1
|
Ding Y, Feng L, Li P, Yang X, Li M, Liu H, Xu J, Zhang J, Sun S, Zhou X, Hao W, Zhang Y, Xie CG. The Alpha/Beta-Hydrolase Fold Superfamily in Brassica napus: Expression Profiles and Functional Implications of Clade-3 BnABH Proteins in Response to Abiotic Stress. Int J Mol Sci 2025; 26:4746. [PMID: 40429888 PMCID: PMC12112387 DOI: 10.3390/ijms26104746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2025] [Revised: 05/09/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Alpha/beta hydrolase (ABHs) fold esterase/lipase proteins represent a prominent family within the serine hydrolase (SH) superfamily that includes esterases and lipases and other catalytic and non-catalytic proteins. ABHs play crucial roles in both the fundamental and secondary metabolic pathways, including the synthesis and degradation of triacylglycerols (TAGs), key components of plant oils. Despite their importance in oil production, the ABH gene family in the oil crop Brassica napus has not been comprehensively analyzed. In the present study, we identified 777 BnABH genes in the B. napus cultivar 'Zhongshuang 11' (ZS11). Phylogenetic analysis categorized these BnABH genes into 10 distinct groups. Twenty-four BnABHs were identified through esterase activity staining and mass spectrometry, 11 of which were classified into clade C3. Examination of the gene and protein structures, expression patterns, and cis-elements of the BnABHs in clade C3 suggested diverse functional roles across different tissues and in response to various environmental stresses. In particular, BnABH205 was highly induced by high temperatures. Subcellular localization analysis revealed that the BnABH205 protein was localized to the plastid. Further analysis revealed five haplotypes within the coding and 3' untranslated regions of BnABH205 that were significantly associated with seed oil content (SOC). Overall, this study provides a comprehensive understanding of BnABHs and introduces a robust methodology for identifying potential esterase/lipase genes that regulate seed oil content (SOC) in response to environmental hazards, especially heat waves during seed maturation.
Collapse
Affiliation(s)
- Yahui Ding
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling 712100, China (J.Z.); (W.H.)
| | - Lianqiang Feng
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling 712100, China (J.Z.); (W.H.)
| | - Pu Li
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling 712100, China (J.Z.); (W.H.)
| | - Xindeng Yang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling 712100, China (J.Z.); (W.H.)
| | - Muzi Li
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling 712100, China (J.Z.); (W.H.)
| | - Hanxuan Liu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling 712100, China (J.Z.); (W.H.)
| | - Jiamin Xu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling 712100, China (J.Z.); (W.H.)
| | - Jitong Zhang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling 712100, China (J.Z.); (W.H.)
| | - Shouwu Sun
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling 712100, China (J.Z.); (W.H.)
| | - Xiaona Zhou
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling 712100, China (J.Z.); (W.H.)
| | - Wenfang Hao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling 712100, China (J.Z.); (W.H.)
| | - Yanfeng Zhang
- Hybrid Rapeseed Research Centre of Shaanxi Province, Yangling 712100, China
| | - Chang-Gen Xie
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling 712100, China (J.Z.); (W.H.)
| |
Collapse
|
2
|
Kourani M, Anastasiadi M, Hammond JP, Mohareb F. Prolonged heat stress in Brassica napus during flowering negatively impacts yield and alters glucosinolate and sugars metabolism. FRONTIERS IN PLANT SCIENCE 2025; 16:1507338. [PMID: 40416089 PMCID: PMC12098335 DOI: 10.3389/fpls.2025.1507338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 04/01/2025] [Indexed: 05/27/2025]
Abstract
Oilseed rape (Brassica napus), one of the most important sources of vegetable oil worldwide, is adversely impacted by heatwave-induced temperature stress especially during its yield-determining reproductive stages. However, the underlying molecular and biochemical mechanisms are still poorly understood. In this study, we investigated the transcriptomic and metabolomic responses to heat stress in B. napus plants exposed to a gradual increase in temperature reaching 30°C in the day and 24°C at night for a period of 6 days. High-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) was used to quantify the content of carbohydrates and glucosinolates, respectively. Results showed that heat stress reduced yield and altered oil composition. Heat stress also increased the content of carbohydrate (glucose, fructose, and sucrose) and aliphatic glucosinolates (gluconapin and progoitrin) in the leaves but decreased the content of the indolic glucosinolate (glucobrassicin). RNA-Seq analysis of flower buds showed a total of 1,892, 3,253, and 4,553 differentially expressed genes at 0, 1, and 2 days after treatment (DAT) and 4,165 and 1,713 at 1 and 7 days of recovery (DOR), respectively. Heat treatment resulted in downregulation of genes involved in respiratory metabolism, namely, glycolysis, pentose phosphate pathway, citrate cycle, and oxidative phosphorylation especially after 48 h of heat stress. Other downregulated genes mapped to sugar transporters, nitrogen transport and storage, cell wall modification, and methylation. In contrast, upregulated genes mapped to small heat shock proteins (sHSP20) and other heat shock factors that play important roles in thermotolerance. Furthermore, two genes were chosen from the pathways involved in the heat stress response to further examine their expression using real-time RT-qPCR. The global transcriptome profiling, integrated with the metabolic analysis in the study, shed the light on key genes and metabolic pathways impacted and responded to abiotic stresses exhibited as a result of exposure to heat waves during flowering. DEGs and metabolites identified through this study could serve as important biomarkers for breeding programs to select cultivars with stronger resistance to heat. In particular, these biomarkers can form targets for various crop breeding and improvement techniques such as marker-assisted selection.
Collapse
Affiliation(s)
- Mariam Kourani
- The Bioinformatics Group, Centre for Soil, Agrifood and Biosciences (SABS), Cranfield University, Cranfield, United Kingdom
| | - Maria Anastasiadi
- The Bioinformatics Group, Centre for Soil, Agrifood and Biosciences (SABS), Cranfield University, Cranfield, United Kingdom
| | - John P. Hammond
- School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | - Fady Mohareb
- The Bioinformatics Group, Centre for Soil, Agrifood and Biosciences (SABS), Cranfield University, Cranfield, United Kingdom
| |
Collapse
|
3
|
Shirdel M, Eshghi S, Shahsavandi F, Fallahi E. Arbuscular mycorrhiza inoculation mitigates the adverse effects of heat stress on yield and physiological responses in strawberry plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109629. [PMID: 39946910 DOI: 10.1016/j.plaphy.2025.109629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/01/2025] [Accepted: 02/07/2025] [Indexed: 03/11/2025]
Abstract
Arbuscular mycorrhizal fungi (AMF) form a beneficial symbiotic relationship with plant roots, providing them with ample water and nutrients, especially under stressful conditions. It is inevitable to experience heat stress (HS) due to climate changes. The objective of this study was to investigate the possible role of AMF (with AMF = +AMF and without AMF = -AMF) on the strawberry cvs. ('Paros' and 'Queen Eliza')-resilience to HS at temperatures (control (23), 30, 35, 40, and 45 °C). The experiment was completely randomised and designed as a factorial arrangement with four replicates. The findings indicated that as the temperature increased, there was an increase in electrolyte leakage, proline, soluble carbohydrate contents and the activity of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX). The presence of AMF at high temperatures improved the relative water content (RWC), maximum quantum efficiency yield of photosystem II (Fv/Fm), chlorophyll a, b, and total chlorophyll compared to the -AMF. AMF promoted root colonization and the content of phosphorus and potassium, which was more in the cv. 'Paros' than the cv. 'Queen Eliza'. Primary and secondary fruit weights and plant yield were reduced by HS; however, the AMF effectively increased average fruit weight and yield in comparison to plants without AMF. Yield was positively correlated with RWC and Fv/Fm, and root colonization was positively associated with phosphorus concentration. Adding AMF to rhizosphere improved plant growth and nutrient uptake and increased strawberry-resilience to HS. They have achieved this by increasing antioxidative activity, proline, soluble carbohydrates, and RWC. The symbiotic relationship with AMF greatly enhanced the strawberry's ability to tolerate HS.
Collapse
Affiliation(s)
- Mohsen Shirdel
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Saeid Eshghi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Fatemeh Shahsavandi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
4
|
Distéfano AM, Bauer V, Cascallares M, López GA, Fiol DF, Zabaleta E, Pagnussat GC. Heat stress in plants: sensing, signalling, and ferroptosis. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1357-1369. [PMID: 38989813 DOI: 10.1093/jxb/erae296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024]
Abstract
In the current context of global warming, high temperature events are becoming more frequent and intense in many places around the world. In this context, understanding how plants sense and respond to heat is essential to develop new tools to prevent plant damage and address global food security, as high temperature events are threatening agricultural sustainability. This review summarizes and integrates our current understanding underlying the cellular, physiological, biochemical, and molecular regulatory pathways triggered in plants under moderately high and extremely high temperature conditions. Given that extremely high temperatures can also trigger ferroptosis, the study of this cell death mechanism constitutes a strategic approach to understand how plants might overcome otherwise lethal temperature events.
Collapse
Affiliation(s)
- Ayelén Mariana Distéfano
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Victoria Bauer
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Milagros Cascallares
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Gabriel Alejandro López
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Diego Fernando Fiol
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Eduardo Zabaleta
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| | - Gabriela Carolina Pagnussat
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina
| |
Collapse
|
5
|
Mohammadi V, Rezaeizadeh A, Mondak B, Rasoulnia A, Domínguez-Figueroa J, Carrillo L, Romero-Hernandez G, Medina J. Unraveling the role of autophagy and antioxidants in anther and pistil responses to heat stress in rapeseed (Brassica napus L.). PLANT CELL REPORTS 2025; 44:51. [PMID: 39920388 PMCID: PMC11805782 DOI: 10.1007/s00299-025-03437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/19/2025] [Indexed: 02/09/2025]
Abstract
KEY MESSAGE Enhanced antioxidant enzymes activity, particularly superoxide dismutase and catalase, along with autophagy process in reproductive organs, can improve the resilience of rapeseed to heat stress, thereby securing crop yield in the face of global warming. Climate change and global warming have increasingly influenced yield and quality of rapeseed (Brassica napus) almost all across the world. The response of reproductive organs to high-temperature stress was studied in two rapeseed varieties, SAFI5 and DH13 with contrasting levels of heat stress tolerance. Pollen germination, viability, and seed set showed a significant reduction in the heat-sensitive variety (DH13). Superoxide quantification revealed higher accumulation in heat-sensitive variety, leading to decreased seed formation and floret fertility most probably due to declined pollen viability and stigma receptivity. Further microscopic analysis of the anther and pistil demonstrated a significant overlay between the damaged areas and the location of O2- accumulation. The sensitive variety showed higher O2- accumulation and a wider damage area than the tolerant one, suggesting that superoxide could incapacitate anther and pistil due to structural injury. Moreover, the activity levels and expression of superoxide dismutase and catalase antioxidant enzymes were significantly higher in the anther and pistil of the tolerant variety. Histochemical analysis also indicated markedly higher autophagosome formation in tolerant variety's anther and pistil. Consistently, the expression levels of autophagy and ubiquitin-proteasome system (UPS)-related genes including BnATG8d, BnEXO70B, BnATl1 4A, and BnNBR1, as well as ubiquitin-activating enzyme E1, were higher in both reproductive organs of the tolerant variety. Interestingly, the areas of autophagosome formation overlapped with the areas in which higher superoxide accumulation and structural changes happened, suggesting a specific role of autophagy in oxidative stress response.
Collapse
Affiliation(s)
- Valiollah Mohammadi
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Ahmad Rezaeizadeh
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Behnam Mondak
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Abdolrahman Rasoulnia
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - José Domínguez-Figueroa
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Laura Carrillo
- Centro de Biotecnología y Genómica de Plantas (CBGP), UPM-INIA/CSIC, Campus de Montegancedo, Madrid, Spain
| | - Gara Romero-Hernandez
- Centro de Biotecnología y Genómica de Plantas (CBGP), UPM-INIA/CSIC, Campus de Montegancedo, Madrid, Spain
| | - Joaquin Medina
- Centro de Biotecnología y Genómica de Plantas (CBGP), UPM-INIA/CSIC, Campus de Montegancedo, Madrid, Spain.
| |
Collapse
|
6
|
Kalantar Ahmadi SA, Sarhangi M. Optimizing sowing date for enhanced heat stress tolerance in canola ( Brassica napus L.): Investigating impacts on seed yield, oil content, and fatty acids composition. Heliyon 2025; 11:e42138. [PMID: 39925356 PMCID: PMC11804544 DOI: 10.1016/j.heliyon.2025.e42138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 02/11/2025] Open
Abstract
Environmental conditions, including temperature and the occurrence of phenological stages at the optimum temperature, are effective factors on seed yield, oil content and fatty acids. An experiment was carried out as strip block based on randomized completed block design with three replications in Safiabad Agricultural and Natural Resources Research and Education Center of Dezful during two cropping seasons (2017-2019). Vertical factors consisted of six levels of sowing date (23 Sep, Oct 7, 22 Oct, Nov 6, 21 Nov, Dec 6), and horizontal factors were seven genotypes (Agamx, Hyola4815, Hyola50, Hyola401, Safi6, Zabol9 and Zabol13). Elevated temperatures resulting from postponed sowing dates during the silique formation and seed filling phases led to a decline in seed yield, oil content, and modifications in the fatty acid composition of the studied canola genotypes. The highest (43.04 %) and lowest (38.81 %) oil content over the two years of testing were attributed to the genotypes Hyola50 and Hyola4815, respectively. Postponing the sowing date contributed to a higher accumulation of oleic acid in the examined genotypes. The maximum oleic acid content (62.14 %) was observed on Dec. 6 for the genotype Hyola50, while the minimum oleic acid content (50 %) was recorded on Sep. 23 for the genotype Zabol9 during two years of the experiment. Variations in climatic conditions across the two experimental years elicited distinct responses in the studied genotypes based on the sowing date. In the first year, Agamax genotype produced the highest seed yield (3357 kg ha-1) on Oct 7th, but in the second year the highest seed yield (2888.9 kg ha-1) belonged to the second sowing date (Oct. 7) and Hyola50 genotype. Based on the test results, the susceptibility of canola genotypes to temperature, rainfall, and lodging during seed filling period varied between the two years of the experiment. The percentage reduction in seed yield for the Hyola50 and Agamax genotypes was 32 % and 40 %, respectively. Climatic factors, particularly temperature and the synchronization of phenological stages with optimal thermal conditions, play a crucial role in determining seed yield, oil content, and fatty acid composition. Furthermore, the selection of heat-tolerant genotypes is essential for maintaining yield stability.
Collapse
Affiliation(s)
- Seyed Ahmad Kalantar Ahmadi
- Department of Agronomy and Horticultural Science, Safiabad Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), PO Box 333, Dezful, Iran
| | - Mohsen Sarhangi
- Department of Agronomy and Horticultural Science, Safiabad Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), PO Box 333, Dezful, Iran
| |
Collapse
|
7
|
Dev W, Sultana F, He S, Waqas M, Hu D, Aminu IM, Geng X, Du X. An insight into heat stress response and adaptive mechanism in cotton. JOURNAL OF PLANT PHYSIOLOGY 2024; 302:154324. [PMID: 39167998 DOI: 10.1016/j.jplph.2024.154324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
The growing worldwide population is driving up demand for cotton fibers, but production is hampered by unpredictable temperature rises caused by shifting climatic conditions. Numerous research based on breeding and genomics have been conducted to increase the production of cotton in environments with high and low-temperature stress. High temperature (HT) is a major environmental stressor with global consequences, influencing several aspects of cotton plant growth and metabolism. Heat stress-induced physiological and biochemical changes are research topics, and molecular techniques are used to improve cotton plants' heat tolerance. To preserve internal balance, heat stress activates various stress-responsive processes, including repairing damaged proteins and membranes, through various molecular networks. Recent research has investigated the diverse reactions of cotton cultivars to temperature stress, indicating that cotton plant adaptation mechanisms include the accumulation of sugars, proline, phenolics, flavonoids, and heat shock proteins. To overcome the obstacles caused by heat stress, it is crucial to develop and choose heat-tolerant cotton cultivars. Food security and sustainable agriculture depend on the application of genetic, agronomic, and, biotechnological methods to lessen the impacts of heat stress on cotton crops. Cotton producers and the textile industry both benefit from increased heat tolerance. Future studies should examine the developmental responses of cotton at different growth stages, emphasize the significance of breeding heat-tolerant cultivars, and assess the biochemical, physiological, and molecular pathways involved in seed germination under high temperatures. In a nutshell, a concentrated effort is required to raise cotton's heat tolerance due to the rising global temperatures and the rise in the frequency of extreme weather occurrences. Furthermore, emerging advances in sequencing technologies have made major progress toward successfully se sequencing the complex cotton genome.
Collapse
Affiliation(s)
- Washu Dev
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Fahmida Sultana
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Shoupu He
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Muhammad Waqas
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Daowu Hu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, 57202, China
| | - Isah Mansur Aminu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoli Geng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiongming Du
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, 57202, China.
| |
Collapse
|
8
|
Rurek M, Smolibowski M. Variability of plant transcriptomic responses under stress acclimation: a review from high throughput studies. Acta Biochim Pol 2024; 71:13585. [PMID: 39524930 PMCID: PMC11543463 DOI: 10.3389/abp.2024.13585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Plant transcriptomes are complex entities shaped spatially and temporally by a multitude of stressors. The aim of this review was to summarize the most relevant transcriptomic responses to selected abiotic (UV radiation, chemical compounds, drought, suboptimal temperature) and biotic (bacteria, fungi, viruses, viroids) stress conditions in a variety of plant species, including model species, crops, and medicinal plants. Selected basic and applicative studies employing RNA-seq from various sequencing platforms and single-cell RNA-seq were involved. The transcriptomic responsiveness of various plant species and the diversity of affected gene families were discussed. Under stress acclimation, plant transcriptomes respond particularly dynamically. Stress response involved both distinct, but also similar gene families, depending on the species, tissue, and the quality and dosage of the stressor. We also noted the over-representation of transcriptomic data for some plant organs. Studies on plant transcriptomes allow for a better understanding of response strategies to environmental conditions. Functional analyses reveal the multitude of stress-affected genes as well as acclimatory mechanisms and suggest metabolome diversity, particularly among medicinal species. Extensive characterization of transcriptomic responses to stress would result in the development of new cultivars that would cope with stress more efficiently. These actions would include modern methodological tools, including advanced genetic engineering, as well as gene editing, especially for the expression of selected stress proteins in planta and for metabolic modifications that allow more efficient synthesis of secondary metabolites.
Collapse
Affiliation(s)
- Michał Rurek
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | | |
Collapse
|
9
|
Xue Y, Wang S, Zhang Q, Wu F, Huang L, Qin S, Zhang M, Yang X, Deng Z, Jiang H, Li L, Chai Y. Brassica napus cytochrome P450 superfamily: Origin from parental species and involvement in diseases resistance, abiotic stresses tolerance, and seed quality traits. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116792. [PMID: 39096688 DOI: 10.1016/j.ecoenv.2024.116792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
Cytochromes P450 monooxygenases (CYP450s) constitute the largest enzymic protein family that is widely present in plants, animals, and microorganisms, participate in numerous metabolic pathways, and play diverse roles in development, metabolism, and defense. Rapeseed (Brassica napus) is an important oil crop worldwide and have many versions of reference genome. However, there is no systemically comparative genome-wide analysis of CYP450 family genes in rapeseed and its parental species B. rapa and B. oleracea. In this study, we identified 765, 293 and 437 CYP450 genes in B. napus, B. rapa and B. oleracea, respectively, which were unevenly located in A01-A10 and/or C01-C09 chromosomes in corresponding species. Phylogenetic relationship analysis indicated that 1745 CYP450 proteins from three Brassica species and Arabidopsis were divided into 4 groups. Whole genome duplication (WGD) or segmental duplication resulted in gene expansion of CYP450 family in three Brassica species. There were 33-83 SSR loci in CYP450 genes of three Brassica species, and numerous transcription factor binding sites were identified in their promoters. A total of 459-777 miRNAs were predicted to target 174-426 CYP450 genes in three Brassica species. Based on transcriptome data, BnCYP450s, BrCYP450s and BoCYP450s were differentially expressed in various tissues. There existed numerous BnCYP450 DEGs in response to pathogens and abiotic stresses. Besides, many BnCYP450 DEGs were involved in the regulation of important traits, such as seed germination, seed ALA content, and yellow-seed. The qRT-PCR experiment confirmed the transcriptome analysis results by validating two representative Sclerotinia-responsive BnCYP450 DEGs as an example. Three BnCYP450s genes (CYP707A1, CYP81F1, CYP81H1) might be regulated by seed-specific transcription factors BnTT1 and BnbZIP67 to participate in the development and metabolism of seed coat and embryo by undertaking related metabolic reactions.
Collapse
Affiliation(s)
- Yufei Xue
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Shanshan Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Qiheng Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Fangzhou Wu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Li Huang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Shujun Qin
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Min Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Xiao Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Zihan Deng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Huanhuan Jiang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Lejing Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Science, Southwest University, Chongqing, China
| | - Yourong Chai
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing Key Laboratory of Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Academy of Agricultural Science, Southwest University, Chongqing, China.
| |
Collapse
|
10
|
Choudry MW, Riaz R, Nawaz P, Ashraf M, Ijaz B, Bakhsh A. CRISPR-Cas9 mediated understanding of plants' abiotic stress-responsive genes to combat changing climatic patterns. Funct Integr Genomics 2024; 24:132. [PMID: 39078500 DOI: 10.1007/s10142-024-01405-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/31/2024]
Abstract
Multiple abiotic stresses like extreme temperatures, water shortage, flooding, salinity, and exposure to heavy metals are confronted by crop plants with changing climatic patterns. Prolonged exposure to these adverse environmental conditions leads to stunted plant growth and development with significant yield loss in crops. CRISPR-Cas9 genome editing tool is being frequently employed to understand abiotic stress-responsive genes. Noteworthy improvements in CRISPR-Cas technology have been made over the years, including upgradation of Cas proteins fidelity and efficiency, optimization of transformation protocols for different crop species, base and prime editing, multiplex gene-targeting, transgene-free editing, and graft-based heritable CRISPR-Cas9 approaches. These developments helped to improve the knowledge of abiotic stress tolerance in crops that could potentially be utilized to develop knock-out varieties and over-expressed lines to tackle the adverse effects of altered climatic patterns. This review summarizes the mechanistic understanding of heat, drought, salinity, and metal stress-responsive genes characterized so far using CRISPR-Cas9 and provides data on potential candidate genes that can be exploited by modern-day biotechnological tools to develop transgene-free genome-edited crops with better climate adaptability. Furthermore, the importance of early-maturing crop varieties to withstand abiotic stresses is also discussed in this review.
Collapse
Affiliation(s)
| | - Rabia Riaz
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Pashma Nawaz
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Maria Ashraf
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Bushra Ijaz
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.
| | - Allah Bakhsh
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
11
|
Ahmad M, Waraich EA, Zulfiqar U, Yong JWH, Ishfaq M, Din KU, Ullah A, Abbas A, Awan MI, Moussa IM, Elshikh MS. Thiourea improves yield and quality traits of Brassica napus L. by upregulating the antioxidant defense system under high temperature stress. Sci Rep 2024; 14:12195. [PMID: 38806561 PMCID: PMC11133410 DOI: 10.1038/s41598-024-62257-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
High temperature stress influences plant growth, seed yield, and fatty acid contents by causing oxidative damage. This study investigated the potential of thiourea (TU) to mitigate oxidative stress and restoring seed oil content and quality in canola. The study thoroughly examined three main factors: (i) growth conditions-control and high temperature stress (35 °C); (ii) TU supplementation (1000 mg/L)-including variations like having no TU, water application at the seedling stage, TU application at seedling stage (BBCH Scale-39), water spray at anthesis stage, and TU application at anthesis stage (BBCH Scale-60); (iii) and two canola genotypes, 45S42 and Hiola-401, were studied separately. High temperature stress reduced growth and tissue water content, as plant height and relative water contents were decreased by 26 and 36% in 45S42 and 27 and 42% Hiola-401, respectively, resulting in a substantial decrease in seed yield per plant by 36 and 38% in 45S42 and Hiola-401. Seed oil content and quality parameters were also negatively affected by high temperature stress as seed oil content was reduced by 32 and 35% in 45S42 and Hiola-401. High-temperature stress increased the plant stress indicators like malondialdehyde, H2O2 content, and electrolyte leakage; these indicators were increased in both canola genotypes as compared to control. Interestingly, TU supplementation restored plant performance, enhancing height, relative water content, foliar chlorophyll (SPAD value), and seed yield per plant by 21, 15, 30, and 28% in 45S42; 19, 13, 26, and 21% in Hiola-401, respectively, under high temperature stress as compared to control. In addition, seed quality, seed oil content, linoleic acid, and linolenic acid were improved by 16, 14, and 22% in 45S42, and 16, 11, and 23% in Hiola-401, as compared to control. The most significant improvements in canola seed yield per plant were observed when TU was applied at the anthesis stage. Additionally, the research highlighted that canola genotype 45S42 responded better to TU applications and exhibited greater resilience against high temperature stress compared to genotype Hiola-401. This interesting study revealed that TU supplementation, particularly at the anthesis stage, improved high temperature stress tolerance, seed oil content, and fatty acid profile in two canola genotypes.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Ejaz Ahmad Waraich
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - Muhammad Ishfaq
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
- Department of Agriculture, Extension, Azad Jammu & Kashmir, Pakistan
| | - Kaleem Ul Din
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Aman Ullah
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Adeel Abbas
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Masood Iqbal Awan
- Department of Agronomy, University of Agriculture, Faisalabad, Depalpur-Okara Campus, Pakistan
| | - Ihab Mohamed Moussa
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Ganie SA, McMulkin N, Devoto A. The role of priming and memory in rice environmental stress adaptation: Current knowledge and perspectives. PLANT, CELL & ENVIRONMENT 2024; 47:1895-1915. [PMID: 38358119 DOI: 10.1111/pce.14855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/21/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Plant responses to abiotic stresses are dynamic, following the unpredictable changes of physical environmental parameters such as temperature, water and nutrients. Physiological and phenotypical responses to stress are intercalated by periods of recovery. An earlier stress can be remembered as 'stress memory' to mount a response within a generation or transgenerationally. The 'stress priming' phenomenon allows plants to respond quickly and more robustly to stressors to increase survival, and therefore has significant implications for agriculture. Although evidence for stress memory in various plant species is accumulating, understanding of the mechanisms implicated, especially for crops of agricultural interest, is in its infancy. Rice is a major food crop which is susceptible to abiotic stresses causing constraints on its cultivation and yield globally. Advancing the understanding of the stress response network will thus have a significant impact on rice sustainable production and global food security in the face of climate change. Therefore, this review highlights the effects of priming on rice abiotic stress tolerance and focuses on specific aspects of stress memory, its perpetuation and its regulation at epigenetic, transcriptional, metabolic as well as physiological levels. The open questions and future directions in this exciting research field are also laid out.
Collapse
Affiliation(s)
- Showkat Ahmad Ganie
- Department of Biological Sciences, Plant Molecular Science and Centre of Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey, UK
| | - Nancy McMulkin
- Department of Biological Sciences, Plant Molecular Science and Centre of Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey, UK
| | - Alessandra Devoto
- Department of Biological Sciences, Plant Molecular Science and Centre of Systems and Synthetic Biology, Royal Holloway University of London, Egham, Surrey, UK
| |
Collapse
|
13
|
Delamare J, Brunel-Muguet S, Boukerb AM, Bressan M, Dumas L, Firmin S, Leroy F, Morvan-Bertrand A, Prigent-Combaret C, Personeni E. Impact of PGPR inoculation on root morphological traits and root exudation in rapeseed and camelina: interactions with heat stress. PHYSIOLOGIA PLANTARUM 2023; 175:e14058. [PMID: 38148195 DOI: 10.1111/ppl.14058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 12/28/2023]
Abstract
Root exudation is involved in the recruitment of beneficial microorganisms by trophic relationships and/or signalling pathways. Among beneficial microorganisms, Plant Growth-Promoting Rhizobacteria (PGPR) are known to improve plant growth and stress resistance. These interactions are of particular importance for species that do not interact with mycorrhizal fungi, such as rapeseed (Brassica napus L.) and camelina (Camelina sativa (L.) Crantz). However, heat stress is known to have a quantitative and qualitative impact on root exudation and could affect the interactions between plants and PGPR. We aimed to analyse the effects of PGPR inoculation on root morphology and exudation in rapeseed and camelina at the reproductive stage. The modulation of the effects of these interactions under heat stress was also investigated. The plants were inoculated twice at the reproductive stage with two different Pseudomonas species and were exposed to heat stress after the second inoculation. In non-stressing conditions, after bacterial inoculation, rapeseed and camelina exhibited two contrasting behaviours in C root allocation. While rapeseed plants seemed to suffer from the interactions with the bacteria, camelina plants appeared to control the relationship with the PGPR by modifying the composition of their root exudates. Under heat stress, the plant-PGPR interaction was unbalanced for rapeseed, for which the C allocation strategy is mainly driven by the C cost from the bacteria. Alternatively, camelina plants prioritized C allocation for their own above-ground development. This work opens up new perspectives for understanding plant-PGPR interactions, especially in an abiotic stress context.
Collapse
Affiliation(s)
- Jérémy Delamare
- UNICAEN, INRAE, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, CS14032, Normandie Université, Caen Cedex 5, France
| | - Sophie Brunel-Muguet
- UNICAEN, INRAE, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, CS14032, Normandie Université, Caen Cedex 5, France
| | - Amine M Boukerb
- CBSA UR4312, Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, Évreux, France
| | | | - Lucien Dumas
- UNICAEN, INRAE, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, CS14032, Normandie Université, Caen Cedex 5, France
| | | | | | - Annette Morvan-Bertrand
- UNICAEN, INRAE, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, CS14032, Normandie Université, Caen Cedex 5, France
| | - Claire Prigent-Combaret
- Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, 43 bd du 11 Novembre 1918, Université de Lyon, Villeurbanne, France
| | - Emmanuelle Personeni
- UNICAEN, INRAE, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, CS14032, Normandie Université, Caen Cedex 5, France
| |
Collapse
|
14
|
Canales J, Verdejo JF, Calderini DF. Transcriptome and Physiological Analysis of Rapeseed Tolerance to Post-Flowering Temperature Increase. Int J Mol Sci 2023; 24:15593. [PMID: 37958577 PMCID: PMC10648292 DOI: 10.3390/ijms242115593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Climate-change-induced temperature fluctuations pose a significant threat to crop production, particularly in the Southern Hemisphere. This study investigates the transcriptome and physiological responses of rapeseed to post-flowering temperature increases, providing valuable insights into the molecular mechanisms underlying rapeseed tolerance to heat stress. Two rapeseed genotypes, Lumen and Solar, were assessed under control and heat stress conditions in field experiments conducted in Valdivia, Chile. Results showed that seed yield and seed number were negatively affected by heat stress, with genotype-specific responses. Lumen exhibited an average of 9.3% seed yield reduction, whereas Solar showed a 28.7% reduction. RNA-seq analysis of siliques and seeds revealed tissue-specific responses to heat stress, with siliques being more sensitive to temperature stress. Hierarchical clustering analysis identified distinct gene clusters reflecting different aspects of heat stress adaptation in siliques, with a role for protein folding in maintaining silique development and seed quality under high-temperature conditions. In seeds, three distinct patterns of heat-responsive gene expression were observed, with genes involved in protein folding and response to heat showing genotype-specific expression. Gene coexpression network analysis revealed major modules for rapeseed yield and quality, as well as the trade-off between seed number and seed weight. Overall, this study contributes to understanding the molecular mechanisms underlying rapeseed tolerance to heat stress and can inform crop improvement strategies targeting yield optimization under changing environmental conditions.
Collapse
Affiliation(s)
- Javier Canales
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile
- ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
| | - José F. Verdejo
- Graduate School, Faculty of Agricultural Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile;
- Plant Production and Plant Protection Institute, Faculty of Agricultural Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Daniel F. Calderini
- Plant Production and Plant Protection Institute, Faculty of Agricultural Sciences, Universidad Austral de Chile, Valdivia 5110566, Chile
| |
Collapse
|
15
|
Ahmad N, Fatima S, Mehmood MA, Zaman QU, Atif RM, Zhou W, Rahman MU, Gill RA. Targeted genome editing in polyploids: lessons from Brassica. FRONTIERS IN PLANT SCIENCE 2023; 14:1152468. [PMID: 37409308 PMCID: PMC10318174 DOI: 10.3389/fpls.2023.1152468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/11/2023] [Indexed: 07/07/2023]
Abstract
CRISPR-mediated genome editing has emerged as a powerful tool for creating targeted mutations in the genome for various applications, including studying gene functions, engineering resilience against biotic and abiotic stresses, and increasing yield and quality. However, its utilization is limited to model crops for which well-annotated genome sequences are available. Many crops of dietary and economic importance, such as wheat, cotton, rapeseed-mustard, and potato, are polyploids with complex genomes. Therefore, progress in these crops has been hampered due to genome complexity. Excellent work has been conducted on some species of Brassica for its improvement through genome editing. Although excellent work has been conducted on some species of Brassica for genome improvement through editing, work on polyploid crops, including U's triangle species, holds numerous implications for improving other polyploid crops. In this review, we summarize key examples from genome editing work done on Brassica and discuss important considerations for deploying CRISPR-mediated genome editing more efficiently in other polyploid crops for improvement.
Collapse
Affiliation(s)
- Niaz Ahmad
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Samia Fatima
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Muhammad Aamer Mehmood
- Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Qamar U. Zaman
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China
- College of Tropical Crops, Hainan University, Haikou, China
| | - Rana Muhammad Atif
- National Center of Genome Editing, Center of Advanced Studies, Agriculture and Food Security, University of Agriculture, Faisalabad, Pakistan
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Weijun Zhou
- Ministry of Agriculture and Rural Affairs Key Lab of Spectroscopy Sensing, Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Mehboob-ur Rahman
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Rafaqat Ali Gill
- Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
16
|
Jedličková V, Hejret V, Demko M, Jedlička P, Štefková M, Robert HS. Transcriptome analysis of thermomorphogenesis in ovules and during early seed development in Brassica napus. BMC Genomics 2023; 24:236. [PMID: 37142980 PMCID: PMC10158150 DOI: 10.1186/s12864-023-09316-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/16/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Plant sexual reproduction is highly sensitive to elevated ambient temperatures, impacting seed development and production. We previously phenotyped this effect on three rapeseed cultivars (DH12075, Topas DH4079, and Westar). This work describes the transcriptional response associated with the phenotypic changes induced by heat stress during early seed development in Brassica napus. RESULTS We compared the differential transcriptional response in unfertilized ovules and seeds bearing embryos at 8-cell and globular developmental stages of the three cultivars exposed to high temperatures. We identified that all tissues and cultivars shared a common transcriptional response with the upregulation of genes linked to heat stress, protein folding and binding to heat shock proteins, and the downregulation of cell metabolism. The comparative analysis identified an enrichment for a response to reactive oxygen species (ROS) in the heat-tolerant cultivar Topas, correlating with the phenotypic changes. The highest heat-induced transcriptional response in Topas seeds was detected for genes encoding various peroxidases, temperature-induced lipocalin (TIL1), or protein SAG21/LEA5. On the contrary, the transcriptional response in the two heat-sensitive cultivars, DH12075 and Westar, was characterized by heat-induced cellular damages with the upregulation of genes involved in the photosynthesis and plant hormone signaling pathways. Particularly, the TIFY/JAZ genes involved in jasmonate signaling were induced by stress, specifically in ovules of heat-sensitive cultivars. Using a weighted gene co-expression network analysis (WGCNA), we identified key modules and hub genes involved in the heat stress response in studied tissues of either heat-tolerant or sensitive cultivars. CONCLUSIONS Our transcriptional analysis complements a previous phenotyping analysis by characterizing the growth response to elevated temperatures during early seed development and reveals the molecular mechanisms underlying the phenotypic response. The results demonstrated that response to ROS, seed photosynthesis, and hormonal regulation might be the critical factors for stress tolerance in oilseed rape.
Collapse
Affiliation(s)
- Veronika Jedličková
- Hormonal Crosstalk in Plant Development, Mendel Center for Plant Genomics and Proteomics, CEITEC MU-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Václav Hejret
- Bioinformatics Core Facility, CEITEC MU-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Martin Demko
- Bioinformatics Core Facility, CEITEC MU-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Pavel Jedlička
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Marie Štefková
- Hormonal Crosstalk in Plant Development, Mendel Center for Plant Genomics and Proteomics, CEITEC MU-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Hélène S Robert
- Hormonal Crosstalk in Plant Development, Mendel Center for Plant Genomics and Proteomics, CEITEC MU-Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
17
|
Mechanisms of Kale (Brassica oleracea var. acephala) Tolerance to Individual and Combined Stresses of Drought and Elevated Temperature. Int J Mol Sci 2022; 23:ijms231911494. [PMID: 36232818 PMCID: PMC9570052 DOI: 10.3390/ijms231911494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Rising temperatures and pronounced drought are significantly affecting biodiversity worldwide and reducing yields and quality of Brassica crops. To elucidate the mechanisms of tolerance, 33 kale accessions (B. oleracea var. acephala) were evaluated for individual (osmotic and elevated temperature stress) and combined stress (osmotic + temperature). Using root growth, biomass and proline content as reliable markers, accessions were evaluated for stress responses. Four representatives were selected for further investigation (photosynthetic performance, biochemical markers, sugar content, specialized metabolites, transcription level of transcription factors NAC, HSF, DREB and expression of heat shock proteins HSP70 and HSP90): very sensitive (392), moderately sensitive (395), tolerant (404) and most tolerant (411). Accessions more tolerant to stress conditions were characterized by higher basal content of proline, total sugars, glucosinolates and higher transcription of NAC and DREB. Under all stress conditions, 392 was characterized by a significant decrease in biomass, root growth, photosynthesis performance, fructan content, especially under osmotic and combined stress, a significant increase in HSF transcription and HSP accumulation under temperature stress and a significant decrease in NAC transcription under all stresses. The most tolerant accession under all applied stresses, 411 showed the least changes in all analyzed parameters compared with the other accessions.
Collapse
|