1
|
Carfora A, Lucibelli F, Di Lillo P, Mazzucchiello SM, Saccone G, Salvemini M, Varone M, Volpe G, Aceto S. Genetic responses of plants to urban environmental challenges. PLANTA 2025; 261:102. [PMID: 40183929 PMCID: PMC11971160 DOI: 10.1007/s00425-025-04678-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
MAIN CONCLUSION This review aims to describe the main genetic adaptations of plants to abiotic and biotic stressors in urban landscapes through modulation of gene expression and genotypic changes. Urbanization deeply impacts biodiversity through ecosystem alteration and habitat fragmentation, creating novel environmental challenges for plant species. Plants have evolved cellular, molecular, and biochemical strategies to cope with the diverse biotic and abiotic stresses associated with urbanization. However, many of these defense and resistance mechanisms remain poorly understood. Addressing these knowledge gaps is crucial for advancing our understanding of urban biodiversity and elucidating the ecological and evolutionary dynamics of species in urban landscapes. As sessile organisms, plants depend heavily on modifications in gene expression as a rapid and efficient strategy to survive urban stressors. At the same time, the urban environment pressures induced plant species to evolve genotypic adaptations that enhance their survival and growth in these contexts. This review explores the different genetic responses of plants to urbanization. We focus on key abiotic challenges, such as air pollution, elevated CO2 levels, heavy metal contamination, heat and drought stress, salinity, and biotic stresses caused by herbivorous insects. By examining these genetic mechanisms induced by urban stressors, we aim to analyze the molecular pathways and genetic patterns underlying the adaptation of plant species to urban environments. This knowledge is a valuable tool for enhancing the selection and propagation of adaptive traits in plant populations, supporting species conservation efforts, and promoting urban biodiversity.
Collapse
Grants
- Project code CN_00000033 National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4 - Call for tender No. 3138 of 16 December 2021, rectified by Decree n.3175 of 18 December 2021 of Italian Ministry of University and Research funded by the European Union -
- Concession Decree No. 1034 of 17 June 2022 adopted by the Italian Ministry of University National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4 - Call for tender No. 3138 of 16 December 2021, rectified by Decree n.3175 of 18 December 2021 of Italian Ministry of University and Research funded by the European Union -
- Research National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4 - Call for tender No. 3138 of 16 December 2021, rectified by Decree n.3175 of 18 December 2021 of Italian Ministry of University and Research funded by the European Union -
- CUP H43C22000530001 National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4 - Call for tender No. 3138 of 16 December 2021, rectified by Decree n.3175 of 18 December 2021 of Italian Ministry of University and Research funded by the European Union -
- Project title "National Biodiversity Future Center - NBFC" National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4 - Call for tender No. 3138 of 16 December 2021, rectified by Decree n.3175 of 18 December 2021 of Italian Ministry of University and Research funded by the European Union -
- National Recovery and Resilience Plan (NRRP), Mission 4 Component 2 Investment 1.4 - Call for tender No. 3138 of 16 December 2021, rectified by Decree n.3175 of 18 December 2021 of Italian Ministry of University and Research funded by the European Union –
- Università degli Studi di Napoli Federico II
Collapse
Affiliation(s)
- Angela Carfora
- Department of Biology, University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy.
| | - Francesca Lucibelli
- Department of Biology, University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy.
| | - Paola Di Lillo
- Department of Biology, University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy
| | | | - Giuseppe Saccone
- Department of Biology, University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy
| | - Marco Salvemini
- Department of Biology, University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy
| | - Marianna Varone
- Department of Biology, University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy
| | - Gennaro Volpe
- Department of Biology, University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy
| | - Serena Aceto
- Department of Biology, University of Naples Federico II, Via Cintia 26, 80126, Naples, Italy.
| |
Collapse
|
2
|
Nguyen VH, Mittelsten Scheid O, Gutzat R. Heat stress response and transposon control in plant shoot stem cells. PLANT PHYSIOLOGY 2025; 197:kiaf110. [PMID: 40155207 PMCID: PMC11997658 DOI: 10.1093/plphys/kiaf110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/07/2025] [Indexed: 04/01/2025]
Abstract
Plants have an impressive repertoire to react to stress conditions that limit regular growth. Elevated temperatures beyond the optimal range cause rapid and specific transcriptional responses, resulting in developmental alterations and plasticity. Heat stress also causes chromatin decondensation and activation of some transposable elements (TEs), endangering genomic integrity. This is especially risky for stem cells in the shoot apical meristem (SAM) that potentially contribute to the next generation. We examined how the heat stress response in SAM stem cells of Arabidopsis (Arabidopsis thaliana) is different from that in other tissues and whether the elements of epigenetic TE control active in the meristem are involved in specific heat protection of stem cells. Using fluorescence-activated nuclear sorting to isolate and characterize SAM stem cells after exposure to conditions that activate a heat-responsive TE, we found that SAM stem cells maintain their developmental program and suppress the heat-response pathways dominating in surrounding somatic cells. Furthermore, mutants defective in DNA methylation recovered less efficiently from heat stress and persistently activated heat response factors and heat-responsive TEs. Heat stress also induced epimutations at the level of DNA methylation, especially in the CHG sequence context. Regions with modified DNA methylation patterns remained altered for at least 3 wk beyond the stress. These findings urge for disentangling cell type-specific responses under different stress types, especially for stem cells as bridges to the next generation.
Collapse
Affiliation(s)
- Vu Hoang Nguyen
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Ruben Gutzat
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna 1030, Austria
| |
Collapse
|
3
|
Akagi T, Fujita N, Shirasawa K, Tanaka H, Nagaki K, Masuda K, Horiuchi A, Kuwada E, Kawai K, Kunou R, Nakamura K, Ikeda Y, Toyoda A, Itoh T, Ushijima K, Charlesworth D. Rapid and dynamic evolution of a giant Y chromosome in Silene latifolia. Science 2025; 387:637-643. [PMID: 39913598 DOI: 10.1126/science.adk9074] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/08/2024] [Accepted: 08/13/2024] [Indexed: 04/23/2025]
Abstract
Some plants have massive sex-linked regions. To test hypotheses about their evolution, we sequenced the genome of Silene latifolia, in which giant heteromorphic sex chromosomes were first discovered in 1923. It has long been known that the Y chromosome consists mainly of a male-specific region that does not recombine with the X chromosome and carries the sex-determining genes and genes with other male functions. However, only with a whole Y chromosome assembly can candidate genes be validated experimentally and their locations determined and related to the suppression of recombination. We describe the genomic changes as the ancestral chromosome evolved into the current XY pair, testing ideas about the evolution of large nonrecombining regions and the mechanisms that created the present recombination pattern.
Collapse
Affiliation(s)
- Takashi Akagi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
- Japan Science and Technology Agency (JST), PRESTO, Kawaguchi-shi, Saitama, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Naoko Fujita
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
- National Museum of Nature and Science, Tsukuba-shi, Ibaraki, Japan
| | - Kenta Shirasawa
- Kazusa DNA Research Institute, Kazusa-Kamatari, Kisarazu, Chiba, Japan
| | - Hiroyuki Tanaka
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Kiyotaka Nagaki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Kanae Masuda
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Ayano Horiuchi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Eriko Kuwada
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Kanta Kawai
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Riko Kunou
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Koki Nakamura
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Yoko Ikeda
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Koichiro Ushijima
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | | |
Collapse
|
4
|
Ma L, Xing L, Li Z, Jiang D. Epigenetic control of plant abiotic stress responses. J Genet Genomics 2025; 52:129-144. [PMID: 39322116 DOI: 10.1016/j.jgg.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
On top of genetic information, organisms have evolved complex and sophisticated epigenetic regulation to adjust gene expression in response to developmental and environmental signals. Key epigenetic mechanisms include DNA methylation, histone modifications and variants, chromatin remodeling, and chemical modifications of RNAs. Epigenetic control of environmental responses is particularly important for plants, which are sessile and unable to move away from adverse environments. Besides enabling plants to rapidly respond to environmental stresses, some stress-induced epigenetic changes can be maintained, providing plants with a pre-adapted state to recurring stresses. Understanding these epigenetic mechanisms offers valuable insights for developing crop varieties with enhanced stress tolerance. Here, we focus on abiotic stresses and summarize recent progress in characterizing stress-induced epigenetic changes and their regulatory mechanisms and roles in plant abiotic stress resistance.
Collapse
Affiliation(s)
- Lijun Ma
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Ministry of Education Key Laboratory of Plant Development and Environmental Adaption Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Lihe Xing
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zicong Li
- Ministry of Education Key Laboratory of Plant Development and Environmental Adaption Biology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Danhua Jiang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Republic of Singapore.
| |
Collapse
|
5
|
Jiang J, Gwee J, Fang J, Leichter SM, Sanders D, Ji X, Song J, Zhong X. Substrate specificity and protein stability drive the divergence of plant-specific DNA methyltransferases. SCIENCE ADVANCES 2024; 10:eadr2222. [PMID: 39504374 PMCID: PMC11540031 DOI: 10.1126/sciadv.adr2222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/03/2024] [Indexed: 11/08/2024]
Abstract
DNA methylation is an important epigenetic mechanism essential for transposon silencing and genome integrity. Across evolution, the substrates of DNA methylation have diversified between kingdoms. In plants, chromomethylase3 (CMT3) and CMT2 mediate CHG and CHH methylation, respectively. However, how these two methyltransferases diverge on substrate specificities during evolution remains unknown. Here, we reveal that CMT2 originates from a duplication of an evolutionarily ancient CMT3 in flowering plants. Lacking a key arginine residue recognizing CHG in CMT2 impairs its CHG methylation activity in most flowering plants. An engineered V1200R mutation empowers CMT2 to restore CHG and CHH methylations in Arabidopsis cmt2cmt3 mutant, testifying a loss-of-function effect for CMT2 during evolution. CMT2 has evolved a long and unstructured amino terminus critical for protein stability, especially under heat stress, and is plastic to tolerate various natural mutations. Together, this study reveals the mechanism of chromomethylase divergence for context-specific DNA methylation in plants and sheds important lights on DNA methylation evolution and function.
Collapse
Affiliation(s)
- Jianjun Jiang
- Wisconsin Institute for Discovery and Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53715, USA
- State Key Laboratory of Crop Stress Adaptation and Improvement, Academy for Advanced Interdisplinary Studies and The Zhongzhou Laboratory for Integrative Biology, Henan University, Zhengzhou, Henan 450000, China
| | - Jia Gwee
- Wisconsin Institute for Discovery and Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jian Fang
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Sarah M. Leichter
- Wisconsin Institute for Discovery and Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Dean Sanders
- Wisconsin Institute for Discovery and Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Xinrui Ji
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, CA 92521, USA
| | - Xuehua Zhong
- Wisconsin Institute for Discovery and Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
6
|
Xu W, Thieme M, Roulin AC. Natural Diversity of Heat-Induced Transcription of Retrotransposons in Arabidopsis thaliana. Genome Biol Evol 2024; 16:evae242. [PMID: 39523776 PMCID: PMC11580521 DOI: 10.1093/gbe/evae242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/12/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Transposable elements (TEs) are major components of plant genomes, profoundly impacting the fitness of their hosts. However, technical bottlenecks have long hindered our mechanistic understanding of TEs. Using RNA-Seq and long-read sequencing with Oxford Nanopore Technologies' (ONT) direct cDNA sequencing, we analyzed the heat-induced transcription of TEs in three natural accessions of Arabidopsis thaliana (Cvi-0, Col-0, and Ler-1). In addition to the well-studied ONSEN retrotransposon family, we confirmed Copia-35 as a second heat-responsive retrotransposon family with particularly high activity in the relict accession Cvi-0. Our analysis revealed distinct expression patterns of individual TE copies and suggest different mechanisms regulating the GAG protein production in the ONSEN versus Copia-35 families. In addition, analogously to ONSEN, Copia-35 activation led to the upregulation of flanking genes such as APUM9 and potentially to the quantitative modulation of flowering time. ONT data allowed us to test the extent to which read-through formation is important in the regulation of adjacent genes. Unexpectedly, our results indicate that for both families, the upregulation of flanking genes is not predominantly directly initiated by transcription from their 3' long terminal repeats. These findings highlight the intraspecific expressional diversity linked to retrotransposon activation under stress.
Collapse
Affiliation(s)
- Wenbo Xu
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
| | - Michael Thieme
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
| | - Anne C Roulin
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
- Agroscope, 8820 Wädenswil, Switzerland
| |
Collapse
|
7
|
Guarino F, Cicatelli A, Nissim WG, Colzi I, Gonnelli C, Basso MF, Vergata C, Contaldi F, Martinelli F, Castiglione S. Epigenetic changes induced by chronic and acute chromium stress treatments in Arabidopsis thaliana identified by the MSAP-Seq. CHEMOSPHERE 2024; 362:142642. [PMID: 38908441 DOI: 10.1016/j.chemosphere.2024.142642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/21/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
Chromium (Cr) is an highly toxic metal to plants and causes severe damage to their growth, development, and reproduction. Plant exposure to chronic and acute Cr stress treatments results in significant changes at short time in the gene expression profile and at long time in the genomic DNA methylation profile at a transgenerational level and, consequently, in gene expression. These epigenetic modifications and their implications imposed by the Cr stress are not yet completely known in plants. Herein, were identified the epigenetic changes induced by chronic and acute Cr stress treatments in Arabidopsis thaliana plants using Methylation Sensitive Amplification Polymorphism coupled with next-generation sequencing (MSAP-Seq). First-generation Arabidopsis plants (termed F0 plants) kept under hoagland solution were subjected to Cr stress treatments. For chronic Cr stress, plants were treated through hoagland solution with 2.5 μM Cr during the entire cultivation period until seed harvest. Meanwhile, for acute Cr stress, plants were treated with 5 μM Cr during the first three weeks and returned to unstressful control condition until seed harvest. Seeds from F0 plants were sown and F1 plants were re-submitted to the same Cr stress treatments. The seed germination rate was evaluated from F-2 seeds harvested of F1 plants kept under different Cr stress treatments (0, 10, 20, and 40 μM) compared to the unstressful control condition. These data showed significant changes in the germination rate of F-2 seeds originating from stressed F1 plants compared to F-2 seeds harvested from unstressful control plants. Given this data, F1 plants kept under these chronic and acute Cr stress treatments and unstressful control condition were evaluated for the transgenerational epigenetic modifications using MSAP-Seq. The MSAP-Seq data showed that several genes were modified in their methylation status as a consequence of chronic and acute Cr stress treatment to maintain plant defenses activated. In particular, RNA processing, protein translation, photorespiration, energy production, transmembrane transport, DNA transcription, plant development, and plant resilience were the major biological processes modulated by epigenetic mechanisms identified in F1 plants kept under chronic and acute Cr stress. Therefore, collective data suggested that Arabidopsis plants kept under Cr stress regulate their epigenetic status over generations based on DNA methylation to modulate defense and resilience mechanisms.
Collapse
Affiliation(s)
- Francesco Guarino
- Department of Chemical and Biology "A. Zambelli", University of Salermo, 84084, Fisciano, Salerno, Italy
| | - Angela Cicatelli
- Department of Chemical and Biology "A. Zambelli", University of Salermo, 84084, Fisciano, Salerno, Italy
| | - Werther Guidi Nissim
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milan, Italy
| | - Ilaria Colzi
- Department of Biology, University of Florence, Sesto Fiorentino, 50019, Florence, Italy
| | - Cristina Gonnelli
- Department of Biology, University of Florence, Sesto Fiorentino, 50019, Florence, Italy
| | - Marcos Fernando Basso
- Department of Biology, University of Florence, Sesto Fiorentino, 50019, Florence, Italy
| | - Chiara Vergata
- Department of Biology, University of Florence, Sesto Fiorentino, 50019, Florence, Italy
| | - Felice Contaldi
- Department of Biology, University of Florence, Sesto Fiorentino, 50019, Florence, Italy
| | - Federico Martinelli
- Department of Biology, University of Florence, Sesto Fiorentino, 50019, Florence, Italy.
| | - Stefano Castiglione
- Department of Chemical and Biology "A. Zambelli", University of Salermo, 84084, Fisciano, Salerno, Italy
| |
Collapse
|
8
|
Jiang J, Gwee J, Fang J, Leichter SM, Sanders D, Ji X, Song J, Zhong X. Substrate specificity and protein stability drive the divergence of plant-specific DNA methyltransferases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.603080. [PMID: 39071332 PMCID: PMC11275764 DOI: 10.1101/2024.07.11.603080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
DNA methylation is an important epigenetic mechanism essential for transposon silencing and genome integrity. Across evolution, the substrates of DNA methylation have diversified between kingdoms to account for genome complexity. In plants, Chromomethylase3 (CMT3) and CMT2 are the major methyltransferases mediating CHG and CHH methylation, respectively. However, how these two enzymes diverge on substrate specificities during evolution remains unknown. Here, we reveal that CMT2 originates from a duplication of the evolutionarily more ancient CMT3 in flowering plants. Lacking a key arginine residue recognizing CHG in CMT2 impairs its CHG methylation activity in most flowering plants. An engineered V1200R mutation empowers CMT2 to restore both CHG and CHH methylation in Arabidopsis cmt2cmt3 mutant, testifying a loss-of-function effect for CMT2 after ∼200 million years of evolution. Interestingly, CMT2 has evolved a long and unstructured N-terminus critical for balancing protein stability, especially under heat stress. Furthermore, CMT2 N-terminus is plastic and can be tolerant to various natural mutations. Together, this study reveals the mechanism of chromomethylase divergence for context-specific DNA methylation in plants and sheds important lights on DNA methylation evolution and function.
Collapse
|
9
|
Miloro F, Kis A, Havelda Z, Dalmadi Á. Barley AGO4 proteins show overlapping functionality with distinct small RNA-binding properties in heterologous complementation. PLANT CELL REPORTS 2024; 43:96. [PMID: 38480545 PMCID: PMC10937801 DOI: 10.1007/s00299-024-03177-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/15/2024] [Indexed: 03/17/2024]
Abstract
KEY MESSAGE Barley AGO4 proteins complement expressional changes of epigenetically regulated genes in Arabidopsis ago4-3 mutant and show a distinct affinity for the 5' terminal nucleotide of small RNAs, demonstrating functional conservation and divergence. The function of Argonaute 4 (AGO4) in Arabidopsis thaliana has been extensively characterized; however, its role in monocots, which have large genomes abundantly supplemented with transposable elements (TEs), remains elusive. The study of barley AGO4 proteins can provide insights into the conserved aspects of RNA-directed DNA methylation (RdDM) and could also have further applications in the field of epigenetics or crop improvement. Bioinformatic analysis of RNA sequencing data identified two active AGO4 genes in barley, HvAGO4a and HvAGO4b. These genes function similar to AtAGO4 in an Arabidopsis heterologous complementation system, primarily binding to 24-nucleotide long small RNAs (sRNAs) and triggering methylation at specific target loci. Like AtAGO4, HvAGO4B exhibits a preference for binding sRNAs with 5' adenine residue, while also accepting 5' guanine, uracil, and cytosine residues. In contrast, HvAGO4A selectively binds only sRNAs with a 5' adenine residue. The diverse binding capacity of barley AGO4 proteins is reflected in TE-derived sRNAs and in their varying abundance. Both barley AGO4 proteins effectively restore the levels of extrachromosomal DNA and transcript abundancy of the heat-activated ONSEN retrotransposon to those observed in wild-type Arabidopsis plants. Our study provides insight into the distinct binding specificities and involvement in TE regulation of barley AGO4 proteins in Arabidopsis by heterologous complementation.
Collapse
Affiliation(s)
- Fabio Miloro
- Hungarian University of Agriculture and Life Sciences (MATE), Institute of Genetics and Biotechnology, Gödöllő, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Gödöllő, Hungary
| | - András Kis
- Hungarian University of Agriculture and Life Sciences (MATE), Institute of Genetics and Biotechnology, Gödöllő, Hungary
| | - Zoltán Havelda
- Hungarian University of Agriculture and Life Sciences (MATE), Institute of Genetics and Biotechnology, Gödöllő, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Gödöllő, Hungary
| | - Ágnes Dalmadi
- Hungarian University of Agriculture and Life Sciences (MATE), Institute of Genetics and Biotechnology, Gödöllő, Hungary.
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Gödöllő, Hungary.
| |
Collapse
|
10
|
Auge G, Hankofer V, Groth M, Antoniou-Kourounioti R, Ratikainen I, Lampei C. Plant environmental memory: implications, mechanisms and opportunities for plant scientists and beyond. AOB PLANTS 2023; 15:plad032. [PMID: 37415723 PMCID: PMC10321398 DOI: 10.1093/aobpla/plad032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/01/2023] [Indexed: 07/08/2023]
Abstract
Plants are extremely plastic organisms. They continuously receive and integrate environmental information and adjust their growth and development to favour fitness and survival. When this integration of information affects subsequent life stages or the development of subsequent generations, it can be considered an environmental memory. Thus, plant memory is a relevant mechanism by which plants respond adaptively to different environments. If the cost of maintaining the response is offset by its benefits, it may influence evolutionary trajectories. As such, plant memory has a sophisticated underlying molecular mechanism with multiple components and layers. Nonetheless, when mathematical modelling is combined with knowledge of ecological, physiological, and developmental effects as well as molecular mechanisms as a tool for understanding plant memory, the combined potential becomes unfathomable for the management of plant communities in natural and agricultural ecosystems. In this review, we summarize recent advances in the understanding of plant memory, discuss the ecological requirements for its evolution, outline the multilayered molecular network and mechanisms required for accurate and fail-proof plant responses to variable environments, point out the direct involvement of the plant metabolism and discuss the tremendous potential of various types of models to further our understanding of the plant's environmental memory. Throughout, we emphasize the use of plant memory as a tool to unlock the secrets of the natural world.
Collapse
Affiliation(s)
| | - Valentin Hankofer
- Institute of Biochemical Plant Pathology, Helmholtz Munich, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Neuherberg, Germany
| | - Martin Groth
- Institute of Functional Epigenetics, Helmholtz Munich, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Neuherberg, Germany
| | - Rea Antoniou-Kourounioti
- School of Molecular Biosciences, University of Glasgow, Sir James Black Building, University Ave, Glasgow G12 8QQ, UK
| | - Irja Ratikainen
- Department of Biology, Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Realfagbygget, NO-7491 Trondheim, Norway
| | - Christian Lampei
- Department of Biology (FB17), Plant Ecology and Geobotany Group, University of Marburg, Karl-von-Frisch-Straße 8, 35032 Marburg, Germany
| |
Collapse
|
11
|
Berthelier J, Furci L, Asai S, Sadykova M, Shimazaki T, Shirasu K, Saze H. Long-read direct RNA sequencing reveals epigenetic regulation of chimeric gene-transposon transcripts in Arabidopsis thaliana. Nat Commun 2023; 14:3248. [PMID: 37277361 DOI: 10.1038/s41467-023-38954-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 05/21/2023] [Indexed: 06/07/2023] Open
Abstract
Transposable elements (TEs) are accumulated in both intergenic and intragenic regions in plant genomes. Intragenic TEs often act as regulatory elements of associated genes and are also co-transcribed with genes, generating chimeric TE-gene transcripts. Despite the potential impact on mRNA regulation and gene function, the prevalence and transcriptional regulation of TE-gene transcripts are poorly understood. By long-read direct RNA sequencing and a dedicated bioinformatics pipeline, ParasiTE, we investigated the transcription and RNA processing of TE-gene transcripts in Arabidopsis thaliana. We identified a global production of TE-gene transcripts in thousands of A. thaliana gene loci, with TE sequences often being associated with alternative transcription start sites or transcription termination sites. The epigenetic state of intragenic TEs affects RNAPII elongation and usage of alternative poly(A) signals within TE sequences, regulating alternative TE-gene isoform production. Co-transcription and inclusion of TE-derived sequences into gene transcripts impact regulation of RNA stability and environmental responses of some loci. Our study provides insights into TE-gene interactions that contributes to mRNA regulation, transcriptome diversity, and environmental responses in plants.
Collapse
Grants
- JP20H02995 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP22H00364 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP20H05909 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP20H05913 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
Collapse
Affiliation(s)
- Jérémy Berthelier
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan.
| | - Leonardo Furci
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Shuta Asai
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Munissa Sadykova
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Tomoe Shimazaki
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Ken Shirasu
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Hidetoshi Saze
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan.
| |
Collapse
|