1
|
Traubenik S, Charon C, Blein T. From environmental responses to adaptation: the roles of plant lncRNAs. PLANT PHYSIOLOGY 2024; 195:232-244. [PMID: 38246143 DOI: 10.1093/plphys/kiae034] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024]
Abstract
As sessile organisms, plants are continuously exposed to heterogeneous and changing environments and constantly need to adapt their growth strategies. They have evolved complex mechanisms to recognize various stress factors, activate appropriate signaling pathways, and respond accordingly by reprogramming the expression of multiple genes at the transcriptional, post-transcriptional, and even epigenome levels to tolerate stressful conditions such as drought, high temperature, nutrient deficiency, and pathogenic interactions. Apart from protein-coding genes, long non-coding RNAs (lncRNAs) have emerged as key players in plant adaptation to environmental stresses. They are transcripts larger than 200 nucleotides without protein-coding potential. Still, they appear to regulate a wide range of processes, including epigenetic modifications and chromatin reorganization, as well as transcriptional and post-transcriptional modulation of gene expression, allowing plant adaptation to various environmental stresses. LncRNAs can positively or negatively modulate stress responses, affecting processes such as hormone signaling, temperature tolerance, and nutrient deficiency adaptation. Moreover, they also seem to play a role in stress memory, wherein prior exposure to mild stress enhances plant ability to adapt to subsequent stressful conditions. In this review, we summarize the contribution of lncRNAs in plant adaptation to biotic and abiotic stresses, as well as stress memory. The complex evolutionary conservation of lncRNAs is also discussed and provides insights into future research directions in this field.
Collapse
Affiliation(s)
- Soledad Traubenik
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Céline Charon
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Thomas Blein
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
- Université Paris Cité, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| |
Collapse
|
2
|
Zhang Y, Huang D, Miao Y. Epigenetic control of plant senescence and cell death and its application in crop improvement. FRONTIERS IN PLANT SCIENCE 2023; 14:1258487. [PMID: 37965008 PMCID: PMC10642554 DOI: 10.3389/fpls.2023.1258487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023]
Abstract
Plant senescence is the last stage of plant development and a type of programmed cell death, occurring at a predictable time and cell. It involves the functional conversion from nutrient assimilation to nutrient remobilization, which substantially impacts plant architecture and plant biomass, crop quality, and horticultural ornamental traits. In past two decades, DNA damage was believed to be a main reason for cell senescence. Increasing evidence suggests that the alteration of epigenetic information is a contributing factor to cell senescence in organisms. In this review, we summarize the current research progresses of epigenetic and epitranscriptional mechanism involved in cell senescence of plant, at the regulatory level of DNA methylation, histone methylation and acetylation, chromatin remodeling, non-coding RNAs and RNA methylation. Furthermore, we discuss their molecular genetic manipulation and potential application in agriculture for crop improvement. Finally we point out the prospects of future research topics.
Collapse
Affiliation(s)
- Yu Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dongmei Huang
- Department of Biochemistry and Molecular Biology, Xiamen Medical College, Xiamen, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
3
|
Holland S, Roth R. Extracellular Vesicles in the Arbuscular Mycorrhizal Symbiosis: Current Understanding and Future Perspectives. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:235-244. [PMID: 36867731 DOI: 10.1094/mpmi-09-22-0189-fi] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The arbuscular mycorrhizal (AM) symbiosis is an ancient and highly conserved mutualism between plant and fungal symbionts, in which a highly specialized membrane-delimited fungal arbuscule acts as the symbiotic interface for nutrient exchange and signaling. As a ubiquitous means of biomolecule transport and intercellular communication, extracellular vesicles (EVs) are likely to play a role in this intimate cross-kingdom symbiosis, yet, there is a lack of research investigating the importance of EVs in AM symbiosis despite known roles in microbial interactions in both animal and plant pathosystems. Clarifying the current understanding of EVs in this symbiosis in light of recent ultrastructural observations is paramount to guiding future investigations in the field, and, to this end, this review summarizes recent research investigating these areas. Namely, this review discusses the available knowledge regarding biogenesis pathways and marker proteins associated with the various plant EV subclasses, EV trafficking pathways during symbiosis, and the endocytic mechanisms implicated in the uptake of these EVs. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Samuel Holland
- Department of Biology, University of Oxford, Oxford OX1 3RB, U.K
| | - Ronelle Roth
- Department of Biology, University of Oxford, Oxford OX1 3RB, U.K
| |
Collapse
|
4
|
Reynoso MA, Blanco FA, Zanetti ME. Nuclear and cytoplasmic lncRNAs in root tips of the model legume Medicago truncatula under control and submergence. IUBMB Life 2023. [PMID: 36852968 DOI: 10.1002/iub.2712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/21/2023] [Indexed: 03/01/2023]
Abstract
In this study, we aimed to identify long noncoding RNAs (lncRNAs) in root tips of the model legume Medicago truncatula using previously generated nuclear, total polyA, ribosome-associated polyA, and Riboseq RNA datasets, which might shed light on their localization and potential regulatory roles. RNA-seq data were mapped to the version 5 of the M. truncatula A17 genome and analyzed to identify genome annotated lncRNAs and putative new root tip (NRT) lncRNAs. lncRNAs were classified according to their genomic location relative to chromatin accessible regions, protein-coding genes and transposable elements (TE), finding differences between annotated lncRNAs and NRT lncRNAs, both in their genomic position as well as in the type of TEs in their vicinity. We investigated their response to submergence and found a set of regulated lncRNAs that were preferentially upregulated in the nucleus, some of which were located nearby genes of the conserved submergence upregulated gene families, and chromatin accessible regions suggesting a potential regulatory role. Finally, the accumulation of lncRNAs under submergence was validated by reverse transcription quantitative polymerase chain reaction on nuclear RNA, providing additional evidence of their localization, which could ultimately be required for their function.
Collapse
Affiliation(s)
- Mauricio A Reynoso
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina.,Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California, USA
| | - Flavio Antonio Blanco
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| | - María Eugenia Zanetti
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| |
Collapse
|
5
|
Lu Z, Yang Z, Tian Z, Gui Q, Dong R, Chen C. Genome-wide analysis and identification of microRNAs in Medicago truncatula under aluminum stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1137764. [PMID: 36778703 PMCID: PMC9911878 DOI: 10.3389/fpls.2023.1137764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Numerous studies have shown that plant microRNAs (miRNAs) play key roles in plant growth and development, as well as in response to biotic and abiotic stresses; however, the role of miRNA in legumes under aluminum (Al) stress have rarely been reported. Therefore, here, we aimed to investigate the role of miRNAs in and their mechanism of Al tolerance in legumes. To this end, we sequenced a 12-strand-specific library of Medicago truncatula under Al stress. A total of 195.80 M clean reads were obtained, and 876 miRNAs were identified, of which, 673 were known miRNAs and 203 were unknown. A total of 55 miRNAs and their corresponding 2,502 target genes were differentially expressed at various time points during Al stress. Further analysis revealed that mtr-miR156g-3p was the only miRNA that was significantly upregulated at all time points under Al stress and could directly regulate the expression of genes associated with root cell growth. Three miRNAs, novel_miR_135, novel_miR_182, and novel_miR_36, simultaneously regulated the expression of four Al-tolerant transcription factors, GRAS, MYB, WRKY, and bHLH, at an early stage of Al stress, indicating a response to Al stress. In addition, legume-specific miR2119 and miR5213 were involved in the tolerance mechanism to Al stress by regulating F-box proteins that have protective effects against stress. Our results contribute to an improved understanding of the role of miRNAs in Al stress in legumes and provide a basis for studying the molecular mechanisms of Al stress regulation.
Collapse
Affiliation(s)
- Zhongjie Lu
- Department of Grassland Science, College of Animal Science, Guizhou University, Guiyang, China
| | - Zhengyu Yang
- Department of Vehicle Engineering, Guizhou Technological College of Machinery and Electricity, Duyun, China
| | - Zheng Tian
- Department of Grassland Science, College of Animal Science, Guizhou University, Guiyang, China
| | - Qihui Gui
- Department of Grassland Science, College of Animal Science, Guizhou University, Guiyang, China
| | - Rui Dong
- Department of Grassland Science, College of Animal Science, Guizhou University, Guiyang, China
| | - Chao Chen
- Department of Grassland Science, College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
6
|
Dinkins RD, Hancock JA, Bickhart DM, Sullivan ML, Zhu H. Expression and Variation of the Genes Involved in Rhizobium Nodulation in Red Clover. PLANTS (BASEL, SWITZERLAND) 2022; 11:2888. [PMID: 36365339 PMCID: PMC9655500 DOI: 10.3390/plants11212888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Red clover (Trifolium pratense L.) is an important forage crop and serves as a major contributor of nitrogen input in pasture settings because of its ability to fix atmospheric nitrogen. During the legume-rhizobial symbiosis, the host plant undergoes a large number of gene expression changes, leading to development of root nodules that house the rhizobium bacteria as they are converted into nitrogen-fixing bacteroids. Many of the genes involved in symbiosis are conserved across legume species, while others are species-specific with little or no homology across species and likely regulate the specific plant genotype/symbiont strain interactions. Red clover has not been widely used for studying symbiotic nitrogen fixation, primarily due to its outcrossing nature, making genetic analysis rather complicated. With the addition of recent annotated genomic resources and use of RNA-seq tools, we annotated and characterized a number of genes that are expressed only in nodule forming roots. These genes include those encoding nodule-specific cysteine rich peptides (NCRs) and nodule-specific Polycystin-1, Lipoxygenase, Alpha toxic (PLAT) domain proteins (NPDs). Our results show that red clover encodes one of the highest number of NCRs and ATS3-like/NPDs, which are postulated to increase nitrogen fixation efficiency, in the Inverted-Repeat Lacking Clade (IRLC) of legumes. Knowledge of the variation and expression of these genes in red clover will provide more insights into the function of these genes in regulating legume-rhizobial symbiosis and aid in breeding of red clover genotypes with increased nitrogen fixation efficiency.
Collapse
Affiliation(s)
- Randy D. Dinkins
- Forage-Animal Production Research Unit, USDA-ARS, Lexington, KY 40506, USA
| | - Julie A. Hancock
- College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40508, USA
| | | | | | - Hongyan Zhu
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
7
|
Gui Q, Yang Z, Chen C, Yang F, Wang S, Dong R. Identification and characterization of long noncoding RNAs involved in the aluminum stress response in Medicago truncatula via genome-wide analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:1017869. [PMID: 36212300 PMCID: PMC9541535 DOI: 10.3389/fpls.2022.1017869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Numerous studies have shown that plant long noncoding RNAs (lncRNAs) play an important regulatory role in the plant response to environmental stress. However, there are no reports on lncRNAs regulating and enhancing aluminum (Al) stress tolerance in legumes. This study analyzed the role of lncRNAs in response to Al stress in the legume model plant Medicago truncatula. A total of 219.49 Gb clean data were generated: 3,284 lncRNA genes were identified, of which 515 were differentially expressed, and 1,254 new genes were functionally annotated through database alignment. We further predicted and classified putative targets of these lncRNAs and found that they were enriched in biological processes and metabolic pathways such as plant hormone signal transduction, cell wall modification and the tricarboxylic acid (TCA) cycle. Finally, we characterized the functions of 2 Al-activated-malate-transporter-related lncRNAs in yeast. The recombinant plasmids of MSTRG.12506.5 and MSTRG.34338.20 were transformed into yeast, and these yeast exhibited better growth than those carrying empty vectors on medium supplemented with 10 μM AlCl3 and showed that they have biological functions affording Al stress tolerance. These findings suggest that lncRNAs are involved in regulating plant responses to Al stress. Our findings help to understand the role of lncRNAs in the response to Al stress in legumes and provide candidate lncRNAs for further studies.
Collapse
Affiliation(s)
- Qihui Gui
- Department of Grassland Science, College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Zhengyu Yang
- Guizhou Technological College of Machinery and Electricity, Duyun, China
| | - Chao Chen
- Department of Grassland Science, College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Feng Yang
- Grassland Technology Experiment and Extension Station, Guiyang, China
| | - Song Wang
- Grassland Technology Experiment and Extension Station, Guiyang, China
| | - Rui Dong
- Department of Grassland Science, College of Animal Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|