1
|
Li J, Kasal B. Review on the Structure-Property Relationship of Lignocellulosic Materials Measured by Atomic Force Microscopy. Biomacromolecules 2025; 26:1404-1418. [PMID: 39945405 PMCID: PMC11898059 DOI: 10.1021/acs.biomac.4c01278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 03/11/2025]
Abstract
In this review, we provide an overview of how atomic force microscopy (AFM) measurements on wood or other plant fibers help us understand the structure-property relationship in growing plants, matured wood material, and wood modifications and aging. We selected wood as a model material that can represent a number of lignocellulosic systems and attempted to address the structure-property relationship, as studied in situ. We selected AFM because it allows scientists to study materials in an unaltered, in situ form and relate chemical composition to material properties at a nanoscale level. We summarized the high-resolution measurements of wood cell walls such as topography, adhesion force, modulus, and chemical functional groups using AFM. Our three focus areas were: (1) how the cell wall develops its structure and property in living trees; (2) how the ultrastructure determines cell wall property; and (3) how the modification/aging of the cell wall changes its property in application scenarios.
Collapse
Affiliation(s)
- Juan Li
- Fraunhofer
Wilhelm-Klauditz-Institut WKI, Bienroder Weg 54E, 38108 Braunschweig, Germany
| | - Bohumil Kasal
- Faculty
of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaska 8, SI-6000 Koper, Slovenia
| |
Collapse
|
2
|
Sánchez Vilas J, Hernández-Alonso H, Rozas V, Retuerto R. Differential growth rate, water-use efficiency and climate sensitivity between males and females of Ilex aquifolium in north-western Spain. ANNALS OF BOTANY 2025; 135:357-370. [PMID: 39110105 PMCID: PMC11805936 DOI: 10.1093/aob/mcae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/06/2024] [Indexed: 10/17/2024]
Abstract
BACKGROUND AND AIMS Dioecious plant species, i.e. those in which male and female functions are housed in different individuals, are particularly vulnerable to global environmental changes. For long-lived plant species, such as trees, long-term studies are imperative to understand how growth patterns and their sensitivity to climate variability affect the sexes differentially. METHODS Here, we explore long-term intersexual differences in wood traits, namely radial growth rates and water-use efficiency quantified as stable carbon isotope abundance of wood cellulose, and their climate sensitivity in Ilex aquifolium trees growing in a natural population in north-western Spain. KEY RESULTS We found that sex differences in secondary growth rates were variable over time, with males outperforming females in both radial growth rates and water-use efficiency in recent decades. Summer water stress significantly reduced the growth of female trees in the following growing season, whereas the growth of male trees was favoured primarily by cloudy and rainy conditions in the previous autumn and winter combined with low cloud cover and warm conditions in summer. Sex-dependent lagged correlations between radial growth and water availability were found, with a strong association between tree growth and cumulative water availability in females at 30 months and in males at 10 months. CONCLUSIONS Overall, our results point to greater vulnerability of female trees to increasing drought, which could lead to sex-ratio biases threatening population viability in the future.
Collapse
Affiliation(s)
- Julia Sánchez Vilas
- Departamento de Bioloxía Funcional (Área de Ecoloxía), Facultade de Bioloxía, Universidade de Santiago de Compostela, c/ Lope Gómez de Marzoa s/n, 15782 Santiago de Compostela, Spain
- School of Biosciences, Sir Martin Evans Building, Cardiff University, CF10 3AX Cardiff, UK
| | - Héctor Hernández-Alonso
- EiFAB, iuFOR, Universidad de Valladolid, Campus Duques de Soria, 42004 Soria, Spain
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Vicente Rozas
- EiFAB, iuFOR, Universidad de Valladolid, Campus Duques de Soria, 42004 Soria, Spain
| | - Rubén Retuerto
- Departamento de Bioloxía Funcional (Área de Ecoloxía), Facultade de Bioloxía, Universidade de Santiago de Compostela, c/ Lope Gómez de Marzoa s/n, 15782 Santiago de Compostela, Spain
| |
Collapse
|
3
|
Liu C, Peltoniemi M, Alekseychik P, Mäkelä A, Hölttä T. A Coupled Model of Hydraulic Eco-Physiology and Cambial Growth - Accounting for Biophysical Limitations and Phenology Improves Stem Diameter Prediction at High Temporal Resolution. PLANT, CELL & ENVIRONMENT 2025; 48:1344-1365. [PMID: 39449245 PMCID: PMC11695789 DOI: 10.1111/pce.15239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
Traditional photosynthesis-driven growth models have considerable uncertainties in predicting tree growth under changing climates, partially because sink activities are directly affected by the environment but not adequately addressed in growth modelling. Therefore, we developed a semi-mechanistic model coupling stomatal optimality, temperature control of enzymatic activities and phenology of cambial growth. Parameterized using Bayesian inference and measured data on Picea abies and Pinus sylvestris in peatland and mineral soils in Finland, the coupled model simulates transpiration and assimilation rates and stem radial dimension (SRD) simultaneously at 30 min resolution. The results suggest that both the sink and phenological formulations with environmental effects are indispensable for capturing SRD dynamics across hourly to seasonal scales. Simulated using the model, growth was more sensitive than assimilation to temperature and soil water, suggesting carbon gain is not driving growth at the current temporal scale. Also, leaf-specific production was occasionally positively correlated with growth duration but not with growth onset timing or annual cambial area increment. Thus, as it is hardly explained by carbon gain, phenology itself should be included in sink-driven growth models of the trees in the boreal zone and possibly other environments where sink activities and photosynthesis are both restrained by harsh conditions.
Collapse
Affiliation(s)
- Che Liu
- Department of Forest Sciences, Faculty of Agriculture and ForestryUniversity of HelsinkiHelsinkiFinland
- Institute for Atmospheric and Earth System Research (INAR)University of HelsinkiHelsinkiFinland
| | | | | | - Annikki Mäkelä
- Department of Forest Sciences, Faculty of Agriculture and ForestryUniversity of HelsinkiHelsinkiFinland
- Institute for Atmospheric and Earth System Research (INAR)University of HelsinkiHelsinkiFinland
| | - Teemu Hölttä
- Department of Forest Sciences, Faculty of Agriculture and ForestryUniversity of HelsinkiHelsinkiFinland
- Institute for Atmospheric and Earth System Research (INAR)University of HelsinkiHelsinkiFinland
| |
Collapse
|
4
|
Zhao B, Song W, Chen Z, Zhang Q, Liu D, Bai Y, Li Z, Dong H, Gao X, Li X, Wang X. A process-based model of climate-driven xylogenesis and tree-ring formation in broad-leaved trees (BTR). TREE PHYSIOLOGY 2024; 44:tpae127. [PMID: 39331735 DOI: 10.1093/treephys/tpae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/23/2024] [Accepted: 09/25/2024] [Indexed: 09/29/2024]
Abstract
The process-based xylem formation model is an important tool for understanding the radial growth process of trees and its influencing factors. While numerous xylogenesis models for conifers have been developed, there is a lack of models available for non-coniferous trees. In this study, we present a process-based model designed for xylem formation and ring growth in broad-leaved trees, which we call the Broad-leaved Tree-Ring (BTR) model. Climate factors, including daylength, air temperature, soil moisture and vapor pressure deficit, drive daily xylem cell production (fibers and vessels) and growth (enlargement, wall deposition). The model calculates the total cell area in the simulated zone to determine the annual ring width. The results demonstrate that the BTR model can basically simulate inter-annual variation in ring width and intra-annual changes in vessel and fiber cell formation in Fraxinus mandshurica (ring-porous) and Betula platyphylla (diffuse-porous). The BTR model is a potential tool for understanding how different trees form wood and how climate change influences this process.
Collapse
Affiliation(s)
- Binqing Zhao
- Center for Ecological Research and Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, School of Ecology, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Wenqi Song
- Center for Ecological Research and Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, School of Ecology, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Zecheng Chen
- Center for Ecological Research and Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, School of Ecology, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Qingzhu Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Ecology, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Di Liu
- Center for Ecological Research and Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, School of Ecology, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Yuxin Bai
- Center for Ecological Research and Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, School of Ecology, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Zongshan Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
| | - Hanjun Dong
- Center for Ecological Research and Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, School of Ecology, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Xiaohui Gao
- Center for Ecological Research and Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, School of Ecology, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Xingxing Li
- Shijiazhuang Landscape Greening Engineering Project Construction Center, 435-2 Huaizhong Road, Yuhua District, Shijiazhuang 050000, China
| | - Xiaochun Wang
- Center for Ecological Research and Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, School of Ecology, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China
| |
Collapse
|
5
|
Zlobin IE. Tree post-drought recovery: scenarios, regulatory mechanisms and ways to improve. Biol Rev Camb Philos Soc 2024; 99:1595-1612. [PMID: 38581143 DOI: 10.1111/brv.13083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Efficient post-drought recovery of growth and assimilation enables a plant to return to its undisturbed state and functioning. Unlike annual plants, trees suffer not only from the current drought, but also from cumulative impacts of consecutive water stresses which cause adverse legacy effects on survival and performance. This review provides an integrated assessment of ecological, physiological and molecular evidence on the recovery of growth and photosynthesis in trees, with a view to informing the breeding of trees with a better ability to recover from water stress. Suppression of recovery processes can result not only from stress damage but also from a controlled downshift of recovery as part of tree acclimation to water-limited conditions. In the latter case, recovery processes could potentially be activated by turning off the controlling mechanisms, but several obstacles make this unlikely. Tree phenology, and specifically photoperiodic constraints, can limit post-drought recovery of growth and photosynthesis, and targeting these constraints may represent a promising way to breed trees with an enhanced ability to recover post-drought. The mechanisms of photoperiod-dependent regulation of shoot, secondary and root growth and of assimilation processes are reviewed. Finally, the limitations and trade-offs of altering the photoperiodic regulation of growth and assimilation processes are discussed.
Collapse
Affiliation(s)
- Ilya E Zlobin
- K.A. Timiryazev Institute of Plant Physiology, RAS, 35 Botanicheskaya St, Moscow, 127276, Russia
| |
Collapse
|
6
|
Wei Z, Wei H. Deciphering the intricate hierarchical gene regulatory network: unraveling multi-level regulation and modifications driving secondary cell wall formation. HORTICULTURE RESEARCH 2024; 11:uhad281. [PMID: 38344650 PMCID: PMC10857936 DOI: 10.1093/hr/uhad281] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/12/2023] [Indexed: 04/29/2025]
Abstract
Wood quality is predominantly determined by the amount and the composition of secondary cell walls (SCWs). Consequently, unraveling the molecular regulatory mechanisms governing SCW formation is of paramount importance for genetic engineering aimed at enhancing wood properties. Although SCW formation is known to be governed by a hierarchical gene regulatory network (HGRN), our understanding of how a HGRN operates and regulates the formation of heterogeneous SCWs for plant development and adaption to ever-changing environment remains limited. In this review, we examined the HGRNs governing SCW formation and highlighted the significant key differences between herbaceous Arabidopsis and woody plant poplar. We clarified many confusions in existing literatures regarding the HGRNs and their orthologous gene names and functions. Additionally, we revealed many network motifs including feed-forward loops, feed-back loops, and negative and positive autoregulation in the HGRNs. We also conducted a thorough review of post-transcriptional and post-translational aspects, protein-protein interactions, and epigenetic modifications of the HGRNs. Furthermore, we summarized how the HGRNs respond to environmental factors and cues, influencing SCW biosynthesis through regulatory cascades, including many regulatory chains, wiring regulations, and network motifs. Finally, we highlighted the future research directions for gaining a further understanding of molecular regulatory mechanisms underlying SCW formation.
Collapse
Affiliation(s)
- Zhigang Wei
- Engineering Research Center of Agricultural Microbiology Technology, Ministhry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
7
|
Tumajer J, Altman J, Lehejček J. Linkage between growth phenology and climate-growth responses along landscape gradients in boreal forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167153. [PMID: 37730045 DOI: 10.1016/j.scitotenv.2023.167153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Boreal forests represent an important carbon sink and, therefore, significantly contribute to climate change mitigation. Tree-ring width series of boreal species reflect climate variation at the moment of tree-ring formation but also lagged climatic effects from dormancy preceding tree-ring formation and antecedent growing seasons. However, little is known about how the growth sensitivity to climate in specific intra-annual periods varies across the landscape. Here, we assessed growth responses to climate variation during the 45 months preceding the tree-ring formation for nine boreal stands of Picea glauca and Picea mariana distributed along the gradients of elevation and slope aspect. We combined process-based modeling of wood formation and remote sensing data to determine growth phenology at each site. Next, we classified intra-annual seasons with significant climate-growth correlations based on the timing of dormancy and growth periods. Both the phenology and the climate-growth relationships systematically shifted with elevation and, to a lower extent, also with slope orientation at the treeline. The mean duration of the growing season varied between 100 days at treelines above 900 m and 160 days at lowlands below 500 m. The growth at treelines was stimulated by temperature in the summer of the tree-ring formation year and two years before tree-ring formation. The period of significant climate-growth correlations during the current summer did not exceed three months in agreement with the local duration of the growing season. The growth of trees in lower elevations was instead stimulated by high temperature during the dormancy periods but restricted by high temperature in antecedent summer seasons. In conclusion, our study highlights the linkage between the timing of climate-growth sensitivity and growth phenology, primarily determined by proximity to the treeline. Consequently, accounting for landscape gradients in growth phenology is crucial for upscaling the climatic limits of boreal stands' growth as climate change progresses.
Collapse
Affiliation(s)
- Jan Tumajer
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Albertov 6, 12843 Prague, Czech Republic.
| | - Jan Altman
- Institute of Botany, The Czech Academy of Sciences, Dukelská 135, 37901 Třeboň, Czech Republic; Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague 6, Suchdol, Czech Republic
| | - Jiří Lehejček
- Department of Environment, Faculty of Environment, Jan Evangelista Purkyně University, Pasteurova 15, 400 96 Ústí nad Labem, Czech Republic; Department of Environmental Security, Faculty of Logistics and Crisis Management, Tomas Bata University in Zlin, Studentské nám. 1532, 686 01 Uherské Hradiště, Czech Republic
| |
Collapse
|
8
|
Potkay A, Feng X. Dynamically optimizing stomatal conductance for maximum turgor-driven growth over diel and seasonal cycles. AOB PLANTS 2023; 15:plad044. [PMID: 37899972 PMCID: PMC10601388 DOI: 10.1093/aobpla/plad044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/04/2023] [Indexed: 10/31/2023]
Abstract
Stomata have recently been theorized to have evolved strategies that maximize turgor-driven growth over plants' lifetimes, finding support through steady-state solutions in which gas exchange, carbohydrate storage and growth have all reached equilibrium. However, plants do not operate near steady state as plant responses and environmental forcings vary diurnally and seasonally. It remains unclear how gas exchange, carbohydrate storage and growth should be dynamically coordinated for stomata to maximize growth. We simulated the gas exchange, carbohydrate storage and growth that dynamically maximize growth diurnally and annually. Additionally, we test whether the growth-optimization hypothesis explains nocturnal stomatal opening, particularly through diel changes in temperature, carbohydrate storage and demand. Year-long dynamic simulations captured realistic diurnal and seasonal patterns in gas exchange as well as realistic seasonal patterns in carbohydrate storage and growth, improving upon unrealistic carbohydrate responses in steady-state simulations. Diurnal patterns of carbohydrate storage and growth in day-long simulations were hindered by faulty modelling assumptions of cyclic carbohydrate storage over an individual day and synchronization of the expansive and hardening phases of growth, respectively. The growth-optimization hypothesis cannot currently explain nocturnal stomatal opening unless employing corrective 'fitness factors' or reframing the theory in a probabilistic manner, in which stomata adopt an inaccurate statistical 'memory' of night-time temperature. The growth-optimization hypothesis suggests that diurnal and seasonal patterns of stomatal conductance are driven by a dynamic carbon-use strategy that seeks to maintain homeostasis of carbohydrate reserves.
Collapse
Affiliation(s)
- Aaron Potkay
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Twin Cities, 500 Pillsbury Drive S.E., Minneapolis, MN 55455, USA
- Saint Anthony Falls Laboratory, University of Minnesota, Twin Cities, 23rd Ave SE, Minneapolis, MN 55414, USA
| | - Xue Feng
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Twin Cities, 500 Pillsbury Drive S.E., Minneapolis, MN 55455, USA
- Saint Anthony Falls Laboratory, University of Minnesota, Twin Cities, 23rd Ave SE, Minneapolis, MN 55414, USA
| |
Collapse
|
9
|
Belokopytova LV, Zhirnova DF, Yang B, Babushkina EA, Vaganov EA. Modeling of the Statistical Distribution of Tracheids in Conifer Rings: Finding Universal Criterion for Earlywood-Latewood Distinction. PLANTS (BASEL, SWITZERLAND) 2023; 12:3454. [PMID: 37836196 PMCID: PMC10574559 DOI: 10.3390/plants12193454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
The quantitative description of growth rings is yet incomplete, including the functional division into earlywood and latewood. Methods developed to date, such as the Mork criterion for conifers, can be biased and arbitrary depending on species and growth conditions. We proposed the use of modeling of the statistical distribution of tracheids to determine a universal criterion applicable to all conifer species. Thisstudy was based on 50-year anatomical measurements of Pinus sylvestris L., Pinus sibirica Du Tour, and Picea obovata Ledeb. near the upper tree line in the Western Sayan Mountains (South Siberia). Statistical distributions of the cell wall thickness (CWT)-to-radial-diameter (D) ratio and its slope were investigated for raw and standardized data (divided by the mean). The bimodal distribution of the slope for standardized CWT and D was modeled with beta distributions for earlywood and latewood tracheids and a generalized normal distribution for transition wood to account for the gradual shift in cell traits. The modelcan describe with high accuracy the growth ring structure for species characterized by various proportions of latewood, histometric traits, and gradual or abrupt transition. The proportion of two (or three, including transition wood) zones in the modeled distribution is proposed as a desired criterion.
Collapse
Affiliation(s)
- Liliana V. Belokopytova
- Khakass Technical Institute, Siberian Federal University, 655017 Abakan, Russia; (D.F.Z.); (E.A.B.)
- Institute of Ecology and Geography, Siberian Federal University, 660036 Krasnoyarsk, Russia;
| | - Dina F. Zhirnova
- Khakass Technical Institute, Siberian Federal University, 655017 Abakan, Russia; (D.F.Z.); (E.A.B.)
- Institute of Ecology and Geography, Siberian Federal University, 660036 Krasnoyarsk, Russia;
| | - Bao Yang
- School of Geographic and Oceanographic Science, Nanjing University, Nanjing 210093, China;
| | - Elena A. Babushkina
- Khakass Technical Institute, Siberian Federal University, 655017 Abakan, Russia; (D.F.Z.); (E.A.B.)
- Institute of Ecology and Geography, Siberian Federal University, 660036 Krasnoyarsk, Russia;
| | - Eugene A. Vaganov
- Institute of Ecology and Geography, Siberian Federal University, 660036 Krasnoyarsk, Russia;
- Department of Dendroecology, V.N. Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Science, 660036 Krasnoyarsk, Russia
| |
Collapse
|
10
|
Wang J, Jia H, Daniel G, Gao J, Jiang X, Ma L, Yue S, Guo J, Yin Y. Insights into asynchronous changes of cell wall polymers accumulated in different cell types during conifer xylem differentiation. Carbohydr Polym 2023; 316:121076. [PMID: 37321750 DOI: 10.1016/j.carbpol.2023.121076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/20/2023] [Accepted: 05/28/2023] [Indexed: 06/17/2023]
Abstract
An improved understanding of the events involved in cell wall polymers deposition during xylem development could provide new scientific ways for molecular regulation and biomass utilization. Axial and radial cells are spatially heterogeneous and have highly cross-correlated developmental behavior, whereas the deposition of corresponding cell wall polymers during xylem differentiation is less studied. To clarify our hypothesis that cell wall polymers of two cell types accumulated asynchronously, we performed hierarchical visualization, including label-free in situ spectral imaging of different polymer compositions during the development of Pinus bungeana. In axial tracheids, the deposition of cellulose and glucomannan was observed on earlier stages of secondary wall thickening than that of xylan and lignin, while xylan distribution was strongly related to spatial distribution of lignin during differentiation. The content of lignin and polysaccharides increased by over 130 % and 60 % respectively when the S3 layer was formed, compared to the S2 stage. In ray cells, the deposition of crystalline cellulose, xylan, and lignin was generally lagged compared to that in corresponding axial tracheids, although the process followed a similar order. The concentration of lignin and polysaccharides in ray cells was only approximately 50 % of that in the axial tracheids during secondary wall thickening.
Collapse
Affiliation(s)
- Jie Wang
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; Wood Specimen Resource Center (WOODPEDIA) of National Forestry and Grassland Administration, Beijing 100091, China.
| | - Hao Jia
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| | - Geoffrey Daniel
- Department of Forest Biomaterials and Technology/Wood Science, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden.
| | - Jie Gao
- Department of Forest Biomaterials and Technology/Wood Science, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden.
| | - Xiaomei Jiang
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; Wood Specimen Resource Center (WOODPEDIA) of National Forestry and Grassland Administration, Beijing 100091, China.
| | - Lingyu Ma
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; Wood Specimen Resource Center (WOODPEDIA) of National Forestry and Grassland Administration, Beijing 100091, China
| | - Shuhua Yue
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Institute of Medical Photonics, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| | - Juan Guo
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; Wood Specimen Resource Center (WOODPEDIA) of National Forestry and Grassland Administration, Beijing 100091, China.
| | - Yafang Yin
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; Wood Specimen Resource Center (WOODPEDIA) of National Forestry and Grassland Administration, Beijing 100091, China.
| |
Collapse
|
11
|
Tumajer J, Begović K, Čada V, Jenicek M, Lange J, Mašek J, Kaczka RJ, Rydval M, Svoboda M, Vlček L, Treml V. Ecological and methodological drivers of non-stationarity in tree growth response to climate. GLOBAL CHANGE BIOLOGY 2023; 29:462-476. [PMID: 36200330 DOI: 10.1111/gcb.16470] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Radial tree growth is sensitive to environmental conditions, making observed growth increments an important indicator of climate change effects on forest growth. However, unprecedented climate variability could lead to non-stationarity, that is, a decoupling of tree growth responses from climate over time, potentially inducing biases in climate reconstructions and forest growth projections. Little is known about whether and to what extent environmental conditions, species, and model type and resolution affect the occurrence and magnitude of non-stationarity. To systematically assess potential drivers of non-stationarity, we compiled tree-ring width chronologies of two conifer species, Picea abies and Pinus sylvestris, distributed across cold, dry, and mixed climates. We analyzed 147 sites across the Europe including the distribution margins of these species as well as moderate sites. We calibrated four numerical models (linear vs. non-linear, daily vs. monthly resolution) to simulate growth chronologies based on temperature and soil moisture data. Climate-growth models were tested in independent verification periods to quantify their non-stationarity, which was assessed based on bootstrapped transfer function stability tests. The degree of non-stationarity varied between species, site climatic conditions, and models. Chronologies of P. sylvestris showed stronger non-stationarity compared with Picea abies stands with a high degree of stationarity. Sites with mixed climatic signals were most affected by non-stationarity compared with sites sampled at cold and dry species distribution margins. Moreover, linear models with daily resolution exhibited greater non-stationarity compared with monthly-resolved non-linear models. We conclude that non-stationarity in climate-growth responses is a multifactorial phenomenon driven by the interaction of site climatic conditions, tree species, and methodological features of the modeling approach. Given the existence of multiple drivers and the frequent occurrence of non-stationarity, we recommend that temporal non-stationarity rather than stationarity should be considered as the baseline model of climate-growth response for temperate forests.
Collapse
Affiliation(s)
- Jan Tumajer
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Krešimir Begović
- Faculty of Forestry and Wood Science, Department of Forest Ecology, Czech University of Life Science, Prague, Czech Republic
| | - Vojtěch Čada
- Faculty of Forestry and Wood Science, Department of Forest Ecology, Czech University of Life Science, Prague, Czech Republic
| | - Michal Jenicek
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jelena Lange
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiří Mašek
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ryszard J Kaczka
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Miloš Rydval
- Faculty of Forestry and Wood Science, Department of Forest Ecology, Czech University of Life Science, Prague, Czech Republic
| | - Miroslav Svoboda
- Faculty of Forestry and Wood Science, Department of Forest Ecology, Czech University of Life Science, Prague, Czech Republic
| | - Lukáš Vlček
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Hydrodynamics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Václav Treml
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
12
|
Wood structure explained by complex spatial source-sink interactions. Nat Commun 2022; 13:7824. [PMID: 36535928 PMCID: PMC9763502 DOI: 10.1038/s41467-022-35451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 12/04/2022] [Indexed: 12/23/2022] Open
Abstract
Wood is a remarkable material with great cultural, economic, and biogeochemical importance. However, our understanding of its formation is poor. Key properties that have not been explained include the anatomy of growth rings (with consistent transitions from low-density earlywood to high density latewood), strong temperature-dependence of latewood density (used for historical temperature reconstructions), the regulation of cell size, and overall growth-temperature relationships in conifer and ring-porous tree species. We have developed a theoretical framework based on observations on Pinus sylvestris L. in northern Sweden. The observed anatomical properties emerge from our framework as a consequence of interactions in time and space between the production of new cells, the dynamics of developmental zone widths, and the distribution of carbohydrates across the developing wood. Here we find that the diffusion of carbohydrates is critical to determining final ring anatomy, potentially overturning current understanding of how wood formation responds to environmental variability and transforming our interpretation of tree rings as proxies of past climates.
Collapse
|
13
|
Inácio V, Santos R, Prazeres R, Graça J, Miguel CM, Morais-Cecílio L. Epigenetics at the crossroads of secondary growth regulation. FRONTIERS IN PLANT SCIENCE 2022; 13:970342. [PMID: 35991449 PMCID: PMC9389228 DOI: 10.3389/fpls.2022.970342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/18/2022] [Indexed: 05/20/2023]
Abstract
The development of plant tissues and organs during post-embryonic growth occurs through the activity of both primary and secondary meristems. While primary meristems (root and shoot apical meristems) promote axial plant growth, secondary meristems (vascular and cork cambium or phellogen) promote radial thickening and plant axes strengthening. The vascular cambium forms the secondary xylem and phloem, whereas the cork cambium gives rise to the periderm that envelops stems and roots. Periderm takes on an increasingly important role in plant survival under climate change scenarios, but it is also a forest product with unique features, constituting the basis of a sustainable and profitable cork industry. There is established evidence that epigenetic mechanisms involving histone post-translational modifications, DNA methylation, and small RNAs play important roles in the activity of primary meristem cells, their maintenance, and differentiation of progeny cells. Here, we review the current knowledge on the epigenetic regulation of secondary meristems, particularly focusing on the phellogen activity. We also discuss the possible involvement of DNA methylation in the regulation of periderm contrasting phenotypes, given the potential impact of translating this knowledge into innovative breeding programs.
Collapse
Affiliation(s)
- Vera Inácio
- BioISI – Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- *Correspondence: Vera Inácio,
| | - Raquel Santos
- BioISI – Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Rafael Prazeres
- BioISI – Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - José Graça
- Forest Research Centre (CEF), Institute of Agronomy, Universidade de Lisboa, Lisbon, Portugal
| | - Célia M. Miguel
- BioISI – Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Leonor Morais-Cecílio
- Linking Landscape, Environment, Agriculture and Food (LEAF), Institute of Agronomy, Associated Laboratory TERRA, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|