/2024]
Abstract
In monoecious species, female flowering constitutes the developmental process that determines the onset and production of fruit and is therefore closely related to crop yield. This article presents the identification and phenotypic and molecular characterization of myb62, an ethylmethane sulfonate loss-of-function mutation that completely blocks the female floral transition, converting all female flowers into male flowers. BSA-seq analysis coupled with WGS showed that myb62 corresponds to a C>T transition in the coding region of the gene CpMYB62, generating a premature stop codon and a truncated transcription factor without its N-terminal effector domain. The myb62 phenotype was partially rescued by exogenous ethylene application, indicating that the function of CpMYB62 is mediated by ethylene. Different evidence supports this conclusion: first, the reduced ethylene production of the mutant, and second, the male flower productive phenotype of the double mutant between myb62 and the ethylene-insensitive mutant etr2b, which demonstrated that myb62 is epistatic over etr2b. Furthermore, transcriptomic analysis of WT and myb62 apical shoots confirmed that CpMYB62 regulates master sex-determining genes, upregulating those encoding the ethylene biosynthesis enzymes CpACO2B and CpACS27A and those encoding for transcription factors that promote the development of carpels(CpCRC), but downregulating those involved in the arrest of carpels (CpWIP1), In the gene network controlling sex determination in cucurbits, CpMYB62 occupies the most upstream position, activating ethylene and other sex determining genes involved in female flower determination in Cucurbita pepo.
Collapse
Affiliation(s)
- María Segura
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - Alicia García
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - German Gamarra
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - Álvaro Benítez
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - Jessica Iglesias-Moya
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - Cecilia Martínez
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - Manuel Jamilena
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120 Almería, Spain
| |
Collapse
|
6
|
Segura M, García A, Gamarra G, Benítez Á, Iglesias-Moya J, Martínez C, Jamilena M. An miR164-resistant mutation in the transcription factor gene CpCUC2B enhances carpel arrest and ectopic boundary specification in Cucurbita pepo flower development. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1948-1966. [PMID: 38066672 PMCID: PMC10967242 DOI: 10.1093/jxb/erad486] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/08/2023] [Indexed: 03/28/2024]
Abstract
The sex determination process in cucurbits involves the control of stamen or carpel development during the specification of male or female flowers from a bisexual floral meristem, a function coordinated by ethylene. A gain-of-function mutation in the miR164-binding site of CpCUC2B, ortholog of the Arabidopsis transcription factor gene CUC2, not only produced ectopic floral meristems and organs, but also suppressed the development of carpels and promoted the development of stamens. The cuc2b mutation induced the transcription of CpCUC2B in the apical shoots of plants after female flowering but repressed other CUC genes regulated by miR164, suggesting a conserved functional redundancy of these genes in the development of squash flowers. The synergistic androecious phenotype of the double mutant between cuc2b and etr2b, an ethylene-insensitive mutation that enhances the production of male flowers, demonstrated that CpCUC2B arrests the development of carpels independently of ethylene and CpWIP1B. The transcriptional regulation of CpCUC1, CpCUC2, and ethylene genes in cuc2b and ethylene mutants also confirms this conclusion. However, the epistasis of cuc2b over aco1a, a mutation that suppresses stamen arrest in female flowers, and the down-regulation of CpACS27A in cuc2b female apical shoots, indicated that CpCUC2B promotes stamen development by suppressing the late ethylene production.
Collapse
Affiliation(s)
- María Segura
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - Alicia García
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - Germán Gamarra
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - Álvaro Benítez
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - Jessica Iglesias-Moya
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - Cecilia Martínez
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - Manuel Jamilena
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120 Almería, Spain
| |
Collapse
|
7
|
Xue S, Huang H, Xu Y, Liu L, Meng Q, Zhu J, Zhou M, Du H, Yao C, Jin Q, Nie C, Zhong Y. Transcriptomic analysis reveals the molecular basis of photoperiod-regulated sex differentiation in tropical pumpkins (Cucurbita moschata Duch.). BMC PLANT BIOLOGY 2024; 24:90. [PMID: 38317069 PMCID: PMC10845594 DOI: 10.1186/s12870-024-04777-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Photoperiod, or the length of the day, has a significant impact on the flowering and sex differentiation of photoperiod-sensitive crops. The "miben" pumpkin (the main type of Cucurbita moschata Duch.) is well-known for its high yield and strong disease resistance. However, its cultivation has been limited due to its sensitivity to photoperiod. This sensitivity imposes challenges on its widespread cultivation and may result in suboptimal yields in regions with specific daylength conditions. As a consequence, efforts are being made to explore potential strategies or breeding techniques to enhance its adaptability to a broader range of photoperiods, thus unlocking its full cultivation potential and further promoting its valuable traits in agriculture. RESULTS This study aimed to identify photoperiod-insensitive germplasm exhibiting no difference in sex differentiation under different day-length conditions. The investigation involved a phenotypic analysis of photoperiod-sensitive (PPS) and photoperiod-insensitive (PPIS) pumpkin materials exposed to different day lengths, including long days (LDs) and short days (SDs). The results revealed that female flower differentiation was significantly inhibited in PPS_LD, while no differences were observed in the other three groups (PPS_SD, PPIS_LD, and PPIS_SD). Transcriptome analysis was carried out for these four groups to explore the main-effect genes of sex differentiation responsive to photoperiod. The main-effect gene subclusters were identified based on the principal component and hierarchical cluster analyses. Further, functional annotations and enrichment analysis revealed significant upregulation of photoreceptors (CmCRY1, F-box/kelch-repeat protein), circadian rhythm-related genes (CmGI, CmPRR9, etc.), and CONSTANS (CO) in PPS_LD. Conversely, a significant downregulation was observed in most Nuclear Factor Y (NF-Y) transcription factors. Regarding the gibberellic acid (GA) signal transduction pathway, positive regulators of GA signaling (CmSCL3, CmSCL13, and so forth) displayed higher expression levels, while the negative regulators of GA signaling, CmGAI, exhibited lower expression levels in PPS_LD. Notably, this effect was not observed in the synthetic pathway genes. Furthermore, genes associated with ethylene synthesis and signal transduction (CmACO3, CmACO1, CmERF118, CmERF118-like1,2, CmWIN1-like, and CmRAP2-7-like) showed significant downregulation. CONCLUSIONS This study offered a crucial theoretical and genetic basis for understanding how photoperiod influences the mechanism of female flower differentiation in pumpkins.
Collapse
Affiliation(s)
- Shudan Xue
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P. R. China
| | - Hexun Huang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P. R. China
| | - Yingchao Xu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P. R. China
| | - Ling Liu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P. R. China
| | - Qitao Meng
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P. R. China
- Department of Horticulture, College of Food Science and Engineering, Foshan University, Foshan, 528000, P. R. China
| | - Jitong Zhu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P. R. China
| | - Meijiang Zhou
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P. R. China
| | - Hu Du
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P. R. China
| | - Chunpeng Yao
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P. R. China
| | - Qingmin Jin
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P. R. China
| | - Chengrong Nie
- Department of Horticulture, College of Food Science and Engineering, Foshan University, Foshan, 528000, P. R. China
| | - Yujuan Zhong
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, P. R. China.
| |
Collapse
|
8
|
Segura M, García A, Benítez Á, Martínez C, Jamilena M. Comparative RNA-Seq Analysis between Monoecious and Androecious Plants Reveals Regulatory Mechanisms Controlling Female Flowering in Cucurbita pepo. Int J Mol Sci 2023; 24:17195. [PMID: 38139023 PMCID: PMC10743737 DOI: 10.3390/ijms242417195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
In the monoecious Cucurbita pepo, the transition to female flowering is the time at which the plant starts the production of female flowers after an initial male phase of development. Ethylene plays an essential role in this process since some ethylene deficient and ethylene-insensitive mutants are androecious and only produce male flowers. To gain insight into the molecular mechanisms regulating the specification and early development of female flowers, we have compared the transcriptomic changes occurring in the shoot apices of WT and androecious ethylene-insensitive etr1b mutant plants upon female flowering transition. There were 1160 female flowering-specific DEGs identified in WT plants upon female flowering, and 284 of them were found to be modulated by the ethylene-insensitive etr1b mutation. The function of these DEGs indicated that female flower specification depends on the adoption of a transcriptional program that includes previously identified sex-determining genes in the ethylene pathway, but also genes controlling the biosynthesis and signaling pathways of other phytohormones, and those encoding for many different transcription factors. The transcriptomic changes suggested that gibberellins play a negative role in female flowering, while ethylene, auxins, ABA and cytokinins are positive regulators. Transcription factors from 34 families, including NAC, ERF, bHLH, bZIP, MYB and C2H2/CH3, were found to be regulating female flowering in an ethylene-dependent or -independent manner. Our data open a new perspective of the molecular mechanisms that control the specification and development of female flowers in C. pepo.
Collapse
Affiliation(s)
| | | | | | - Cecilia Martínez
- Department of Biology and Geology, Agri-Food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120 Almería, Spain; (M.S.); (A.G.); (Á.B.)
| | - Manuel Jamilena
- Department of Biology and Geology, Agri-Food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120 Almería, Spain; (M.S.); (A.G.); (Á.B.)
| |
Collapse
|
9
|
Rashid D, Devani RS, Rodriguez-Granados NY, Abou-Choucha F, Troadec C, Morin H, Tan FQ, Marcel F, Huang HY, Hanique M, Zhang S, Verdenaud M, Pichot C, Rittener V, Huang Y, Benhamed M, Dogimont C, Boualem A, Bendahmane A. Ethylene produced in carpel primordia controls CmHB40 expression to inhibit stamen development. NATURE PLANTS 2023; 9:1675-1687. [PMID: 37653338 DOI: 10.1038/s41477-023-01511-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023]
Abstract
Sex determination evolved to control the development of unisexual flowers. In agriculture, it conditions how plants are cultivated and bred. We investigated how female flowers develop in monoecious cucurbits. We discovered in melon, Cucumis melo, a mechanism in which ethylene produced in the carpel is perceived in the stamen primordia through spatially differentially expressed ethylene receptors. Subsequently, the CmEIN3/CmEIL1 ethylene signalling module, in stamen primordia, activates the expression of CmHB40, a transcription factor that downregulates genes required for stamen development and upregulates genes associated with organ senescence. Investigation of melon genetic biodiversity revealed a haplotype, originating in Africa, altered in EIN3/EIL1 binding to CmHB40 promoter and associated with bisexual flower development. In contrast to other bisexual mutants in cucurbits, CmHB40 mutations do not alter fruit shape. By disentangling fruit shape and sex-determination pathways, our work opens up new avenues in plant breeding.
Collapse
Affiliation(s)
- Dali Rashid
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Ravi Sureshbhai Devani
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Natalia Yaneth Rodriguez-Granados
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Fadi Abou-Choucha
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Christelle Troadec
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Halima Morin
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Feng-Quan Tan
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Fabien Marcel
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Hsin-Ya Huang
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Melissa Hanique
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Siqi Zhang
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Marion Verdenaud
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Clement Pichot
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Vincent Rittener
- Génétique et Amélioration des Fruits et Légumes (GAFL), INRAE, Montfavet, France
| | - Ying Huang
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Moussa Benhamed
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France
| | - Catherine Dogimont
- Génétique et Amélioration des Fruits et Légumes (GAFL), INRAE, Montfavet, France
| | - Adnane Boualem
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France.
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France.
| | - Abdelhafid Bendahmane
- Université Paris-Saclay, CNRS, INRAE, Université d'Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France.
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette, France.
| |
Collapse
|
10
|
Luo H, Zhang H, Wang H. Advance in sex differentiation in cucumber. FRONTIERS IN PLANT SCIENCE 2023; 14:1186904. [PMID: 37265638 PMCID: PMC10231686 DOI: 10.3389/fpls.2023.1186904] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/20/2023] [Indexed: 06/03/2023]
Abstract
Cucumber belongs to the family Cucurbitaceae (melon genus) and is an annual herbaceous vegetable crop. Cucumber is an important cash crop that is grown all over the world. From morphology to cytology, from canonical genetics to molecular biology, researchers have performed much research on sex differentiation and its regulatory mechanism in cucumber, mainly in terms of cucumber sex determination genes, environmental conditions, and the effects of plant hormones, revealing its genetic basis to improve the number of female flowers in cucumber, thus greatly improving the yield of cucumber. This paper reviews the research progress of sex differentiation in cucumber in recent years, mainly focusing on sex-determining genes, environmental conditions, and the influence of phytohormones in cucumber, and provides a theoretical basis and technical support for the realization of high and stable yield cultivation and molecular breeding of cucumber crop traits.
Collapse
Affiliation(s)
- Haiyan Luo
- Key Laboratory for Quality and Safety Control of Subtropical Fruits and Vegetables, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Hangzhou Lin’an District Agricultural and Rural Bureau, Hangzhou, China
| | - Huanchun Zhang
- Yantai Institute of Agricultural Sciences, Yantai, China
| | - Huasen Wang
- Key Laboratory for Quality and Safety Control of Subtropical Fruits and Vegetables, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|