1
|
Ali Z, Tan QW, Lim PK, Chen H, Pfeifer L, Julca I, Lee JM, Classen B, de Vries S, de Vries J, Vinter F, Alvarado C, Layens A, Mizrachi E, Motawie MS, Joergensen B, Ulvskov P, Van de Peer Y, Ho BC, Sibout R, Mutwil M. Comparative transcriptomics in ferns reveals key innovations and divergent evolution of the secondary cell walls. NATURE PLANTS 2025:10.1038/s41477-025-01978-y. [PMID: 40269175 DOI: 10.1038/s41477-025-01978-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 03/10/2025] [Indexed: 04/25/2025]
Abstract
Ferns are essential for understanding plant evolution; however, their large and intricate genomes have kept their genetic landscape largely unexplored, with only a few genomes sequenced and limited transcriptomic data available. To bridge this gap, we generated extensive RNA-sequencing data across various organs from 22 representative fern species, resulting in high-quality transcriptome assemblies. These data enabled us to construct a time-calibrated phylogeny for ferns, encompassing all major clades, which revealed numerous instances of whole-genome duplication. We highlighted the distinctiveness of fern genetics, discovering that half of the identified gene families are unique to ferns. Our exploration of fern cell walls through biochemical and immunological analyses uncovered the presence of the lignin syringyl unit, along with evidence of its independent evolution in ferns. Additionally, the identification of an unusual sugar in fern cell walls suggests a divergent evolutionary trajectory in cell wall biochemistry, probably influenced by gene duplication and sub-functionalization. To facilitate further research, we have developed an online database that includes preloaded genomic and transcriptomic data for ferns and other land plants. We used this database to demonstrate the independent evolution of lignocellulosic gene modules in ferns. Our findings provide a comprehensive framework illustrating the unique evolutionary journey ferns have undertaken since diverging from the last common ancestor of euphyllophytes more than 360 million years ago.
Collapse
Affiliation(s)
- Zahin Ali
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, Goettingen Center for Molecular Biosciences, Campus Institute Data Science, University of Goettingen, Göttingen, Germany
| | - Qiao Wen Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Peng Ken Lim
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Hengchi Chen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Lukas Pfeifer
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Irene Julca
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- University of Lausanne, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Jia Min Lee
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Birgit Classen
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Sophie de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, Goettingen Center for Molecular Biosciences, Campus Institute Data Science, University of Goettingen, Göttingen, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, Goettingen Center for Molecular Biosciences, Campus Institute Data Science, University of Goettingen, Göttingen, Germany
| | | | | | | | - Eshchar Mizrachi
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Mohammed Saddik Motawie
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Bodil Joergensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Peter Ulvskov
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
| | - Boon Chuan Ho
- Singapore Botanic Gardens, National Parks Board, Singapore, Republic of Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore
| | | | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
2
|
Zhao J, Liang ZL, Fang SL, Li RJ, Huang CJ, Zhang LB, Robison T, Zhu ZM, Cai WJ, Yu H, He ZR, Zhou XM. Phylogenomics of Paragymnopteris (Cheilanthoideae, Pteridaceae): Insights from plastome, mitochondrial, and nuclear datasets. Mol Phylogenet Evol 2025; 204:108253. [PMID: 39617091 DOI: 10.1016/j.ympev.2024.108253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/30/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024]
Abstract
Previous studies have shown that at least six genera of the Cheilanthoideae, a subfamily of the fern family Pteridaceae, may not be monophyletic. In these non-monophyletic genera, the Old-World genus Paragymnopteris including approximately five species have long been controversial. In this study, with an extensive taxon sampling of Paragymnopteris, we assembled 19 complete plastomes of all recognized Paragymnopteris species, plastomes of Pellaea (3 species) and Argyrochosma (1 species), as well as transcriptomes from Paragymnopteris (6 species) and Argyrochosma (1 species). We conducted a comprehensive and systematic phylogenomic analysis focusing on the contentious relationships among the genus of Paragymnopteris through 9 plastid makers, the plastomes, mitochondria, nuclear ribosomal cistron genomes, and single-copy nuclear genes. Moreover, we further combined distribution, ploidy, and morphological features to investigate the evolution of Paragymnopteris. The backbone of Paragymnopteris was resolved consistently in the nuclear and plastid phylogenies. Our major results include: (1) Paragymnopteris is not monophyletic including two fully supported clades; (2) confirming that Paragymnopteris delavayi var. intermedia is a close relative of P. delavayi instead of P. marantae var. marantae; (3) the chromosome base number may not be a stable trait which has previously been used as an important character to divide Paragymnopteris into two groups; and (4) gene flow or introgression might be the main reason for the gene trees conflict of Paragymnopteris, but both gene flow and ILS might simultaneously and/or cumulatively act on the conflict of core pellaeids. The robust phylogeny of Paragymnopteris presented here will help us for the future studies of the arid to semi-arid ferns of Cheilanthoideae at the evolutionary, physiological, developmental, and omics-based levels.
Collapse
Affiliation(s)
- Jing Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, Yunnan, China
| | - Zhen-Long Liang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, Sichuan 610041, China
| | - Shao-Li Fang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, Yunnan, China
| | - Rong-Juan Li
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, Yunnan, China
| | - Chuan-Jie Huang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, Yunnan, China
| | - Li-Bing Zhang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, Sichuan 610041, China; Missouri Botanical Garden, 4344 Shaw Blvd, St. Louis, MO 63110, USA
| | - Tanner Robison
- Department of Biology, Utah State University, Logan, UT, USA
| | - Zhang-Ming Zhu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, Yunnan, China
| | - Wen-Jing Cai
- Yunnan Institute of Forest Inventory and Planning, Kunming, Yunnan 650500, China
| | - Hong Yu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, Yunnan, China.
| | - Zhao-Rong He
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming, Yunnan 650500, China.
| | - Xin-Mao Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, Yunnan, China.
| |
Collapse
|
3
|
Zhao J, Wang JG, Hu YP, Huang CJ, Fang SL, Wan ZY, Li RJ, Yu H, He ZR, Zhou XM. Phylogenetic Inferences and Historical Biogeography of Onocleaceae. PLANTS (BASEL, SWITZERLAND) 2025; 14:510. [PMID: 40006769 PMCID: PMC11858849 DOI: 10.3390/plants14040510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
The family Onocleaceae represents a small family of terrestrial ferns, with four genera and around five species. It has a circumboreal to north temperate distribution, and exhibits a disjunct distribution between Eurasia and North America, including Mexico. Historically, the taxonomy and classification of this family has been subject to debate and contention among scholars, leading to contradictory classifications and disagreements on the number of genera and species within the family. Furthermore, due to this disjunct intercontinental distribution and the lack of detailed study across its wide range, this family merits further study to clarify its distributional pattern. Maximum likelihood and Bayesian phylogenetic reconstructions were based on a concatenated sequence dataset for 17 plastid loci and one nuclear locus, which were generated from 106 ingroup and six outgroup taxa from three families. Phylogenetic analyses support that Onocleaceae is composed of four main clades, and Pentarhizidium was recovered as the first branching lineages in Onocleaceae. Molecular dating and ancestral area reconstruction analyses suggest that the stem group of Onocleaceae originated in Late Cretaceous, with subsequent diversification and establishment of the genera Matteuccia, Onoclea, Onocleopsis, and Pentarhizidium during the Paleogene and Neogene. The ancestors of Matteuccia, Onoclea, and Onocleopsis could have migrated to North America via the Beringian land bridge or North Atlantic land bridge which suggests that the diversification of Matteuccia + Onoclea + Onocleopsis closely aligns with the Paleocene-Eocene Thermal Maximum (PETM). In addition, these results suggest that Onocleaceae species diversity peaks during the late Neogene to Quaternary. Studies such as this enhance our understanding of the mechanisms and climatic conditions shaping disjunct distribution in ferns and lycophytes of eastern Asia, North America, and Mexico and contribute to a growing body of evidence from other taxa, to advance our understanding of the origins and migration of plants across continents.
Collapse
Affiliation(s)
- Jing Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (J.Z.); (Y.-P.H.); (C.-J.H.); (S.-L.F.); (Z.-Y.W.); (R.-J.L.); (H.Y.)
| | - Jia-Guan Wang
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming 650500, China;
| | - Yu-Ping Hu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (J.Z.); (Y.-P.H.); (C.-J.H.); (S.-L.F.); (Z.-Y.W.); (R.-J.L.); (H.Y.)
| | - Chuan-Jie Huang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (J.Z.); (Y.-P.H.); (C.-J.H.); (S.-L.F.); (Z.-Y.W.); (R.-J.L.); (H.Y.)
| | - Shao-Li Fang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (J.Z.); (Y.-P.H.); (C.-J.H.); (S.-L.F.); (Z.-Y.W.); (R.-J.L.); (H.Y.)
| | - Zi-Yue Wan
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (J.Z.); (Y.-P.H.); (C.-J.H.); (S.-L.F.); (Z.-Y.W.); (R.-J.L.); (H.Y.)
| | - Rong-Juan Li
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (J.Z.); (Y.-P.H.); (C.-J.H.); (S.-L.F.); (Z.-Y.W.); (R.-J.L.); (H.Y.)
| | - Hong Yu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (J.Z.); (Y.-P.H.); (C.-J.H.); (S.-L.F.); (Z.-Y.W.); (R.-J.L.); (H.Y.)
| | - Zhao-Rong He
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming 650500, China;
| | - Xin-Mao Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (J.Z.); (Y.-P.H.); (C.-J.H.); (S.-L.F.); (Z.-Y.W.); (R.-J.L.); (H.Y.)
| |
Collapse
|
4
|
Leslie AB, Mander L. Genomic correlates of vascular plant reproductive complexity and the uniqueness of angiosperms. THE NEW PHYTOLOGIST 2025; 245:1733-1745. [PMID: 39611474 DOI: 10.1111/nph.20302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/10/2024] [Indexed: 11/30/2024]
Abstract
Whole genome duplication (WGD) likely plays an important role in plant macroevolution, and has been implicated in diversification rate shifts, structural innovations, and increased disparity. But the general effects of WGD are challenging to evaluate, in part due to the difficulty of directly comparing morphological patterns across disparate clades. We explored relationships between WGD and the evolution of reproductive complexity across vascular plants using a metric based on the number of reproductive part types. We used multiple regression models to evaluate the relative importance of inferred WGD events, genome size, and a suite of additional variables relating to growth habit and reproductive biology in explaining part type complexity. WGD was a consistent predictor of reproductive complexity only among angiosperms. Across vascular plants generally, reproductive biology, clade identity, and the presence of bisexual strobili (those that produce microsporangiate and megasporangiate organs) were better predictors of complexity. Angiosperms are unique among vascular plants in combining frequent polyploidy with high-reproductive complexity. Whether WGD is mechanistically linked to floral complexity is unclear, but we suggest widespread polyploidy and increased complexity were ultimately facilitated by the evolution of herbaceous growth habits in early angiosperms.
Collapse
Affiliation(s)
- Andrew B Leslie
- Earth and Planetary Sciences, Stanford University, 450 Jane Stanford Way, Building 320, Room 118, Stanford, CA, 94305, USA
| | - Luke Mander
- School of Environment, Earth and Ecosystem Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| |
Collapse
|
5
|
Dhakal R, Harkess A, Wolf P. Chromosome Numbers and Reproductive Life Cycles in Green Plants: A Phylotranscriptomic Perspective. PLANT DIRECT 2025; 9:e70044. [PMID: 39867917 PMCID: PMC11758355 DOI: 10.1002/pld3.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/24/2024] [Accepted: 01/15/2025] [Indexed: 01/28/2025]
Abstract
The strong correlation between reproductive life cycle type and chromosome numbers in green plants has been a long-standing mystery in evolutionary biology. Within green plants, the derived condition of heterosporous reproduction has emerged from the ancestral condition of homospory in disparate locations on the phylogenetic tree at least 11 times, of which three lineages are extant. In all green plant lineages where heterospory has emerged, there has been a significant downsizing in chromosome numbers. This dynamic has been investigated without clear answers for many decades. In this study, we combine known ideas from existing literature with novel methods, tools, and data to generate fresh insights into an old question. Using gene family evolution models and selection analyses, we identified gene families that have undergone significant expansion, contraction, or selection in heterosporous lineages. Alongside lineage-specific genomic changes, our results revealed shared genomic changes/trends among heterosporous lineages. We found expansions in gene families related to developmental regulation, signaling pathways, and stress responses across heterosporous groups. Notably, the MATE efflux family showed consistent expansion and evidence of selection in heterosporous lineages, suggesting a potentially conserved role in heterospory evolution. These findings could provide novel avenues to investigate and probe the underlying mechanism that may underpin the association between heterospory and genomic changes. The general importance of chromosome numbers, structure, and sizes in cellular biology notwithstanding, the association between the emergence of heterosporous reproduction and chromosome number reduction/genome downsizing is not fully understood. It remains unclear why there exists an association between aspects of biology at such disparate levels as reproductive life cycles and chromosome numbers/genome size. Exploring and answering this conundrum of evolutionary biology can add to our broader understanding of life sciences and of biology at different levels. Applying the novel tools and methods emerging from ongoing progress in biotechnology and computational sciences presents an opportunity to make new inroads into this long-standing question.
Collapse
Affiliation(s)
- Rijan R. Dhakal
- Department of Biological SciencesUniversity of Alabama in HuntsvilleHuntsvilleAlabamaUSA
- Donald Danforth Plant Science CenterSaint LouisMissouriUSA
| | - Alex Harkess
- HudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
| | - Paul G. Wolf
- Department of Biological SciencesUniversity of Alabama in HuntsvilleHuntsvilleAlabamaUSA
| |
Collapse
|
6
|
Blake-Mahmud J, Sessa EB, Visger CJ, Watkins JE. Polyploidy and environmental stress response: a comparative study of fern gametophytes. THE NEW PHYTOLOGIST 2025; 245:885-898. [PMID: 39044655 DOI: 10.1111/nph.19969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024]
Abstract
Climate change is rapidly altering natural habitats and generating complex patterns of environmental stress. Ferns are major components of many forest understories and, given their independent gametophyte generation, may experience unique pressures in emerging temperature and drought regimes. Polyploidy is widespread in ferns and may provide a selective advantage in these rapidly changing environments. This work aimed to understand whether the gametophytes of allopolyploid ferns respond differently to climate-related physiological stress than their diploid parents. The experimental approach involved a multifactorial design with 27 treatment combinations including exposure to multiple levels of drought and temperature over three treatment durations, with recovery measured at multiple timepoints. We measured Chl fluorescence from over 2000 gametophytes to evaluate stress avoidance and tolerance in diploid and polyploid species. Polyploids generally showed a greater ability to avoid and/or tolerate a range of stress conditions compared with their diploid counterparts, suggesting that polyploidy may confer enhanced flexibility and resilience under climate stress. Overall, these results suggest that polyploidy may provide some resilience to climate change in mixed ploidy populations. However, all species remain susceptible to the impacts of extreme drought and heat stress.
Collapse
Affiliation(s)
| | - Emily B Sessa
- William & Lynda Steere Herbarium, New York Botanical Garden, Bronx, NY, 10458, USA
| | - Clayton J Visger
- Department of Biological Sciences, California State University, Sacramento, CA, 95819, USA
| | - James E Watkins
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| |
Collapse
|
7
|
Jiang LJ, Zhao J, Wang JG, Landrein S, Shi JP, Huang CJ, Luo M, Zhou XM, Niu HB, He ZR. Deciphering the evolution and biogeography of ant-ferns Lecanopteris s.s. Mol Phylogenet Evol 2024; 201:108199. [PMID: 39278383 DOI: 10.1016/j.ympev.2024.108199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
Southeast Asia is a biodiversity hotspot characterized by a complex paleogeography, and its Polypodiopsida flora is particularly diverse. While hybridization is recognized as common in ferns, further research is needed to investigate the relationship between hybridization events and fern diversity. Lecanopteris s.s., an ant-associated fern, has been subject to debate regarding species delimitations primarily due to limited DNA markers and species sampling. Our study integrates 22 newly generated plastomes, 22 transcriptomes, and flow cytometry of all native species along with two cultivated hybrids. Our objective is to elucidate the reticulate evolutionary history within Lecanopteris s.s. through the integration of phylobiogeographic reconstruction, gene flow inference, and genome size estimation. Key findings of our study include: (1) An enlarged plastome size (178-187 Kb) in Lecanopteris s.s., attributed to extreme expansion of the Inverted Repeat (IR) regions; (2) The traditional 'pumila' and 'crustacea' groups are paraphyletic; (3) Significant cytonuclear discordance attributed to gene flow; (4) Natural hybridization and introgression in the 'pumila' and 'darnaedii' groups; (5) L. luzonensis is the maternal parent of L. 'Yellow Tip', with L. pumila suggested as a possible paternal parent; (6) L. 'Tatsuta' is a hybrid between L. luzonensis and L. crustacea; (7) Lecanopteris s.s. first diverged during the Neogene and then during the middle Miocene climatic optimum in the Indochina and Sundaic regions. In conclusion, the biogeographic history and speciation of Lecanopteris have been profoundly shaped by past climate changes and geodynamics of Southeast Asia. Dispersals, hybridization and introgression between species act as pivotal factors in the evolutionary trajectory of Lecanopteris s.s.. This research provides a robust framework for further exploration and understanding of the complex dynamics driving the diversification and distribution patterns within Polypodiaceae subfamily Microsoroideae.
Collapse
Affiliation(s)
- Li-Ju Jiang
- Gardening and Horticulture Centre, Xishuangbanna Tropic Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China
| | - Jing Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Jia-Guan Wang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Sven Landrein
- Kadoorie Farm and Botanic Garden, Lam Kam Road, Tai Po, New Territories, Hong Kong Special Administrative Region of China
| | - Ji-Pu Shi
- Gardening and Horticulture Centre, Xishuangbanna Tropic Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China
| | - Chuan-Jie Huang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Miao Luo
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Xin-Mao Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China.
| | - Hong-Bin Niu
- Gardening and Horticulture Centre, Xishuangbanna Tropic Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China.
| | - Zhao-Rong He
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming 650500, Yunnan, China.
| |
Collapse
|
8
|
Zhao J, Huang CJ, Jiang LJ, He ZR, Yang S, Zhu ZM, Zhang L, Yu H, Zhou XM, Wang JG. Phylogenomic analyses of the pantropical Platycerium Desv. (Platycerioideae) reveal their complex evolution and historical biogeography. Mol Phylogenet Evol 2024; 201:108213. [PMID: 39393764 DOI: 10.1016/j.ympev.2024.108213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024]
Abstract
Platycerium is a genus of pantropical epiphytic ferns consisting of ca. 18 species and are highly sought after by horticultural enthusiasts. Although the monophyly of this genus has been well supported in previous molecular studies, as an intercontinentally disjunct genus, the origin and distribution pattern of Platycerium were elusive and controversial. This is mainly due to limited taxon sampling, a plastid representing only a single coalescent history, the lack of fossil evidence, and so on. Here, by utilizing genome-skimming sequencing, transcriptome sequencing, and flow cytometry, we integrated chloroplast genomes, data of single-copy nuclear genes, ploidy levels, morphology, and geographic distribution to understand the species phylogeny and the evolutionary and biogeographic history of Platycerium. Our major results include: (1) based on both plastid and nuclear datasets, Platycerium is consistently resolved into three fully supported clades: the Afro-American (AA) clade, the Javan-Australian (JA) clade, and the Malayan-Asian (MA) clade. The AA clade and MA clade are further divided into three and two subclades, respectively; (2) a large amount of gene tree conflict, as well as cytonuclear discordance, was found and can be explained by hybridization and incomplete lineage sorting, and most of the hybridization hypotheses represented ancient hybridization events; (3) through molecular dating, the crown age of Platycerium is determined to be at approximately 32.79 Ma based on the plastid dataset or 29.08 Ma based on the nuclear dataset in the Middle Oligocene; (4) ancestral area reconstruction analysis from different datasets showed that Platycerium most likely originated from Indochina; (5) current distribution patterns are resultant from long-distance dispersals, ancient orogeny, and an ancient climate event; and (6) species diversification was driven by polyploidization, dispersal, and hybridization. This study presented here will help understand the evolution of tropical plant flora and provide a reference for the cultivation and breeding of staghorn ferns.
Collapse
Affiliation(s)
- Jing Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Chuan-Jie Huang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Li-Ju Jiang
- Gardening and Horticulture Center, Xishuangbanna Tropic Botanical Garden, Chinese Academy of Sciences, Mengla 666303, Yunnan, China
| | - Zhao-Rong He
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming 650500, Yunnan, China
| | - Shuai Yang
- Plant Fairyland, Boda Road, Chenggong District, Kunming 650503, Yunnan, China
| | - Zhang-Ming Zhu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China
| | - Liang Zhang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Hong Yu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China.
| | - Xin-Mao Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China.
| | - Jia-Guan Wang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650504, Yunnan, China.
| |
Collapse
|
9
|
Pelosi JA, Zumwalde BA, Testo WL, Kim EH, Burleigh JG, Sessa EB. All tangled up: Unraveling phylogenetics and reticulate evolution in the vining ferns, Lygodium (Schizaeales). AMERICAN JOURNAL OF BOTANY 2024; 111:e16389. [PMID: 39162392 DOI: 10.1002/ajb2.16389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 08/21/2024]
Abstract
PREMISE Reticulate evolution, often accompanied by polyploidy, is prevalent in plants, and particularly in the ferns. Resolving the resulting non-bifurcating histories remains a major challenge for plant phylogenetics. Here, we present a phylogenomic investigation into the complex evolutionary history of the vining ferns, Lygodium (Lygodiaceae, Schizaeales). METHODS Using a targeted enrichment approach with the GoFlag 408 flagellate land plant probe set, we generated large nuclear and plastid sequence datasets for nearly all taxa in the genus and constructed the most comprehensive phylogeny of the family to date using concatenated maximum likelihood and coalescence approaches. We integrated this phylogeny with cytological and spore data to explore karyotype evolution and generate hypotheses about the origins of putative polyploids and hybrids. RESULTS Our data and analyses support the origins of several putative allopolyploids (e.g., L. cubense, L. heterodoxum) and hybrids (e.g., L. ×fayae) and also highlight the potential prevalence of autopolyploidy in this clade (e.g., L. articulatum, L. flexuosum, and L. longifolium). CONCLUSIONS Our robust phylogenetic framework provides valuable insights into dynamic reticulate evolution in this clade and demonstrates the utility of target-capture data for resolving these complex relationships.
Collapse
Affiliation(s)
- Jessie A Pelosi
- Department of Biology, University of Florida, Gainesville, 32611, Florida, USA
| | - Bethany A Zumwalde
- Department of Biology, University of Florida, Gainesville, 32611, Florida, USA
| | - Weston L Testo
- Department of Biology, University of Florida, Gainesville, 32611, Florida, USA
- Botanical Research Institute of Texas, Fort Worth, 76107, Texas, USA
- The Pringle Herbarium, Department of Plant Biology, University of Vermont, Burlington, 05405, Vermont, USA
| | - Emily H Kim
- Department of Biology, University of Florida, Gainesville, 32611, Florida, USA
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, 32611, Florida, USA
| | - J Gordon Burleigh
- Department of Biology, University of Florida, Gainesville, 32611, Florida, USA
| | - Emily B Sessa
- Department of Biology, University of Florida, Gainesville, 32611, Florida, USA
- William and Lynda Steere Herbarium, The New York Botanical Garden, Bronx, 10458, New York, USA
| |
Collapse
|
10
|
Tseng YH, Kuo LY, Borokini I, Fawcett S. The role of deep hybridization in fern speciation: Examples from the Thelypteridaceae. AMERICAN JOURNAL OF BOTANY 2024; 111:e16388. [PMID: 39135339 DOI: 10.1002/ajb2.16388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024]
Abstract
PREMISE Hybridization is recognized as an important mechanism in fern speciation, with many allopolyploids known among congeners, as well as evidence of ancient genome duplications. Several contemporary instances of deep (intergeneric) hybridization have been noted, invariably resulting in sterile progeny. We chose the christelloid lineage of the family Thelypteridaceae, recognized for its high frequency of both intra- and intergeneric hybrids, to investigate recent hybrid speciation between deeply diverged lineages. We also seek to understand the ecological and evolutionary outcomes of resulting lineages across the landscape. METHODS By phasing captured reads within a phylogenomic data set of GoFlag 408 nuclear loci using HybPhaser, we investigated candidate hybrids to identify parental lineages. We estimated divergence ages by inferring a dated phylogeny using fossil calibrations with treePL. We investigated ecological niche conservatism between one confirmed intergeneric allotetraploid and its diploid progenitors using the centroid, overlap, unfilling, and expansion (COUE) framework. RESULTS We provide evidence for at least six instances of intergeneric hybrid speciation within the christelloid clade and estimate up to 45 million years of divergence between progenitors. The niche quantification analysis showed moderate niche overlap between an allopolyploid species and its progenitors, with significant divergence from the niche of one progenitor and conservatism to the other. CONCLUSIONS The examples provided here highlight the overlooked role that allopolyploidization following intergeneric hybridization may play in fern diversification and range and niche expansions. Applying this approach to other fern taxa may reveal a similar pattern of deep hybridization resulting in highly successful novel lineages.
Collapse
Affiliation(s)
- Yu-Hsin Tseng
- Department of Life Sciences, National Chung Hsing University, no. 145 Xingda Rd., South District, 40227, Taichung, Taiwan
| | - Li-Yaung Kuo
- College of Life Science, National Tsing Hua University, No. 101, Section 2, Kuang Fu Road, Hsinchu, 30044, Taiwan
| | - Israel Borokini
- Department of Ecology, Montana State University, 310 Lewis Hall, Bozeman, 59717, MT, USA
- University and Jepson Herbaria, University of California, Berkeley, 1001 Valley Life Sciences Building, Berkeley, 94720-2465, CA, USA
| | - Susan Fawcett
- University and Jepson Herbaria, University of California, Berkeley, 1001 Valley Life Sciences Building, Berkeley, 94720-2465, CA, USA
- National Tropical Botanical Garden, 3530 Papālina Road, Kalāheo, 96741, HI, USA
| |
Collapse
|
11
|
Barker MS, Jiao Y, Glennon KL. Doubling down on polyploid discoveries: Global advances in genomics and ecological impacts of polyploidy. AMERICAN JOURNAL OF BOTANY 2024; 111:e16395. [PMID: 39164922 DOI: 10.1002/ajb2.16395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/22/2024]
Abstract
All flowering plants are now recognized as diploidized paleopolyploids (Jiao et al., 2011; One Thousand Plant Transcriptomes Initiative, 2019), and polyploid species comprise approximately 30% of contemporary plant species (Wood et al., 2009; Barker et al., 2016a). A major implication of these discoveries is that, to appreciate the evolution of plant diversity, we need to understand the fundamental biology of polyploids and diploidization. This need is broadly recognized by our community as there is a continued, growing interest in polyploidy as a research topic. Over the past 25 years, the sequencing and analysis of plant genomes has revolutionized our understanding of the importance of polyploid speciation to the evolution of land plants.
Collapse
Affiliation(s)
- Michael S Barker
- Department of Ecology & Evolutionary Biology, University of Arizona, Tucson, 85721, AZ, USA
| | - Yuannian Jiao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Kelsey L Glennon
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
12
|
Ramirez‐Castillo R, Palma‐Rojas C, Seguel PJ, Grusz AL, Araya‐Jaime C. Unfurling an improved method for visualizing mitotic chromosomes in ferns. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11588. [PMID: 39184202 PMCID: PMC11342230 DOI: 10.1002/aps3.11588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/09/2024] [Accepted: 02/05/2024] [Indexed: 08/27/2024]
Abstract
Premise Cytotaxonomy employs chromosome visualization to study organismal relationships and evolution. Despite the critical value of cytogenetic data, cytotypes are lacking for many plant groups. Here, we present an improved approach for visualizing mitotic chromosomes in ferns, a key lineage of land plants, using the dividing cells of unfurling croziers (fiddleheads). Methods and Results Our modified mitotic chromosome preparation incorporates a brief pectinase-cellulase pretreatment, as well as colchicine fixation and the Feulgen reaction to improve the staining and separation of mitotic chromosomes. To demonstrate this easy and efficient assessment, we determined the sporophytic (2n) chromosome number for three fern species: Cheilanthes mollis (2n = 60), Cheilanthes hypoleuca (2n = 120), and Nephrolepis cordifolia (2n = 82). Conclusions The new method presented here improves visualizations of mitotic chromosomes from the dividing nuclei of young fern croziers. Fiddleheads are widely accessible in nature and in living collections worldwide, and this modified approach increases their suitability for fern cytotaxonomic studies.
Collapse
Affiliation(s)
| | | | - Pedro Jara Seguel
- Núcleo de Estudios Ambientales, Facultad de Recursos NaturalesUniversidad Católica de TemucoTemucoChile
| | - Amanda L. Grusz
- University of Minnesota DuluthDuluth55812MinnesotaUSA
- National Museum of Natural HistorySmithsonian InstitutionWashington, D.C.20013USA
| | - Cristian Araya‐Jaime
- Departamento de BiologíaUniversidad de La SerenaLa SerenaChile
- Instituto Multidisciplinario de Investigación y Posgrado Universidad de La SerenaLa SerenaChile
| |
Collapse
|
13
|
Ning W, Meudt HM, Tate JA. A roadmap of phylogenomic methods for studying polyploid plant genera. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11580. [PMID: 39184196 PMCID: PMC11342234 DOI: 10.1002/aps3.11580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/10/2023] [Accepted: 01/13/2024] [Indexed: 08/27/2024]
Abstract
Phylogenetic inference of polyploid species is the first step towards understanding their patterns of diversification. In this paper, we review the challenges and limitations of inferring species relationships of polyploid plants using traditional phylogenetic sequencing approaches, as well as the mischaracterization of the species tree from single or multiple gene trees. We provide a roadmap to infer interspecific relationships among polyploid lineages by comparing and evaluating the application of current phylogenetic, phylogenomic, transcriptomic, and whole-genome approaches using different sequencing platforms. For polyploid species tree reconstruction, we assess the following criteria: (1) the amount of prior information or tools required to capture the genetic region(s) of interest; (2) the probability of recovering homeologs for polyploid species; and (3) the time efficiency of downstream data analysis. Moreover, we discuss bioinformatic pipelines that can reconstruct networks of polyploid species relationships. In summary, although current phylogenomic approaches have improved our understanding of reticulate species relationships in polyploid-rich genera, the difficulties of recovering reliable orthologous genes and sorting all homeologous copies for allopolyploids remain a challenge. In the future, assembled long-read sequencing data will assist the recovery and identification of multiple gene copies, which can be particularly useful for reconstructing the multiple independent origins of polyploids.
Collapse
Affiliation(s)
- Weixuan Ning
- School of Natural SciencesMassey UniversityPalmerston North4442New Zealand
| | - Heidi M. Meudt
- Museum of New Zealand Te Papa TongarewaWellington6011New Zealand
| | - Jennifer A. Tate
- School of Natural SciencesMassey UniversityPalmerston North4442New Zealand
| |
Collapse
|
14
|
Li C, Wickell D, Kuo LY, Chen X, Nie B, Liao X, Peng D, Ji J, Jenkins J, Williams M, Shu S, Plott C, Barry K, Rajasekar S, Grimwood J, Han X, Sun S, Hou Z, He W, Dai G, Sun C, Schmutz J, Leebens-Mack JH, Li FW, Wang L. Extraordinary preservation of gene collinearity over three hundred million years revealed in homosporous lycophytes. Proc Natl Acad Sci U S A 2024; 121:e2312607121. [PMID: 38236735 PMCID: PMC10823260 DOI: 10.1073/pnas.2312607121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Homosporous lycophytes (Lycopodiaceae) are a deeply diverged lineage in the plant tree of life, having split from heterosporous lycophytes (Selaginella and Isoetes) ~400 Mya. Compared to the heterosporous lineage, Lycopodiaceae has markedly larger genome sizes and remains the last major plant clade for which no chromosome-level assembly has been available. Here, we present chromosomal genome assemblies for two homosporous lycophyte species, the allotetraploid Huperzia asiatica and the diploid Diphasiastrum complanatum. Remarkably, despite that the two species diverged ~350 Mya, around 30% of the genes are still in syntenic blocks. Furthermore, both genomes had undergone independent whole genome duplications, and the resulting intragenomic syntenies have likewise been preserved relatively well. Such slow genome evolution over deep time is in stark contrast to heterosporous lycophytes and is correlated with a decelerated rate of nucleotide substitution. Together, the genomes of H. asiatica and D. complanatum not only fill a crucial gap in the plant genomic landscape but also highlight a potentially meaningful genomic contrast between homosporous and heterosporous species.
Collapse
Affiliation(s)
- Cheng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518000, China
| | - David Wickell
- Boyce Thompson Institute, Ithaca, NY14853
- Plant Biology Section, Cornell University, Ithaca, NY14853
| | - Li-Yaung Kuo
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu300044, Taiwan
| | - Xueqing Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518000, China
| | - Bao Nie
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518000, China
| | - Xuezhu Liao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518000, China
| | - Dan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518000, China
| | - Jiaojiao Ji
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518000, China
| | - Jerry Jenkins
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL35806
| | - Mellissa Williams
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL35806
| | - Shengqiang Shu
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Christopher Plott
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL35806
| | - Kerrie Barry
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Shanmugam Rajasekar
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ85721
| | - Jane Grimwood
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL35806
| | - Xiaoxu Han
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518000, China
| | - Shichao Sun
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518000, China
| | - Zhuangwei Hou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518000, China
| | - Weijun He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518000, China
| | - Guanhua Dai
- Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences, Yanji133000, China
| | - Cheng Sun
- College of Life Sciences, Capital Normal University, Beijing100048, China
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL35806
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | | | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY14853
- Plant Biology Section, Cornell University, Ithaca, NY14853
| | - Li Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518000, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing100700, China
| |
Collapse
|
15
|
Katayama N, Yamamoto T, Aiuchi S, Watano Y, Fujiwara T. Subgenome evolutionary dynamics in allotetraploid ferns: insights from the gene expression patterns in the allotetraploid species Phegopteris decursivepinnata (Thelypteridacea, Polypodiales). FRONTIERS IN PLANT SCIENCE 2024; 14:1286320. [PMID: 38264021 PMCID: PMC10803465 DOI: 10.3389/fpls.2023.1286320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024]
Abstract
Allopolyploidization often leads to disruptive conflicts among more than two sets of subgenomes, leading to genomic modifications and changes in gene expression. Although the evolutionary trajectories of subgenomes in allopolyploids have been studied intensely in angiosperms, the dynamics of subgenome evolution remain poorly understood in ferns, despite the prevalence of allopolyploidization. In this study, we have focused on an allotetraploid fern-Phegopteris decursivepinnata-and its diploid parental species, P. koreana (K) and P. taiwaniana (T). Using RNA-seq analyses, we have compared the gene expression profiles for 9,540 genes among parental species, synthetic F1 hybrids, and natural allotetraploids. The changes in gene expression patterns were traced from the F1 hybrids to the natural allopolyploids. This study has revealed that the expression patterns observed in most genes in the F1 hybrids are largely conserved in the allopolyploids; however, there were substantial differences in certain genes between these groups. In the allopolyploids compared with the F1 hybrids, the number of genes showing a transgressive pattern in total expression levels was increased. There was a slight reduction in T-dominance and a slight increase in K-dominance, in terms of expression level dominance. Interestingly, there is no obvious bias toward the T- or K-subgenomes in the number and expression levels overall, showing the absence of subgenome dominance. These findings demonstrated the impacts of the substantial transcriptome change after hybridization and the moderate modification during allopolyploid establishment on gene expression in ferns and provided important insights into subgenome evolution in polyploid ferns.
Collapse
Affiliation(s)
- Natsu Katayama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Department of Biology, Faculty of Science, Chiba University, Chiba, Japan
| | - Takuya Yamamoto
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Japan
| | - Sakura Aiuchi
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Japan
| | - Yasuyuki Watano
- Department of Biology, Faculty of Science, Chiba University, Chiba, Japan
| | - Tao Fujiwara
- Center for Molecular Biodiversity Research, National Museum of Nature and Science, Tsukuba, Ibaraki, Japan
| |
Collapse
|
16
|
Sessa EB, Masalia RR, Arrigo N, Barker MS, Pelosi JA. GOgetter: A pipeline for summarizing and visualizing GO slim annotations for plant genetic data. APPLICATIONS IN PLANT SCIENCES 2023; 11:e11536. [PMID: 37601315 PMCID: PMC10439822 DOI: 10.1002/aps3.11536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 08/22/2023]
Abstract
Premise The functional annotation of genes is a crucial component of genomic analyses. A common way to summarize functional annotations is with hierarchical gene ontologies, such as the Gene Ontology (GO) Resource. GO includes information about the cellular location, molecular function(s), and products/processes that genes produce or are involved in. For a set of genes, summarizing GO annotations using pre-defined, higher-order terms (GO slims) is often desirable in order to characterize the overall function of the data set, and it is impractical to do this manually. Methods and Results The GOgetter pipeline consists of bash and Python scripts. From an input FASTA file of nucleotide gene sequences, it outputs text and image files that list (1) the best hit for each input gene in a set of reference gene models, (2) all GO terms and annotations associated with those hits, and (3) a summary and visualization of GO slim categories for the data set. These output files can be queried further and analyzed statistically, depending on the downstream need(s). Conclusions GO annotations are a widely used "universal language" for describing gene functions and products. GOgetter is a fast and easy-to-implement pipeline for obtaining, summarizing, and visualizing GO slim categories associated with a set of genes.
Collapse
Affiliation(s)
| | - Rishi R. Masalia
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
| | | | - Michael S. Barker
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
| | | |
Collapse
|
17
|
Zhao J, Zhou X, Fang S, Zhu Z, Li Y, Yu H, He Z. Transcriptome-Based Study on the Phylogeny and Hybridization of Marattialean Ferns (Marattiaceae). PLANTS (BASEL, SWITZERLAND) 2023; 12:2237. [PMID: 37375862 DOI: 10.3390/plants12122237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/07/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
Marattiaceae is a phylogenetically isolated family of tropical eusporangiate ferns including six genera with more than one-hundred species. In Marattiaceae, monophyly of genera has been well-supported phylogenetically. However, the phylogenetic relationships among them were elusive and controversial. Here, a dataset of 26 transcriptomes (including 11 newly generated) were used to assess single-copy nuclear genes and to obtain the organelle gene sequences. Through phylotranscriptomic analysis, the phylogeny and hybridization events of Marattiaceae were explored and a robust phylogenomic framework for the evolution of Marattiaceae was provided. Using both concatenation- and coalescent-based phylogenies, the gene-tree discordance, incomplete lineage sorting (ILS) simulations, and network inference were examined. Except the low support with mitochondrial genes of Marattiaceae, nuclear genes and chloroplast genes strongly supported a sister relationship between Marattiaceae and leptosporangiate ferns. At the genus level, all phylogenetic analysis based on nuclear genes datasets recovered five genera in Marattiaceae as monophyletic with strong support. Danaea and Ptisana were the first two diverged clades in turn. Christensenia was a sister clade to the clade Marattia + Angiopteris s.l. In Angiopteris s.l., three clades (Angiopteris s.s., the Archangiopteris group, and An. sparsisora) were well identified with maximum support. The Archangiopteris group was derived from Angiopteris s.s. at ca. 18 Ma. The putative hybrid species An. sparsisora between Angiopteris s.s. and the Archangiopteris group was verified by the species network analyses and the maternal plastid genes. This study will improve our understanding for using the phylotranscriptomic method to explore phylogeny and investigate hybridization events for difficult taxa in ferns.
Collapse
Affiliation(s)
- Jing Zhao
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming 650500, China
| | - Xinmao Zhou
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Shaoli Fang
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Zhangming Zhu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Yuxin Li
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Hong Yu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Zhaorong He
- School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming 650500, China
| |
Collapse
|
18
|
Stull GW, Pham KK, Soltis PS, Soltis DE. Deep reticulation: the long legacy of hybridization in vascular plant evolution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:743-766. [PMID: 36775995 DOI: 10.1111/tpj.16142] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 05/27/2023]
Abstract
Hybridization has long been recognized as a fundamental evolutionary process in plants but, until recently, our understanding of its phylogenetic distribution and biological significance across deep evolutionary scales has been largely obscure. Over the past decade, genomic and phylogenomic datasets have revealed, perhaps not surprisingly, that hybridization, often associated with polyploidy, has been common throughout the evolutionary history of plants, particularly in various lineages of flowering plants. However, phylogenomic studies have also highlighted the challenges of disentangling signals of ancient hybridization from other sources of genomic conflict (in particular, incomplete lineage sorting). Here, we provide a critical review of ancient hybridization in vascular plants, outlining well-documented cases of ancient hybridization across plant phylogeny, as well as the challenges unique to documenting ancient versus recent hybridization. We provide a definition for ancient hybridization, which, to our knowledge, has not been explicitly attempted before. Further documenting the extent of deep reticulation in plants should remain an important research focus, especially because published examples likely represent the tip of the iceberg in terms of the total extent of ancient hybridization. However, future research should increasingly explore the macroevolutionary significance of this process, in terms of its impact on evolutionary trajectories (e.g. how does hybridization influence trait evolution or the generation of biodiversity over long time scales?), as well as how life history and ecological factors shape, or have shaped, the frequency of hybridization across geologic time and plant phylogeny. Finally, we consider the implications of ubiquitous ancient hybridization for how we conceptualize, analyze, and classify plant phylogeny. Networks, as opposed to bifurcating trees, represent more accurate representations of evolutionary history in many cases, although our ability to infer, visualize, and use networks for comparative analyses is highly limited. Developing improved methods for the generation, visualization, and use of networks represents a critical future direction for plant biology. Current classification systems also do not generally allow for the recognition of reticulate lineages, and our classifications themselves are largely based on evidence from the chloroplast genome. Updating plant classification to better reflect nuclear phylogenies, as well as considering whether and how to recognize hybridization in classification systems, will represent an important challenge for the plant systematics community.
Collapse
Affiliation(s)
- Gregory W Stull
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA
| | - Kasey K Pham
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
19
|
Giant Fern Genomes Show Complex Evolution Patterns: A Comparative Analysis in Two Species of Tmesipteris (Psilotaceae). Int J Mol Sci 2023; 24:ijms24032708. [PMID: 36769031 PMCID: PMC9916801 DOI: 10.3390/ijms24032708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Giant genomes are rare across the plant kingdom and their study has focused almost exclusively on angiosperms and gymnosperms. The scarce genetic data that are available for ferns, however, indicate differences in their genome organization and a lower dynamism compared to other plant groups. Tmesipteris is a small genus of mainly epiphytic ferns that occur in Oceania and several Pacific Islands. So far, only two species with giant genomes have been reported in the genus, T. tannensis (1C = 73.19 Gbp) and T. obliqua (1C = 147.29 Gbp). Low-coverage genome skimming sequence data were generated in these two species and analyzed using the RepeatExplorer2 pipeline to identify and quantify the repetitive DNA fraction of these genomes. We found that both species share a similar genomic composition, with high repeat diversity compared to taxa with small (1C < 10 Gbp) genomes. We also found that, in general, characterized repetitive elements have relatively high heterogeneity scores, indicating ancient diverging evolutionary trajectories. Our results suggest that a whole genome multiplication event, accumulation of repetitive elements, and recent activation of those repeats have all played a role in shaping these genomes. It will be informative to compare these data in the future with data from the giant genome of the angiosperm Paris japonica, to determine if the structures observed here are an emergent property of massive genomic inflation or derived from lineage specific processes.
Collapse
|