1
|
Ren C, Aini N, Kuang Y, Lin Y, Liang Z. Sensing, Adapting and Thriving: How Fruit Crops Combat Abiotic Stresses. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40205704 DOI: 10.1111/pce.15504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 04/11/2025]
Abstract
Production of high-yield and high-quality fruits is always the long-term objective of fruit crop cultivation, which, however, is challenged by various abiotic stresses such as drought, extreme temperatures and high salinity, and the adverse impacts of abiotic stresses on fruit crops are exacerbated by climate change in recent years. To cope with these environmental stressors, fruit crops have evolved adaptative strategies involving physiological changes and molecular regulation. In this review, we summarise the relevent changes in photosynthesis, osmotic and reactive oxygen species (ROS) equilibrium, metabolism and protein homeostasis in response to abiotic stresses. Moreover, perception of environmental stimuli as well as recent progress of underlying regulatory mechanisms is also discussed. Based on our current knowledge, possible strategies for stress resilience improvement in fruit crops are accordingly proposed. In addition, we also discuss the challenges in identification of key nodes in plant responses to multiple stresses and development of stress-resilient fruit crops, and addressing these issues in the future would advance our understanding of how fruit crops combat abiotic stresses and facilitate the breeding of superior fruit crops that can adapt to and thrive in the changing environments.
Collapse
Affiliation(s)
- Chong Ren
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Nuremanguli Aini
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yangfu Kuang
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanping Lin
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenchang Liang
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Malińska K, Dróżdż D, Postawa P, Stachowiak T. Biochar-A Filler in "Bioplastics" for Horticultural Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:6208. [PMID: 39769808 PMCID: PMC11676673 DOI: 10.3390/ma17246208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/12/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025]
Abstract
Biochar is attracting a lot of attention as it is considered a novel, renewable, and bio-based filler that can be used specifically for developing and manufacturing "bioplastics" for growing plants such as mulch films and plant accessories. The manufacturing of "bioplastics" uses biopolymers but also various additives such as fillers, which are primarily used to replace some of the expensive biopolymers in a biocomposite composition and/or to improve the mechanical properties of the final products. This review aims to demonstrate the applications of biochar as a filler in bioplastics, specifically for horticultural uses; summarize the most recent findings; and discuss future research directions. With this review, we address some of the most important issues related to the requirements for biochar as a filler for bio-based and biodegradable plastics, the effect of biochar properties and loading rates on the properties of biocomposites, and the suitability of biochar for manufacturing of "bioplastics" for horticultural use. We also discuss the advantages as well as challenges and limitations to the use of biochar for manufacturing bio-based and biodegradable plastics for horticultural uses.
Collapse
Affiliation(s)
- Krystyna Malińska
- Faculty of Infrastructure and Environment, Czestochowa University of Technology, ul. Dabrowskiego 73, 42-201 Czestochowa, Poland;
| | - Danuta Dróżdż
- Faculty of Infrastructure and Environment, Czestochowa University of Technology, ul. Dabrowskiego 73, 42-201 Czestochowa, Poland;
| | - Przemysław Postawa
- Faculty of Mechanical Engineering, Czestochowa University of Technology, Al. Armii Krajowej 21, 42-201 Czestochowa, Poland; (P.P.); (T.S.)
| | - Tomasz Stachowiak
- Faculty of Mechanical Engineering, Czestochowa University of Technology, Al. Armii Krajowej 21, 42-201 Czestochowa, Poland; (P.P.); (T.S.)
| |
Collapse
|
3
|
Terán F, Vives-Peris V, Gómez-Cadenas A, Pérez-Clemente RM. Facing climate change: plant stress mitigation strategies in agriculture. PHYSIOLOGIA PLANTARUM 2024; 176:e14484. [PMID: 39157905 DOI: 10.1111/ppl.14484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/01/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024]
Abstract
Climate change poses significant challenges to global agriculture, with rising temperatures, altered precipitation patterns, and increased frequency of extreme weather events threatening crop yields. These changes exceed the adaptability thresholds of many crops, decreasing their yield and threatening food security. At plant physiological levels, climate change-induced stressors disrupt photosynthesis, growth, and reproductive processes, contributing to a reduced productivity. Furthermore, the negative impacts of climate change on agriculture are exacerbated by anthropogenic factors, with agriculture itself contributing significantly to greenhouse gas emissions. To mitigate these challenges, various approaches have been explored. This work reviews the most important physical, chemical, and biological strategies most commonly used in a broad range of agricultural crops. Among physical strategies, increasing water use efficiency without yield reduction through different irrigation strategies, and the use of foliar treatments with reflective properties to mitigate the negative effects of different stresses have been proven to be effective. Concerning chemical approaches, the exogenous treatment of plants with chemicals induces existing molecular and physiological plant defense mechanisms, enhancing abiotic stress tolerance. Regarding biological treatments, plant inoculation with mycorrhiza and plant growth-promoting rhizobacteria (PGPR) can improve enzymatic antioxidant capacity and mineral solubilization, favoring root and plant growth and enhance plant performance under stressful conditions. While these strategies provide valuable short- to medium-term solutions, there is a pressing need for new biotechnological approaches aimed at developing genotypes resistant to stressful conditions. Collaborative efforts among researchers, policymakers, and agricultural stakeholders are essential to ensure global food security in the face of ongoing climate challenges.
Collapse
Affiliation(s)
- Fátima Terán
- Ecophysiology and Biotechnology, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Vicente Vives-Peris
- Ecophysiology and Biotechnology, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Aurelio Gómez-Cadenas
- Ecophysiology and Biotechnology, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Rosa M Pérez-Clemente
- Ecophysiology and Biotechnology, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| |
Collapse
|
4
|
Liu X, Liu W, Su Z, Lu J, Zhang P, Cai M, Li W, Liu F, Andersen MN, Manevski K. Biochar addition and reduced irrigation modulates leaf morpho-physiology and biological nitrogen fixation in faba bean-ryegrass intercropping. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171731. [PMID: 38492602 DOI: 10.1016/j.scitotenv.2024.171731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/18/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Intercropping legume with grass has potential to increase biomass and protein yield via biological N2-fixation (BNF) benefits, whereas the joint effects of biochar (BC) coupled with deficit irrigation on intercropping systems remain elusive. A 15N isotope-labelled experiment was implemented to investigate morpho-physiological responses of faba bean-ryegrass intercrops on low- (550 °C, LTBC) or high-temperature BC (800 °C, HTBC) amended sandy-loam soil under full (FI), deficit (DI) and partial root-zone drying irrigation (PRD). LTBC and HTBC significantly reduced intrinsic water-use efficiency (WUE) by 12 and 14 %, and instantaneous WUE by 8 and 16 %, respectively, in faba bean leaves, despite improved photosynthetic (An) and transpiration rate (Tr), and stomatal conductance (gs). Compared to FI, DI and PRD lowered faba bean An, gs and Tr, but enhanced leaf-scale and time-integrated WUE as proxied by the diminished shoots Δ13C. PRD enhanced WUE as lower gs, Tr and guard cell length than DI-plants. Despite higher carbon ([C]) and N concentration ([N]) in faba bean shoots amended by BC, the aboveground C- and N-pool of faba bean were reduced, while these pools increased for ryegrass. The N-use efficiency (NUE) in faba bean shoots was reduced by 9 and 14 % for LTBC and HTBC, respectively, but not for ryegrass. Interestingly, ryegrass shoots had 52 % higher NUE than faba bean shoots. The N derived from atmosphere (% Ndfa) was increased by 2 and 9 % under LTBC and HTBC, respectively, while it decreased slightly by reduced irrigation. Quantity of BNF in faba bean aboveground biomass decreased with HTBC coupled with reduced irrigation, mainly towards decreased biomass and soil N uptake by faba bean. Therefore, HTBC might not be a feasible option to improve WUE and BNF in faba bean-ryegrass intercropping, but PRD is permissible as the clear trade-off between BC and PRD.
Collapse
Affiliation(s)
- Xuezhi Liu
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China; Engineering Technology Research Center of Water-Saving and Water Resource Regulation in Ningxia, Yinchuan 750021, China; Ningxia Waler-saving Irrigation and Water Resource Control Engineering Technology Research Center, Yinchuan, Ningxia 750021, China.
| | - Weilun Liu
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China
| | - Zhenjuan Su
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China.
| | - Junsheng Lu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Peng Zhang
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China
| | - Mengting Cai
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China
| | - Wangcheng Li
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China; Engineering Technology Research Center of Water-Saving and Water Resource Regulation in Ningxia, Yinchuan 750021, China; Ningxia Waler-saving Irrigation and Water Resource Control Engineering Technology Research Center, Yinchuan, Ningxia 750021, China
| | - Fulai Liu
- Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Højbakkegaard Alle 13, 2630 Taastrup, Denmark; Sino-Danish Center for Education and Research, Eastern Yanqihu campus, University of Chinese Academy of Sciences, 380 Huaibeizhuang, 101400 Beijing, China
| | - Mathias Neumann Andersen
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark; Sino-Danish Center for Education and Research, Eastern Yanqihu campus, University of Chinese Academy of Sciences, 380 Huaibeizhuang, 101400 Beijing, China
| | - Kiril Manevski
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830 Tjele, Denmark; Sino-Danish Center for Education and Research, Eastern Yanqihu campus, University of Chinese Academy of Sciences, 380 Huaibeizhuang, 101400 Beijing, China.
| |
Collapse
|
5
|
Alixandre RD, Lima PAM, Almeida TFR, Oliveira JS, Pereira MB, Alixandre FT, Jacomino GRL, Dias RS, Alexandre RS, Ferreira A, Passos RR, Lopes JC. Potential of coffee straw biochal as a substrate conditioner in seed lettuce and sorghum germination and vigority. BRAZ J BIOL 2024; 83:e277437. [PMID: 38422256 DOI: 10.1590/1519-6984.277437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/17/2023] [Indexed: 03/02/2024] Open
Abstract
The use of residues from coffee production to obtain biochar is a sustainable approach, which aims to minimize the environmental impact of these materials. In this study, the effect of adding coffee straw biochar on the physiological quality of lettuce and sorghum seeds was investigated. Thus, the objective of this work was to study the effect of adding different concentrations of coffee biochar in the substrate composition on the physiological quality of lettuce (Lactuca sativa) and sorghum (Sorghum bicolor) seeds. The experimental design used was completely randomized, with five concentrations of biochar (0; 7.5; 15; 30 and 60%), conducted with four replications of 25 seeds. The use of biochar in the concentrations studied does not provide an increase in the average germination percentage and vigor of lettuce and sorghum seeds. The increase in the concentration of biochar caused less seed vigor, suggesting a toxic effect. For seed germination, there was no significant difference between lettuce and sorghum species, regardless of treatment. For the germination speed index, sorghum seeds have higher means, except for the treatment with the addition of 15% coffee straw biochar. Lettuce seeds have higher shoot length averages, except for treatment with 100% commercial substrate. The sorghum seeds have higher mean root length and dry mass than lettuce, regardless of the treatment.
Collapse
Affiliation(s)
- R D Alixandre
- Universidade Federal do Espírito Santo - UFES, Programa de Pós-graduação em Agronomia, Alegre, ES, Brasil
| | - P A M Lima
- Universidade Federal do Espírito Santo - UFES, Programa de Pós-graduação em Agronomia, Alegre, ES, Brasil
| | - T F R Almeida
- Universidade Federal do Espírito Santo - UFES, Programa de Pós-graduação em Agronomia, Alegre, ES, Brasil
| | - J S Oliveira
- Universidade Federal do Espírito Santo - UFES, Programa de Pós-graduação em Genética e Melhoramento, Alegre, ES, Brasil
| | - M B Pereira
- Universidade Federal do Espírito Santo - UFES, Programa de Pós-graduação em Agronomia, Alegre, ES, Brasil
| | - F T Alixandre
- Universidade Federal do Espírito Santo - UFES, Programa de Pós-graduação em Genética e Melhoramento, Alegre, ES, Brasil
| | - G R L Jacomino
- Universidade Federal do Espírito Santo - UFES, Programa de Pós-graduação em Genética e Melhoramento, Alegre, ES, Brasil
| | - R S Dias
- Universidade Federal do Espírito Santo - UFES, Programa de Pós-graduação em Genética e Melhoramento, Alegre, ES, Brasil
| | - R S Alexandre
- Universidade Federal do Espírito Santo - UFES, Programa de Pós-graduação em Genética e Melhoramento, Alegre, ES, Brasil
| | - A Ferreira
- Universidade Federal do Espírito Santo - UFES, Programa de Pós-graduação em Agronomia, Alegre, ES, Brasil
| | - R R Passos
- Universidade Federal do Espírito Santo - UFES, Programa de Pós-graduação em Agronomia, Alegre, ES, Brasil
| | - J C Lopes
- Universidade Federal do Espírito Santo - UFES, Programa de Pós-graduação em Agronomia, Alegre, ES, Brasil
| |
Collapse
|
6
|
Adhikari A, Aneefi AG, Sisuvanh H, Singkham S, Pius MV, Akter F, Kwon EH, Kang SM, Woo YJ, Yun BW, Lee IJ. Dynamics of Humic Acid, Silicon, and Biochar under Heavy Metal, Drought, and Salinity with Special Reference to Phytohormones, Antioxidants, and Melatonin Synthesis in Rice. Int J Mol Sci 2023; 24:17369. [PMID: 38139197 PMCID: PMC10743973 DOI: 10.3390/ijms242417369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
This study aimed to develop a biostimulant formulation using humic acid (HA), silicon, and biochar alone or in combination to alleviate the lethality induced by combined heavy metals (HM-C; As, Cd, and Pb), drought stress (DS; 30-40% soil moisture), and salt stress (SS; 150 mM NaCl) in rice. The results showed that HA, Si, and biochar application alone or in combination improved plant growth under normal, DS, and SS conditions significantly. However, HA increased the lethality of rice by increasing the As, Cd, and Pb uptake significantly, thereby elevating lipid peroxidation. Co-application reduced abscisic acid, elevated salicylic acid, and optimized the Ca2+ and Si uptake. This subsequently elevated the K+/Na+ influx and efflux by regulating the metal ion regulators (Si: Lsi1 and Lsi2; K+/Na+: OsNHX1) and increased the expressions of the stress-response genes OsMTP1 and OsNramp in the rice shoots. Melatonin synthesis was significantly elevated by HM-C (130%), which was reduced by 50% with the HA + Si + biochar treatment. However, in the SS- and DS-induced crops, the melatonin content showed only minor differences. These findings suggest that the biostimulant formulation could be used to mitigate SS and DS, and precautions should be taken when using HA for heavy metal detoxification.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (A.A.); (A.G.A.); (H.S.); (S.S.); (M.V.P.); (F.A.); (E.-H.K.); (S.-M.K.); (Y.-J.W.); (B.-W.Y.)
| |
Collapse
|