1
|
Angove C, Norkko A, Gustafsson C. Root puppet masters: Infauna shift trait-productivity relationships in submerged aquatic vegetation communities. Ecol Evol 2024; 14:e70305. [PMID: 39463747 PMCID: PMC11511661 DOI: 10.1002/ece3.70305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/20/2024] [Accepted: 09/01/2024] [Indexed: 10/29/2024] Open
Abstract
Submerged aquatic vegetation (SAV) growth can be limited by light and nutrient availability. Infauna are common inhabitants of SAV meadows. Their activity increases nutrient mobility, and they can positively affect plant growth, but we do not know their role in plant trait-biomass production relationships. We approached this problem using a 15-week in situ transplant experiment in the Baltic Sea with experimental additions of Macoma balthica, a sedentary bivalve, to experimental SAV communities. Experimental plant communities were tricultures with varying species composition, compiled from a pool of six different species, to create an experimental gradient of trait community weighted means that allowed us to detect changes more clearly in plant trait-biomass production relationships in response to the M. balthica treatment. We evaluated the relationships between plant height, leaf area, maximum root length (MMRL), specific root length (SRL), and SAV biomass production, then compared M. balthica condition index (soft tissue biomass [WW, mg]/valve length [mm]) to plant community leaf tissue nutrient concentrations (N (%DW), δ15N). Community biomass production was significantly related to plant height in the control treatment, but this relationship was decoupled in the M. balthica treatment, where community biomass production was instead significantly related to MMRL and SRL. This suggested a shift in the predominant SAV growth strategy, from height-related to root-related community biomass production. Leaf tissue δ15N was significantly related to M. balthica condition index. The growth of one species, Potamogeton perfoliatus, was significantly inhibited by the M. balthica treatment. Our results show that infauna have an important role in the plant traits related to community biomass production, and they have the potential to shape plant community structure via selective influences on different plant species.
Collapse
Affiliation(s)
- Charlotte Angove
- Stable Isotope Laboratory of Luke (SILL)Natural Resources Institute Finland (Luke)HelsinkiFinland
| | - Alf Norkko
- Tvärminne Zoological StationUniversity of HelsinkiHankoFinland
| | | |
Collapse
|
2
|
Gilbert SF. Inter-kingdom communication and the sympoietic way of life. Front Cell Dev Biol 2024; 12:1427798. [PMID: 39071805 PMCID: PMC11275584 DOI: 10.3389/fcell.2024.1427798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
Organisms are now seen as holobionts, consortia of several species that interact metabolically such that they sustain and scaffold each other's existence and propagation. Sympoiesis, the development of the symbiotic relationships that form holobionts, is critical for our understanding the origins and maintenance of biodiversity. Rather than being the read-out of a single genome, development has been found to be sympoietic, based on multigenomic interactions between zygote-derived cells and symbiotic microbes. These symbiotic and sympoietic interactions are predicated on the ability of cells from different kingdoms of life (e.g., bacteria and animals) to communicate with one another and to have their chemical signals interpreted in a manner that facilitates development. Sympoiesis, the creation of an entity by the interactions of other entities, is commonly seen in embryogenesis (e.g., the creation of lenses and retinas through the interaction of brain and epidermal compartments). In holobiont sympoiesis, interactions between partners of different domains of life interact to form organs and biofilms, wherein each of these domains acts as the environment for the other. If evolution is forged by changes in development, and if symbionts are routinely involved in our development, then changes in sympoiesis can constitute an important factor in evolution.
Collapse
Affiliation(s)
- Scott F. Gilbert
- Department of Biology, Swarthmore College, Swarthmore, PA, United States
- Evolutionary Phenomics Group, Biotechnology Institute, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Nguyen HM, Hong UVT, Ruocco M, Dattolo E, Marín-Guirao L, Pernice M, Procaccini G. Thermo-priming triggers species-specific physiological and transcriptome responses in Mediterranean seagrasses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108614. [PMID: 38626655 DOI: 10.1016/j.plaphy.2024.108614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/18/2024]
Abstract
Heat-priming improves plants' tolerance to a recurring heat stress event. The underlying molecular mechanisms of heat-priming are largely unknown in seagrasses. Here, ad hoc mesocosm experiments were conducted with two Mediterranean seagrass species, Posidonia oceanica and Cymodocea nodosa. Plants were first exposed to heat-priming, followed by a heat-triggering event. A comprehensive assessment of plant stress response across different levels of biological organization was performed at the end of the triggering event. Morphological and physiological results showed an improved response of heat-primed P. oceanica plants while in C. nodosa both heat- and non-primed plants enhanced their growth rates at the end of the triggering event. As resulting from whole transcriptome sequencing, molecular functions related to several cellular compartments and processes were involved in the response to warming of non-primed plants, while the response of heat-primed plants involved a limited group of processes. Our results suggest that seagrasses acquire a primed state during the priming event, that eventually gives plants the ability to induce a more energy-effective response when the thermal stress event recurs. Different species may differ in their ability to perform an improved heat stress response after priming. This study provides pioneer molecular insights into the emerging topic of seagrass stress priming and may benefit future studies in the field.
Collapse
Affiliation(s)
- Hung Manh Nguyen
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Uyen V T Hong
- La Trobe University, AgriBio Building, Bundoora, 3086, VIC, Australia; Department of Plant Biotechnology & Biotransformation, University of Science, Vietnam National University, 700000, Ho Chi Minh City, Viet Nam
| | - Miriam Ruocco
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Emanuela Dattolo
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy
| | - Lázaro Marín-Guirao
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy; Oceanographic Center of Murcia, Seagrass Ecology Group, Spanish Institute of Oceanography (IEO-CSIC), C/Varadero, San Pedro del Pinatar, 30740, Murcia, Spain.
| | - Mathieu Pernice
- Faculty of Science, Climate Change Cluster (C3), University of Technology Sydney, Sydney, 2007, NSW, Australia
| | - Gabriele Procaccini
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy
| |
Collapse
|
4
|
García-Souto D, Martínez-Mariño V, Morán P, Olabarria C, Vázquez E. Hiding from heat: The transcriptomic response of two clam species is modulated by behaviour and habitat. J Therm Biol 2024; 119:103776. [PMID: 38163416 DOI: 10.1016/j.jtherbio.2023.103776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 01/03/2024]
Abstract
Rising occurrence of extreme warming events are profoundly impacting ecosystems, altering their functioning and services with significant socio-economic consequences. Particularly susceptible to heatwaves are intertidal shellfish beds, located in estuarine areas already stressed by factors such as rainfall events, red tides, eutrophication, and pollution. In Galicia, Northwestern Spain, these beds support vital shellfisheries, featuring the native clam Ruditapes decussatus and the non-indigenous R. philippinarum. Over recent decades, these populations have experienced notable abundance shifts due to various anthropogenic impacts, including climate change. In this habitat, patches of the seagrass Zostera noltei that coexist with bare sand can act as thermal refuges for benthic organisms such as clams. To assess the impact of heatwaves on these ecosystems, a mesocosm experiment was conducted. Juveniles of both clam species in two habitat types-bare sand and sand with Z. noltei-were exposed to simulated atmospheric heatwaves during diurnal low tide for four consecutive days. Subsequent transcriptomic analysis revealed that high temperatures had a more pronounced impact on the transcriptome of R. philippinarum compared to R. decussatus. The habitat type played a crucial role in mitigating heat stress in R. philippinarum, with the presence of Z. noltei notably ameliorating the transcriptomic response. These findings have direct applications in shellfishery management, emphasizing the importance of preserving undisturbed patches of Z. noltei as thermal refuges, contributing to the mitigation of heatwave effects on shellfish populations.
Collapse
Affiliation(s)
- Daniel García-Souto
- Genomas y Enfermedad, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain; Departamento de Zoología, Genética y Antropología Física, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - Víctor Martínez-Mariño
- Centro de Investigación Mariña (CIM) and Departamento de Bioquímica, Xenética e Inmunoloxía, Facultade de Bioloxía, Universidade de Vigo, 36310, Vigo, Spain.
| | - Paloma Morán
- Centro de Investigación Mariña (CIM) and Departamento de Bioquímica, Xenética e Inmunoloxía, Facultade de Bioloxía, Universidade de Vigo, 36310, Vigo, Spain.
| | - Celia Olabarria
- Centro de Investigación Mariña (CIM) and Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias do Mar, Universidade de Vigo, 36310, Vigo, Spain.
| | - Elsa Vázquez
- Centro de Investigación Mariña (CIM) and Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias do Mar, Universidade de Vigo, 36310, Vigo, Spain.
| |
Collapse
|
5
|
Román M, Gilbert F, Viejo RM, Román S, Troncoso JS, Vázquez E, Olabarria C. Are clam-seagrass interactions affected by heatwaves during emersion? MARINE ENVIRONMENTAL RESEARCH 2023; 186:105906. [PMID: 36773414 DOI: 10.1016/j.marenvres.2023.105906] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
The increased frequency of heatwaves expected in the context of global warming will affect socio-ecological systems such as shellfish beds at intertidal seagrass meadows. A mesocosm experiment was performed to assess the effects of a simulated atmospheric heatwave during low tide on the bioturbation indicators and growth of the commercial juvenile native Ruditapes decussatus and the introduced clam R. philippinarum, and on their interactions with the seagrass Zostera noltei. Under the heatwave, heat dissipation at 5 cm depth was significantly greater in the sediments below Z. noltei than below bare sand, the photosynthetic efficiency (Fv/Fm) of Z. noltei decreased and the clams tended to grow less. Furthermore, after the heatwave clams below bare sand tended to burrow deeper than those below Z. noltei, indicating that seagrass provided a refuge for clams. Ruditapes philippinarum grew less, and did not burrow as deeply as R. decussatus, which may imply greater vulnerability to desiccation and heat at low tide. The particle displacement coefficient (PDC) of R. philippinarum indicated lower bioturbation values in Z. noltei than in bare sand and was a suitable bioturbation indicator for juvenile Ruditapes spp. clams. In Z. noltei coexisting with R. philippinarum, the Fv/Fm values were higher than without clams after a recovery period, which may be linked to the assimilation of phosphate excreted by the clams and suggests a facilitative interaction. No such interaction was observed with R. deccusatus, probably because of its deeper burrowing depth. The findings suggest reciprocal facilitative interactions between R. philippinarum and Z. noltei and the potential contribution of Z. noltei to the sustainability of clams under global warming scenarios, which may support management actions aimed at enhancing the coexistence between shellfishing activities and seagrass conservation.
Collapse
Affiliation(s)
- Marta Román
- Centro de Investigación Mariña, Universidade de Vigo, EcoCost, Facultade de Ciencias do Mar, Edificio CC Experimentais, Campus de Vigo, As Lagoas-Marcosende, 36310, Vigo, Spain.
| | - Franck Gilbert
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UPS), Toulouse, France.
| | - Rosa M Viejo
- Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, ES-28933, Móstoles, Madrid, Spain.
| | - Salvador Román
- Centro de Investigación Mariña, Universidade de Vigo, EcoCost, Facultade de Ciencias do Mar, Edificio CC Experimentais, Campus de Vigo, As Lagoas-Marcosende, 36310, Vigo, Spain.
| | - Jesús S Troncoso
- Centro de Investigación Mariña, Universidade de Vigo, EcoCost, Facultade de Ciencias do Mar, Edificio CC Experimentais, Campus de Vigo, As Lagoas-Marcosende, 36310, Vigo, Spain.
| | - Elsa Vázquez
- Centro de Investigación Mariña, Universidade de Vigo, EcoCost, Facultade de Ciencias do Mar, Edificio CC Experimentais, Campus de Vigo, As Lagoas-Marcosende, 36310, Vigo, Spain.
| | - Celia Olabarria
- Centro de Investigación Mariña, Universidade de Vigo, EcoCost, Facultade de Ciencias do Mar, Edificio CC Experimentais, Campus de Vigo, As Lagoas-Marcosende, 36310, Vigo, Spain.
| |
Collapse
|