1
|
Yang X, Zhang S, Wang H, Lai M, Zhang D, Ji X. Recent Advances in Fluorescent Probe for Detecting Biorelevant Analytes during Stress in Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10701-10735. [PMID: 40293141 DOI: 10.1021/acs.jafc.5c02335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Plants are constantly exposed to various stressors that can severely hinder their growth and threaten agricultural productivity. Recent advancements in plant imaging using fluorescent probes have opened new avenues for exploring the intricate processes involved in plant stress perception and signaling. This review represents the comprehensive effort to consolidate recent advances in fluorescent probe technologies, encompassing small-molecule probes, nanoprobes, and genetically encoded indicators, as revolutionary tools for deciphering stress-induced physiological dynamics. We present a comprehensive classification of fluorescent probes designed for detecting key biomolecules involved in plant stress responses, including reactive species, phytohormones, enzymes, and other signaling molecules. By critically evaluating their design principles, practical applications, and distinct advantages over conventional analytical methods, we aim to empower plant scientists in unraveling the spatiotemporal regulation of stress signaling networks. Finally, we propose strategic directions to overcome current technical bottlenecks and maximize the potential of fluorescence-based sensing in advancing sustainable agriculture.
Collapse
Affiliation(s)
- Xiaopeng Yang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Shiyi Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Haiyang Wang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Miao Lai
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Di Zhang
- Institute of Agricultural Quality Standards and Testing Technology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xiaoming Ji
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
2
|
Liu Q, Dong Z, Chang C, Chen S, Sun P, Shu W, Zeng C, Chi W. Computational Chemistry-Assisted Design of a Dual-Function Fluorescent Probe for Viscosity Sensing in Liver Damage and SO 2 Detection In Vitro. Anal Chem 2025; 97:4144-4150. [PMID: 39951498 DOI: 10.1021/acs.analchem.4c06499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2025]
Abstract
A new dual-channel and dual-functional fluorescent probe, DX3-AXI, is developed with the aid of computational chemistry, enabling viscosity and SO2 detection in separate fluorescence emission channels. The probe DX3-AXI exhibits significant fluorescence changes in the detection, demonstrating excellent interference resistance and a linear response. Through Density Functional Theory (DFT) and Time-Dependent Density Functional Theory (TDDFT) calculations, along with hole-electron molecular analysis, energy level structure, and molecular local attachment energy analysis, the mechanism of the dual-channel response of the DX3-AXI probe is systematically revealed, demonstrating that the regulation of interactions between the rotatable bond and double bond drives the fluorescence changes. Furthermore, a portable sensing platform for on-site sulfite detection in water samples was developed by coupling the probe with a smartphone, enabling the rapid qualitative and semiquantitative detection of sulfite. Significantly, DX3-AXI has demonstrated successful application in detecting changes in the microenvironment of normal and cancer cells while also enabling the visualization of viscosity variations in the liver tissue of mice with liver injury. The DX3-AXI probe has shown significant potential for application in disease diagnostics, drug assessment, and environmental monitoring.
Collapse
Affiliation(s)
- Qiye Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Collaborative Innovation Center of Ecological Civilization, Hainan University, No 58, Renmin Avenue, Haikou 570228, China
| | - Ze Dong
- School of Chemistry and Chemical Engineering, Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Collaborative Innovation Center of Ecological Civilization, Hainan University, No 58, Renmin Avenue, Haikou 570228, China
| | - Chong Chang
- School of Chemistry and Chemical Engineering, Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Collaborative Innovation Center of Ecological Civilization, Hainan University, No 58, Renmin Avenue, Haikou 570228, China
| | - Shijun Chen
- School of Chemistry and Chemical Engineering, Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Collaborative Innovation Center of Ecological Civilization, Hainan University, No 58, Renmin Avenue, Haikou 570228, China
| | - Pingping Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Collaborative Innovation Center of Ecological Civilization, Hainan University, No 58, Renmin Avenue, Haikou 570228, China
| | - Wei Shu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Chaoyuan Zeng
- School of Chemistry and Chemical Engineering, Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Collaborative Innovation Center of Ecological Civilization, Hainan University, No 58, Renmin Avenue, Haikou 570228, China
| | - Weijie Chi
- School of Chemistry and Chemical Engineering, Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Collaborative Innovation Center of Ecological Civilization, Hainan University, No 58, Renmin Avenue, Haikou 570228, China
| |
Collapse
|
3
|
Sun Y, Neary WJ, Huang X, Kouznetsova TB, Ouchi T, Kevlishvili I, Wang K, Chen Y, Kulik HJ, Craig SL, Moore JS. A Thermally Stable SO 2-Releasing Mechanophore: Facile Activation, Single-Event Spectroscopy, and Molecular Dynamic Simulations. J Am Chem Soc 2024; 146:10943-10952. [PMID: 38581383 DOI: 10.1021/jacs.4c02139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
Polymers that release small molecules in response to mechanical force are promising candidates as next-generation on-demand delivery systems. Despite advancements in the development of mechanophores for releasing diverse payloads through careful molecular design, the availability of scaffolds capable of discharging biomedically significant cargos in substantial quantities remains scarce. In this report, we detail a nonscissile mechanophore built from an 8-thiabicyclo[3.2.1]octane 8,8-dioxide (TBO) motif that releases one equivalent of sulfur dioxide (SO2) from each repeat unit. The TBO mechanophore exhibits high thermal stability but is activated mechanochemically using solution ultrasonication in either organic solvent or aqueous media with up to 63% efficiency, equating to 206 molecules of SO2 released per 143.3 kDa chain. We quantified the mechanochemical reactivity of TBO by single-molecule force spectroscopy and resolved its single-event activation. The force-coupled rate constant for TBO opening reaches ∼9.0 s-1 at ∼1520 pN, and each reaction of a single TBO domain releases a stored length of ∼0.68 nm. We investigated the mechanism of TBO activation using ab initio steered molecular dynamic simulations and rationalized the observed stereoselectivity. These comprehensive studies of the TBO mechanophore provide a mechanically coupled mechanism of multi-SO2 release from one polymer chain, facilitating the translation of polymer mechanochemistry to potential biomedical applications.
Collapse
Affiliation(s)
- Yunyan Sun
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - William J Neary
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Xiao Huang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tatiana B Kouznetsova
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Tetsu Ouchi
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Ilia Kevlishvili
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kecheng Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yingying Chen
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Material Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Heather J Kulik
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jeffrey S Moore
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Jia X, Qiao P, Wang X, Yan M, Chen Y, An BL, Hu P, Lu B, Xu J, Xue Z, Xu J. Building Feedback-Regulation System Through Atomic Design for Highly Active SO 2 Sensing. NANO-MICRO LETTERS 2024; 16:136. [PMID: 38411773 PMCID: PMC10899126 DOI: 10.1007/s40820-024-01350-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/12/2024] [Indexed: 02/28/2024]
Abstract
Reasonably constructing an atomic interface is pronouncedly essential for surface-related gas-sensing reaction. Herein, we present an ingenious feedback-regulation system by changing the interactional mode between single Pt atoms and adjacent S species for high-efficiency SO2 sensing. We found that the single Pt sites on the MoS2 surface can induce easier volatilization of adjacent S species to activate the whole inert S plane. Reversely, the activated S species can provide a feedback role in tailoring the antibonding-orbital electronic occupancy state of Pt atoms, thus creating a combined system involving S vacancy-assisted single Pt sites (Pt-Vs) to synergistically improve the adsorption ability of SO2 gas molecules. Furthermore, in situ Raman, ex situ X-ray photoelectron spectroscopy testing and density functional theory analysis demonstrate the intact feedback-regulation system can expand the electron transfer path from single Pt sites to whole Pt-MoS2 supports in SO2 gas atmosphere. Equipped with wireless-sensing modules, the final Pt1-MoS2-def sensors array can further realize real-time monitoring of SO2 levels and cloud-data storage for plant growth. Such a fundamental understanding of the intrinsic link between atomic interface and sensing mechanism is thus expected to broaden the rational design of highly effective gas sensors.
Collapse
Affiliation(s)
- Xin Jia
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Panzhe Qiao
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, People's Republic of China
| | - Xiaowu Wang
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Muyu Yan
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Yang Chen
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Bao-Li An
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Pengfei Hu
- Shanghai University, Instrumental Analysis & Research Center of Shanghai University, Shanghai, 200444, People's Republic of China
| | - Bo Lu
- Shanghai University, Instrumental Analysis & Research Center of Shanghai University, Shanghai, 200444, People's Republic of China
| | - Jing Xu
- Shanghai University, Instrumental Analysis & Research Center of Shanghai University, Shanghai, 200444, People's Republic of China
| | - Zhenggang Xue
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| | - Jiaqiang Xu
- NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
5
|
Fang L, Ma C, Ma Y, Zhao H, Peng Y, Wang G, Chen Y, Zhang T, Xu S, Cai G, Cao Y, Pan F. Associations of long-term exposure to air pollution and green space with reproductive hormones among women undergoing assisted reproductive technology: A longitudinal study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166941. [PMID: 37716676 DOI: 10.1016/j.scitotenv.2023.166941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023]
Abstract
Studies investigating the association between long-term exposure to air pollution (AP)/green space and female reproductive hormones are still limited. Furthermore, their interactive effects remain unclear. Our study sought to explore the separate and interactive impacts of AP/green space on reproductive hormones among women undergoing assisted reproductive technology. We measured estradiol (E2), progesterone (P), testosterone (T), and follicle-stimulating hormone (FSH) from the longitudinal assisted reproduction cohort in Anhui, China. The annual mean concentrations of air pollutants were calculated at the residential level. Normalized Difference Vegetation Index (NDVI) within 500-m represented green space exposure. To assess the effect of AP/green space on hormones, we employed multivariable linear mixed-effect models. Our results showed that each one-interquartile range (IQR) increment in particulate matter (PM2.5 and PM10) and sulfur dioxide (SO2) was associated with -0.03[-0.05, -0.01], -0.03[-0.05, -0.02], and -0.03[-0.05, -0.01] decrease in P. An IQR increase in PM2.5, PM10, SO2, and carbon monoxide (CO) was associated with a -0.16[-0.17, -0.15], -0.15[-0.16, -0.14], -0.15[-0.16, -0.14], and -0.12[-0.13, -0.11] decrease in T and a -0.31[-0.35, -0.27], -0.30[-0.34, -0.26], -0.26[-0.30, -0.22], and -0.21[-0.25, -0.17] decrease in FSH. Conversely, NDVI500-m was associated with higher levels of P, T, and FSH, with β of 0.05[0.02, 0.08], 0.06[0.04, 0.08], and 0.07[0.00, 0.14]. Moreover, we observed the "U" or "J" exposure-response curves between PM2.5, PM10, and SO2 concentrations and E2 and P levels, as well as "inverted-J" curves between NDVI500-m and T and FSH levels. Furthermore, we found statistically significant interactions of SO2 and NDVI500-m on E2 and P as well as CO and NDVI500-m on E2. These findings indicated that green space might mitigate the negative effects of SO2 on E2 and P, as well as the effect of CO on E2. Future research is needed to determine these findings and underlying mechanisms.
Collapse
Affiliation(s)
- Lanlan Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Cong Ma
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Hui Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yongzheng Peng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Guosheng Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yuting Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Tao Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Shanshan Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Guoqi Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
6
|
Li Z, Huang J, Wang L, Li D, Chen Y, Xu Y, Li L, Xiao H, Luo Z. Novel insight into the role of sulfur dioxide in fruits and vegetables: Chemical interactions, biological activity, metabolism, applications, and safety. Crit Rev Food Sci Nutr 2023; 64:8741-8765. [PMID: 37128783 DOI: 10.1080/10408398.2023.2203737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Sulfur dioxide (SO2) are a category of chemical compounds widely used as additives in food industry. So far, the use of SO2 in fruit and vegetable industry has been indispensable although its safety concerns have been controversial. This article comprehensively reviews the chemical interactions of SO2 with the components of fruit and vegetable products, elaborates its mechanism of antimicrobial, anti-browning, and antioxidation, discusses its roles in regulation of sulfur metabolism, reactive oxygen species (ROS)/redox, resistance induction, and quality maintenance in fruits and vegetables, summarizes the application technology of SO2 and its safety in human (absorption, metabolism, toxicity, regulation), and emphasizes the intrinsic metabolism of SO2 and its consequences for the postharvest physiology and safety of fresh fruits and vegetables. In order to fully understand the benefits and risks of SO2, more research is needed to evaluate the molecular mechanisms of SO2 metabolism in the cells and tissues of fruits and vegetables, and to uncover the interaction mechanisms between SO2 and the components of fruits and vegetables as well as the efficacy and safety of bound SO2. This review has important guiding significance for adjusting an applicable definition of maximum residue limit of SO2 in food.
Collapse
Affiliation(s)
- Zhenbiao Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Jing Huang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Lei Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Dong Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yanpei Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yanqun Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
| | - Li Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Hang Xiao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Ningbo Innovation Center, Zhejiang University, Ningbo, China
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou, China
| |
Collapse
|
7
|
Georgieva M, Vassileva V. Stress Management in Plants: Examining Provisional and Unique Dose-Dependent Responses. Int J Mol Sci 2023; 24:ijms24065105. [PMID: 36982199 PMCID: PMC10049000 DOI: 10.3390/ijms24065105] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
The purpose of this review is to critically evaluate the effects of different stress factors on higher plants, with particular attention given to the typical and unique dose-dependent responses that are essential for plant growth and development. Specifically, this review highlights the impact of stress on genome instability, including DNA damage and the molecular, physiological, and biochemical mechanisms that generate these effects. We provide an overview of the current understanding of predictable and unique dose-dependent trends in plant survival when exposed to low or high doses of stress. Understanding both the negative and positive impacts of stress responses, including genome instability, can provide insights into how plants react to different levels of stress, yielding more accurate predictions of their behavior in the natural environment. Applying the acquired knowledge can lead to improved crop productivity and potential development of more resilient plant varieties, ensuring a sustainable food source for the rapidly growing global population.
Collapse
|
8
|
Qi W, Man L, Suguro S, Zhao Y, Quan H, Huang C, Ma H, Guan H, Zhu Y. Endocrine effects of three common gas signaling molecules in humans: A literature review. Front Endocrinol (Lausanne) 2022; 13:1074638. [PMID: 36568094 PMCID: PMC9780443 DOI: 10.3389/fendo.2022.1074638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Gases such as hydrogen sulfide, nitric oxide and sulfur dioxide have important regulatory effects on the endocrine and physiological processes of the body and are collectively referred to as "gas signaling molecules". These gas signaling molecules are also closely related to Alzheimer's disease, the inflammatory response and depression. In this paper, we introduce the production and metabolic pathways of NO, H2S and SO2 in living organisms and review the regulatory functions of gas signaling molecules in the endocrine system and their mechanisms in relation to their clinical applications. This work will provide a basis for finding targets for intervention and establishing novel prevention and treatment strategies for related diseases.
Collapse
Affiliation(s)
- Wei Qi
- School of Pharmacy, Macau University of Science and Technology, Macao, Macao SAR, China
- State Key Laboratory of Quality Research in Chinese Medicines, Macao, Macao SAR, China
| | - Luo Man
- The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Sei Suguro
- Faculty of Medicine, School of Pharmacy, The Chinese University of Hong Kong, Shatin, China
| | - Yidan Zhao
- State Key Laboratory of Quality Research in Chinese Medicines, Macao, Macao SAR, China
| | - Heng Quan
- School of Pharmacy, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Chuoji Huang
- School of Pharmacy, Macau University of Science and Technology, Macao, Macao SAR, China
- State Key Laboratory of Quality Research in Chinese Medicines, Macao, Macao SAR, China
| | - Haoran Ma
- School of Pharmacy, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Haoran Guan
- School of Pharmacy, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Yizhun Zhu
- School of Pharmacy, Macau University of Science and Technology, Macao, Macao SAR, China
- State Key Laboratory of Quality Research in Chinese Medicines, Macao, Macao SAR, China
- *Correspondence: Yizhun Zhu,
| |
Collapse
|