1
|
Liu Y, Lou J, Liu G, Li Q, Cao Z, Wu P, Mashu H, Liu Z, Deng J, Yang Z, Guo J, Tang N, Chen Z. A R2R3-MYB transcription factor LmMYB111 positively regulates chlorogenic acid and luteoloside biosynthesis in Lonicera macranthoides. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 358:112556. [PMID: 40373830 DOI: 10.1016/j.plantsci.2025.112556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/10/2025] [Accepted: 05/08/2025] [Indexed: 05/17/2025]
Abstract
Lonicera macranthoides is a vital medicinal herb frequently used in Chinese traditional medicine. Chlorogenic acid (CGA) and luteoloside are the most crucial bioactive pharmaceutical ingredients in L. macranthoides. Although CGA and luteoloside biosynthetic pathway and structural genes appeared to be extensively elucidated, the transcriptional regulation has yet to be unveiled. Here, integration of transcriptome and metabolome revealed a R2R3-MYB transcription factor LmMYB111 positively correlated with CGA concentration, which shares close homology with AtMYB111 and acts as a transcriptional activator. Overexpressing LmMYB111 in tobacco and Lonicera resulted in enhanced production of CGA and luteoloside. RNA-Seq demonstrated that overexpression of LmMYB111 dramatically upregulated CGA and luteoloside biosynthetic genes, including 10 PALs, 3 C4Hs, 7 4CLs, 4 HCT/HQTs, 3 CHSs and 5 CHIs. DNA Affinity Purification sequencing (DAP-Seq) revealed the binding motifs of LmMYB111 and 1135 downstream targets, including structural genes e.g. PAL1/PAL4s, C4H, 4CL2, CHI, and DFR as well as several transcription factors (TFs), e.g. MYB3/MYB4, bHLH62/TT8, BEL1, SCL15/SCL32 and ERF3.The electrophoretic mobility shift assay (EMSA) together with dual-luciferase reporter system (DLR) further proved that LmMYB111 bound to and activated proLmMYB4, proLmPAL1, proLm4CL2, proLmCHI and proLmDFR, therefore facilitating hyperaccumulation of CGA, luteoloside and other phenolics. These findings shed light on the participation of LmMYB111 in CGA and luteoloside biosynthetic regulatory networks in L. macranthoides mediated by controlling the expression of structural genes and TFs, which will contribute to elevate phenolics production by genetic engineering.
Collapse
Affiliation(s)
- Yanni Liu
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Juan Lou
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Guohua Liu
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Qingqing Li
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China; College of Biology and Food Engineering, Chongqing Three Georges University, Chongqing 404100, China.
| | - Zhengyan Cao
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Peiyin Wu
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Haoyang Mashu
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Zhilin Liu
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Jia Deng
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Ziling Yang
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Jiang Guo
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| | - Ning Tang
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China; Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, Chongqing 400000, China.
| | - Zexiong Chen
- College of Smart Agriculture, Chongqing University of Arts and Sciences, Chongqing, 402160, China; Chongqing Key Laboratory for Germplasm Innovation of Special Aromatic Spice Plants, Chongqing 400000, China.
| |
Collapse
|
2
|
Cheng J, Chen Y, Guo F, Dong P, Zhou C, Liang W, Wang H. Regulatory mechanisms and biosynthesis of chlorogenic acid in Lonicera japonica: insights from tissue culture and inducer treatments. FRONTIERS IN PLANT SCIENCE 2025; 16:1567140. [PMID: 40343127 PMCID: PMC12058685 DOI: 10.3389/fpls.2025.1567140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/25/2025] [Indexed: 05/11/2025]
Abstract
Plant tissue culture is a fundamental and widely applied technique in plant biology and agriculture. In medicinal plant research, tissue culture plays an indispensable role in the conservation of endangered species, the rapid propagation of valuable resources, the preservation of germplasm, and the production of secondary metabolites. As a representative medicinal plant of the Lonicera genus, L. japonica is widely utilized worldwide due to its significant economic, ecological, medicinal, and ornamental value. By using tissue culture technology, it is possible to significantly enhance the production of secondary metabolites in L. japonica and effectively alleviate resource shortages, providing a new approach for its sustainable utilization. This review summarizes the recent research progress on L. japonica in the field of tissue culture, covering aspects such as direct organogenesis, indirect organogenesis through callus tissues, protoplast culture, hairy root culture, and polyploid culture. Additionally, the biosynthetic pathway of chlorogenic acid was explored in detail, and the mechanism of action of inducers in plant cells was analyzed. The study focused on the potential regulatory mechanisms of inducers on chlorogenic acid. Eventually, the future development trends of medicinal plant biotechnology are envisioned, aiming to provide a broader perspective for the in-depth study of medicinal plants and to promote continuous development and innovation in this field.
Collapse
Affiliation(s)
- Jiali Cheng
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Yuan Chen
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Fengxia Guo
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Pengbin Dong
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Chunyan Zhou
- College of Economics and Management, Hexi University, Zhangye, China
| | - Wei Liang
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Hongyan Wang
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
3
|
Li J, Yu Q, Liu C, Zhang N, Xu W. Flavonoids as key players in cold tolerance: molecular insights and applications in horticultural crops. HORTICULTURE RESEARCH 2025; 12:uhae366. [PMID: 40070400 PMCID: PMC11894532 DOI: 10.1093/hr/uhae366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/22/2024] [Indexed: 03/14/2025]
Abstract
Cold stress profoundly affects the growth, development, and productivity of horticultural crops. Among the diverse strategies plants employ to mitigate the adverse effects of cold stress, flavonoids have emerged as pivotal components in enhancing plant resilience. This review was written to systematically highlight the critical role of flavonoids in plant cold tolerance, aiming to address the increasing need for sustainable horticultural practices under climate stress. We provide a comprehensive overview of the role of flavonoids in the cold tolerance of horticultural crops, emphasizing their biosynthesis pathways, molecular mechanisms, and regulatory aspects under cold stress conditions. We discuss how flavonoids act as antioxidants, scavenging reactive oxygen species (ROS) generated during cold stress, and how they regulate gene expression by modulating stress-responsive genes and pathways. Additionally, we explore the application of flavonoids in enhancing cold tolerance through genetic engineering and breeding strategies, offering insights into practical interventions for improving crop resilience. Despite significant advances, a research gap remains in understanding the precise molecular mechanisms by which specific flavonoids confer cold resistance, especially across different crop species. By addressing current knowledge gaps, proposing future research directions and highlighting implications for sustainable horticulture, we aim to advance strategies to enhance cold tolerance in horticultural crops.
Collapse
Affiliation(s)
- Jiaxin Li
- College of Enology & Horticulture, Ningxia University, No.498 Helanshan West Street, Xixia District, Yinchuan, Ningxia 750021, China
| | - Qinhan Yu
- School of Life Science, Ningxia University, No.498 Helanshan West Street, Xixia District, Yinchuan, Ningxia 750021, China
| | - Chang Liu
- School of Life Science, Ningxia University, No.498 Helanshan West Street, Xixia District, Yinchuan, Ningxia 750021, China
| | - Ningbo Zhang
- College of Enology & Horticulture, Ningxia University, No.498 Helanshan West Street, Xixia District, Yinchuan, Ningxia 750021, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, No.498 Helanshan West Street, Xixia District, Yinchuan, Ningxia 750021, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, No.498 Helanshan West Street, Xixia District, Yinchuan 750021, China
| | - Weirong Xu
- College of Enology & Horticulture, Ningxia University, No.498 Helanshan West Street, Xixia District, Yinchuan, Ningxia 750021, China
- School of Life Science, Ningxia University, No.498 Helanshan West Street, Xixia District, Yinchuan, Ningxia 750021, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Ningxia University, No.498 Helanshan West Street, Xixia District, Yinchuan, Ningxia 750021, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, No.498 Helanshan West Street, Xixia District, Yinchuan 750021, China
- State Key Laboratory of Efficient Production of Forest Resources, No.498 Helanshan West Street, Xixia District, Yinchuan 750021, China
| |
Collapse
|
4
|
Shi F, Wang X, Wei M, Zhang X, Wang Z, Lu X, Zou C. Transcriptome analysis provides new insights into the resistance of pepper to Phytophthora capsici infection. BMC Genomics 2025; 26:311. [PMID: 40158192 PMCID: PMC11955139 DOI: 10.1186/s12864-025-11498-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/18/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Phytophthora blight is a highly destructive soil-borne disease caused by Phytophthora capsici Leonian, which threatens pepper production. The molecular mechanism of pepper resistance to phytophthora blight is unclear, and the excavation and functional analysis of resistant genes are the bases and prerequisites for phytophthora blight-resistant breeding. We aimed to analyze the expression patterns of key genes in the plant-pathogen interaction metabolic pathway and propose a working model of the pepper defense signal network against Phytophthora capsici infection. RESULTS The 'ZCM334' pepper material used in this study is a high-generation inbred line that is immune to Phytophthora capsici and shows no signs of infection after inoculation. Comparative transcriptome analysis of the roots of 'ZCM334' and the susceptible material 'Early Calwonder' revealed significant differences in their gene expression profiles at different stages after inoculation. Most differentially expressed genes were significantly enriched in the biosynthesis of secondary metabolites, phenylpropanoid biosynthesis, plant-pathogen interaction, and fatty acid degradation metabolic pathways. Some defense genes and transcription factors significant in pepper resistance to phytophthora blight were identified, including PR1, RPP13, FLS2, CDPK, CML, MAPK, RLP, RLK, WRYK, ERF, MYB, and bHLH, most of which were regulated after inoculation. A working model was constructed for the defense signal network of pepper against Phytophthora capsici. CONCLUSIONS These data provide a valuable source of information for improving our understanding of the potential molecular mechanisms by which pepper plants resist infection by Phytophthora capsici. The identification of key genes and metabolic pathways provides avenues for further exploring the immune mechanism of 'ZCM334' resistance to phytophthora blight.
Collapse
Affiliation(s)
- Fengyan Shi
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenhe District, 84 Dongling Road, Shenyang, 110161, China
| | - Xiuxue Wang
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenhe District, 84 Dongling Road, Shenyang, 110161, China
| | - Meijun Wei
- College of Horticulture, Shenyang Agricultural University, Shenhe District, 120 Dongling Road, Shenyang, 110866, China
| | - Xi Zhang
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenhe District, 84 Dongling Road, Shenyang, 110161, China
| | - Zhidan Wang
- College of Horticulture, Shenyang Agricultural University, Shenhe District, 120 Dongling Road, Shenyang, 110866, China
| | - Xiaochun Lu
- Sorghum Research Institute, Liaoning Academy of Agricultural Sciences, Shenhe District, 84 Dongling Road, Shenyang, 110161, China.
| | - Chunlei Zou
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenhe District, 84 Dongling Road, Shenyang, 110161, China.
| |
Collapse
|
5
|
Wang S, Li J, Yu P, Guo L, Zhou J, Yang J, Wu W. Convergent evolution in angiosperms adapted to cold climates. PLANT COMMUNICATIONS 2025; 6:101258. [PMID: 39849842 PMCID: PMC11897497 DOI: 10.1016/j.xplc.2025.101258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/29/2024] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
Convergent and parallel evolution occur more frequently than previously thought. Here, we focus on the evolutionary adaptations of angiosperms at sub-zero temperatures. We begin by introducing the history of research on convergent and parallel evolution, defining all independent similarities as convergent evolution. Our analysis reveals that frost zones (periodic or constant), which cover 49.1% of Earth's land surface, host 137 angiosperm families, with over 90% of their species thriving in these regions. In this context, we revisit the global biogeography and evolutionary trajectories of plant traits, such as herbaceous form and deciduous leaves, that are thought to be evasion strategies for frost adaptation. At the physiological and molecular levels, many angiosperms have independently evolved cold acclimation mechanisms through multiple pathways in addition to the well-characterized C-repeat binding factor/dehydration-responsive element binding protein 1 (CBF/DREB1) regulatory pathway. These convergent adaptations have occurred across various molecular levels, including amino acid substitutions and changes in gene duplication and expression within the same or similar functional pathways; however, identical amino acid changes are rare. Our results also highlight the prevalence of polyploidy in frost zones and the occurrence of paleopolyploidization events during global cooling. These patterns suggest repeated evolution in cold climates. Finally, we discuss plant domestication and predict climate zone shifts due to global warming and their effects on plant migration and in situ adaptation. Overall, the integration of ecological and molecular perspectives is essential for understanding and forecasting plant responses to climate change.
Collapse
Affiliation(s)
- Shuo Wang
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China
| | - Jing Li
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China
| | - Ping Yu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Evaluation and Research Center of Daodi Herbs of Jiangxi Province, Ganjiang New District 330000, China
| | - Liangyu Guo
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China
| | - Junhui Zhou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Evaluation and Research Center of Daodi Herbs of Jiangxi Province, Ganjiang New District 330000, China
| | - Jian Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Evaluation and Research Center of Daodi Herbs of Jiangxi Province, Ganjiang New District 330000, China.
| | - Wenwu Wu
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang International Science and Technology Cooperation Base for Plant Germplasm Resources Conservation and Utilization, Zhejiang A&F University, Hangzhou 311300, China; Provincial Key Laboratory for Non-wood Forest and Quality Control and Utilization of Its Products, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
6
|
Li J, Zhi X, Chen H, Chen L, Lu Y, Liao W, Tian Z, Wu M, Shan Y, Wang H, Yan L, Liu B, Wang X. Physiological and molecular mechanisms of leaf response to high-temperature stress in high-temperature-resistant soybean varieties. BMC Genomics 2024; 25:1145. [PMID: 39604834 PMCID: PMC11600837 DOI: 10.1186/s12864-024-10932-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND With increasing global limate warm, high temperature (HT) is one of limiting factors for soybean yield and quality. Exploring HT resistance-related functional genes and their corresponding molecular mechanisms is of great value. In our previous report, compared with HD14 (HT sensitive), JD21 is an HT-resistant variety, and further analysis of the transcriptome and proteome has revealed the HT tolerance mechanism of JD21 anthers. We found that compared with those of HD14 (28.72%), the leaves of JD21 also exhibited HT resistance, and the degree of leaf wilting in JD21 plants after HT stress treatment was 11.02%; however, the regulatory mechanism of the response of JD21 to HT stress is still unclear. RESULTS In this study, comparative transcriptome analysis of JD21 and HD14 soybean leaves after HT stress and field control plants was performed by RNA-seq analysis. The results showed that the number of upregulated differentially expressed genes (DEGs) in JD21 and HD14 was greater than the number of downregulated DEGs after HT stress, and the number of up- or down-regulated DEGs in JD21 was higher than those of HD14. Bioinformatics analysis revealed that many DEGs were involved in various molecular functions and metabolic pathways. QRT‒PCR analysis verified that the gene expression pattern results determined via RNA-seq was reliable. In addition, through analysis of gene expression level and conserved domain, 18 key candidate genes related to the response of soybean leaves to HT stress were screened. CONCLUSIONS This study systematically revealed the regulation mechanism of soybean leaves molecular transcription level by RNA-seq, and several key candidate DEGs (transcription factor, HSPs, HSFs, GmCYP78A6, etc.) involved in the response to HT stress were identified based on the bioinformatics analysis. The results provided a theoretical basis for studying the response mechanism of soybean leaves to HT stress.
Collapse
Affiliation(s)
- Jiajia Li
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Xianguan Zhi
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Haoran Chen
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Linying Chen
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Yun Lu
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Wei Liao
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Zhuo Tian
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Meiyan Wu
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Yajing Shan
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Heng Wang
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Long Yan
- National Soybean Improvement Center Shijiazhuang Sub-Center, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, 050035, China
| | - Bingqiang Liu
- National Soybean Improvement Center Shijiazhuang Sub-Center, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, 050035, China.
| | - Xiaobo Wang
- School of Agronomy, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
7
|
Zhou X, Lu C, Zhou F, Zhu Y, Jiang W, Zhou A, Shen Y, Pan L, Lv A, Shao Q. Transcription factor DcbZIPs regulate secondary metabolism in Dendrobium catenatum during cold stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14501. [PMID: 39256953 DOI: 10.1111/ppl.14501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/05/2024] [Accepted: 07/25/2024] [Indexed: 09/12/2024]
Abstract
Cold stress seriously affects plant development and secondary metabolism. The basic region/leucine zipper (bZIP) is one of the largest transcription factor (TFs) family and widely involved in plant cold stress response. However, the function of bZIP in Dendrobium catenatum has not been well-documented. Cold inhibited the growth of D. catenatum and increased total polysaccharide and alkaloid contents in stems. Here, 62 DcbZIP genes were identified in D. catenatum, which were divided into 13 subfamilies. Among them, 58 DcbZIPs responded to cold stress, which were selected based on the transcriptome database produced from cold-treated D. catenatum seedlings. Specifically, the expression of DcbZIP3/6/28 was highly induced by cold treatment in leaves or stems. Gene sequence analysis indicated that DcbZIP3/6/28 contains the bZIP conserved domain and is localized to the cell nucleus. Co-expression networks showed that DcbZIP6 was significantly negatively correlated with PAL2 (palmitoyl-CoA), which is involved in flavonoid metabolism. Moreover, DcbZIP28 has significant negative correlations with various metabolism-related genes in the polysaccharide metabolic pathway, including PFKA1 (6-phosphofructokinase), ALDO2 (aldose-6-phosphate reductase) and SCRK5 (fructokinase). These results implied that DcbZIP6 or DcbZIP28 are mainly involved in flavonoid or polysaccharide metabolism. Overall, these findings provide new insights into the roles of the DcbZIP gene family in secondary metabolism in D. catenatum under cold stress.
Collapse
Affiliation(s)
- Xiaohui Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Chenfei Lu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Fenfen Zhou
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Yanqin Zhu
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Wu Jiang
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Aicun Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Pan'an Traditional Chinese Medicine Industry Innovation and Development Institute, Zhejiang, PR China
| | - Yanghui Shen
- Pan'an Traditional Chinese Medicine Industry Innovation and Development Institute, Zhejiang, PR China
| | - Lanying Pan
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Aimin Lv
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Qingsong Shao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
8
|
Gao Y, Zhang X, Wang W, Xing Z, Xu L, Tian X. Qualitative identification of lonicerae japonicae flos in traditional chinese medicine using metabarcoding combined with specific mini-barcodes. Mol Biol Rep 2023; 50:8817-8825. [PMID: 37658933 DOI: 10.1007/s11033-023-08739-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Lonicerae japonicae flos, also known as Jinyinhua (JYH), is an important component of traditional Chinese patent medicine (TCPM) products. However, the potential for adulteration and substitution with low-quality materials highlights the need for a reliable and sensitive approach to identify the species composition of TCPM products for consumer safety. METHODS AND RESULTS We used universal ITS2 primers to amplify TCPMs containing JYH. However, the results were inconclusive, as only one operational taxonomic unit (OTU) was identified as Lonicera sp., which could not be identified at the species level. To confirm the species identification of Lonicera sp. in TCPM, we developed a short mini-barcode primer based on the psbA-trnH region, which, in combination with DNA metabarcoding technology, allowed for qualitative and quantitative analysis of artificially mixed samples. We applied the mini-barcode to distinguish TCPMs containing JYH and demonstrated its relatively accurate quantitative ability in identifying two Lonicera species. CONCLUSIONS Our study presents a method for qualitative and quantitative identification of JYH, providing a promising application of DNA metabarcoding technology in the quality control of TCPM products.
Collapse
Affiliation(s)
- Yuan Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xiaoying Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Wenxiu Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Zhimei Xing
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Liuwei Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Xiaoxuan Tian
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
9
|
Liu M, Liu G, Wang G, Song S, Zhang P, Liu X, Li Y, Mao X, Bao Z, Ma F. Identification and functional characterization of AcMYB113 in anthocyanin metabolism of Aesculus chinensis Bunge var. chinensis leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107709. [PMID: 37094493 DOI: 10.1016/j.plaphy.2023.107709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Anthocyanins can be induced by environmental factors such as low-temperature and play essential roles in plant color formation. In this study, leaves of Aesculus chinensis Bunge var. chinensis with different colors under natural low-temperature in autumn were collected and grouped into green leaf (GL) and red leaf (RL). To reveal the underlying mechanism of color formation in RL, a combined analysis of the metabolome and transcriptome was conducted with GL and RL. Metabolic analyses revealed that total anthocyanin content and primary anthocyanin components were increased RL relative to GL and cyanidin was the main anthocyanin compound in RL. Transcriptome analysis provided a total of 18720 differentially expressed genes (DEGs), of which 9150 DEGs were upregulated and 9570 DEGs were downregulated in RL relative to GL. KEGG analysis showed that DEGs were mainly enriched in flavonoid biosynthesis, phenylalanine metabolism, and phenylpropanoid biosynthesis. Furthermore, co-expression network analysis indicated that 56 AcMYB transcription factors were highly expressed in RL compared with GL, among which AcMYB113 (an R2R3-MYB TF) had a strong correlation with anthocyanins. Overexpression of AcMYB113 in apple resulted in dark-purple transgenic calluses. In addition, the transient expression experiment showed that AcMYB113 enhanced anthocyanin synthesis by activating pathways of anthocyanin biosynthesis in leaves of Aesculus chinensis Bunge var. chinensis. Taken together, our findings reveal new insights into the molecular mechanism of anthocyanin accumulation in RL and provide candidate genes for the breeding of anthocyanin-rich cultivars.
Collapse
Affiliation(s)
- Minmin Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Genzhong Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Guodong Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Shiyan Song
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Peng Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Xiaofang Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Yuling Li
- Institute of ornamental plants, Shandong Academy of Forestry, Jinan, Shandong, China
| | - Xiuhong Mao
- Institute of ornamental plants, Shandong Academy of Forestry, Jinan, Shandong, China.
| | - Zhilong Bao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China.
| | - Fangfang Ma
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China.
| |
Collapse
|