1
|
Manzoor N, Yuan J, Dongcheng W, Liu Z, Lin C, Mao Z. Integrated transcriptomic and proteomic analyses revealed molecular mechanisms underlying nutritional changes during seed development of Chenopodium quinoa. Genomics 2025; 117:111045. [PMID: 40210023 DOI: 10.1016/j.ygeno.2025.111045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Quinoa (Chenopodium quinoa) is a pseudocereal crop of the Amaranthacea family containing highly nutritious seeds which undergo complex physiological and biochemical changes during their development, resulting in final yield and seed nutritional quality (SN-quality). To obtain new insights into the underlying molecular mechanisms, integrated transcriptomic and proteomic analyses of developing seeds from 7 days after flowering (DAF) to maturation (57 DAF) were conducted. A total of 44,776 genes and 8235 proteins were detected; among them, 4130 genes and 3978 proteins were significantly different in pairwise comparisons of samples at various seed developmental stages. Results showed that genes and proteins associated with pathways of sucrose, fructose, mannose, pentose, glucuronate, starch, amino sugar and nucleotide sugar in carbohydrate metabolism; cyano amino acid, taurine & hypotaurine and storage proteins in amino acid and protein metabolisms; cutin, suberin and wax biosynthesis in lipid metabolism and phenylpropanoid and terpenoid biosynthesis in secondary metabolisms of flavonoids and triterpenoidal saponins play a key role in seed developmental process and SN-quality control. Gene regulatory networks correlated with SN-quality traits identified ABA independent (CqDREB2A, Cyclic dof factor 2 (CqCDF2) and AINTEGUMENTA-like5 (CqAIL5),) as well as dependent (CqABI4 and CqWRKY24) associated transcription factors play dynamic role in quinoa SN-quality control by regulating potential target genes and their encoding proteins related to above-mentioned metabolic pathways. The provided multi-omic data sets presented a dynamic picture regarding the developmental process of quinoa seeds, revealing the temporal specific expression of key candidate genes and proteins and providing the basis for crop improvement.
Collapse
Affiliation(s)
- Nazer Manzoor
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming 650201, China
| | - Jiahong Yuan
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming 650201, China
| | - Wenhua Dongcheng
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming 650201, China
| | - Zhengjie Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming 650201, China; Institute of Improvement and Utilization of Characteristic Resource Plants, YNAU, Kunming 650201, China
| | - Chun Lin
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming 650201, China; The Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming 650201, China.
| | - Zichao Mao
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming 650201, China; Institute of Improvement and Utilization of Characteristic Resource Plants, YNAU, Kunming 650201, China; The Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming 650201, China.
| |
Collapse
|
2
|
Huang L, Zhang L, Zhang P, Liu J, Li L, Li H, Wang X, Bai Y, Jiang G, Qin P. Molecular characteristics and expression pattern of the FAR1 gene during spike sprouting in quinoa. Sci Rep 2024; 14:28485. [PMID: 39557968 PMCID: PMC11573983 DOI: 10.1038/s41598-024-79474-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 11/10/2024] [Indexed: 11/20/2024] Open
Abstract
FAR-RED IMPAIRED RESPONSE 1 (FAR1) is a class of transposase-derived transcription factors that play a very important role in the initiation of the photosensitive pigment A (phyA) signaling pathway. Despite their importance, the understanding of the function of FAR1 genes in quinoa is still limited, especially regarding how they affect the spike sprouting response. Quinoa has gained global attention in recent years for its health benefits and potential for sustainable agriculture. In our study, the CqFAR1 gene set in quinoa was characterized using HMMER (PF03101) and BLAST analyses, and 87 genes were identified. The 87 CqFAR1 genes were systematically classified into five groups that showed a high degree of conservation in gene structure and motif composition. Tissue expression profiles of the CqFAR1 gene indicated that the CqFAR1 gene plays a key role throughout the growth and development of quinoa, especially at mid (leaf) and end (spike) stages. By RT-qPCR analysis, we observed significant differences in the expression of the CqFAR1 gene at different developmental stages. Notably, the CqFAR1 gene showed significant expression enhancement at the early stage of quinoa spike sprouting. The results are useful for understanding the role of the CqFAR1 gene in quinoa growth and development and provide theoretical support for quinoa breeding.
Collapse
Affiliation(s)
- Liubin Huang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Lingyuan Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Ping Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Junna Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Li Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Hanxue Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Xuqin Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Yutao Bai
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Guofei Jiang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | - Peng Qin
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
3
|
Campos Assumpção de Amarante M, Ong L, Spyropoulos F, Gras S, Wolf B. Modulation of physico-chemical and technofunctional properties of quinoa protein isolate: Effect of precipitation acid. Food Chem 2024; 457:140399. [PMID: 39029314 DOI: 10.1016/j.foodchem.2024.140399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/26/2024] [Accepted: 07/07/2024] [Indexed: 07/21/2024]
Abstract
The typically low solubility and gelation capacity of plant proteins can impose challenges in the design of high-quality plant-based foods. The acid used during the precipitation step of plant protein isolate extraction can influence protein functionality. Here, acetic acid and citric acid were used to extract quinoa protein isolate (QPI) from quinoa flour, as these acids are more kosmotropic than the commonly used HCl, promoting the stabilisation of the native protein structure. While proximate analysis showed that total protein was similar for the three isolates, precipitation with kosmotropic acids increased soluble protein, which correlated positively with gel strength. Microstructure analysis revealed that these gels contained a less porous protein network with lipid droplet inclusions. This study shows that the choice of precipitation acid offers an opportunity to tailor the properties of quinoa protein isolate for application, a strategy that is likely applicable to other plant protein isolates.
Collapse
Affiliation(s)
- Marina Campos Assumpção de Amarante
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, United Kingdom; Department of Chemical Engineering and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Lydia Ong
- Department of Chemical Engineering and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Fotis Spyropoulos
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, United Kingdom.
| | - Sally Gras
- Department of Chemical Engineering and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Bettina Wolf
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, West Midlands, B15 2TT, United Kingdom.
| |
Collapse
|
4
|
Li N, Li H, Chen Z, Feng J, Guo T, Guo H, Zhang X, Yan Y, He C, Zong D. Transcriptome and Metabolome Based Mechanisms Revealing the Accumulation and Transformation of Sugars and Fats in Pinus armandii Seed Kernels during the Harvesting Period. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21533-21547. [PMID: 39306861 DOI: 10.1021/acs.jafc.4c03100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Pinus armandii seed kernel is a nutrient-rich and widely consumed nut whose yield and quality are affected by, among other things, harvesting time and climatic conditions, which reduce economic benefits. To investigate the optimal harvesting period of P. armandii seed kernels, this study determined the nutrient composition and seed kernel morphology and analyzed the gene expression and metabolic differences of P. armandii seed kernels during the harvesting period by transcriptomics and metabolomics. The results revealed that during the maturation of P. armandii seed kernels, there was a significant increase in the width, thickness, and weight of the seed kernels, as well as a significant accumulation of sucrose, soluble sugars, proteins, starch, flavonoids, and polyphenols and a significant decrease in lipid content. In addition, transcriptomic and metabolomic analyses of P. armandii seed kernels during the harvesting period screened and identified 103 differential metabolites (DEMs) and 8899 differential genes (DEGs). Analysis of these DEMs and DEGs revealed that P. armandii seed kernel harvesting exhibited gene-metabolite differences in sugar- and lipid-related pathways. Among them, starch and sucrose metabolism, glycolysis, and gluconeogenesis were associated with the synthesis and catabolism of sugars, whereas fatty acid degradation, glyoxylate and dicarboxylic acid metabolism, and glycerophospholipid metabolism were associated with the synthesis and catabolism of lipids. Therefore, the present study hypothesized that these differences in genes and metabolites exhibited during the harvesting period of P. armandii seed kernels might be related to the accumulation and transformation of sugars and lipids. This study may provide a theoretical basis for determining the optimal harvesting time of P. armandii seed kernels, changes in the molecular mechanisms of nutrient accumulation, and quality directed breeding.
Collapse
Affiliation(s)
- Nan Li
- Key Laboratory for Forest Genetic and Tree Improvement &Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Hailin Li
- Key Laboratory for Forest Genetic and Tree Improvement &Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Resources Conservation and Use in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Zhihua Chen
- Key Laboratory for Forest Genetic and Tree Improvement &Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Jiayu Feng
- Key Laboratory for Forest Genetic and Tree Improvement &Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Tiansu Guo
- Key Laboratory for Forest Genetic and Tree Improvement &Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Haiyang Guo
- Key Laboratory for Forest Genetic and Tree Improvement &Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Xiaolin Zhang
- Key Laboratory for Forest Genetic and Tree Improvement &Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Yi Yan
- Kunming Forestry Scientific Research Institute, Kunming 650221, China
| | - Chengzhong He
- Key Laboratory for Forest Genetic and Tree Improvement &Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Resources Conservation and Use in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Dan Zong
- Key Laboratory for Forest Genetic and Tree Improvement &Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Resources Conservation and Use in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
5
|
Zhao X, Wang S, Guo F, Xia P. Genome-wide identification of polyamine metabolism and ethylene synthesis genes in Chenopodium quinoa Willd. and their responses to low-temperature stress. BMC Genomics 2024; 25:370. [PMID: 38627628 PMCID: PMC11020822 DOI: 10.1186/s12864-024-10265-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Quinoa (Chenopodium quinoa Willd.) is valued for its nutritional richness. However, pre-harvest sprouting poses a significant threat to yield and grain quality. This study aims to enhance our understanding of pre-harvest sprouting mitigation strategies, specifically through delayed sowing and avoiding rainy seasons during quinoa maturation. The overarching goal is to identify cold-resistant varieties and unravel the molecular mechanisms behind the low-temperature response of quinoa. We employed bioinformatics and genomics tools for a comprehensive genome-wide analysis of polyamines (PAs) and ethylene synthesis gene families in quinoa under low-temperature stress. RESULTS This involved the identification of 37 PA biosynthesis and 30 PA catabolism genes, alongside 227 ethylene synthesis. Structural and phylogenetic analyses showcased conserved patterns, and subcellular localization predictions indicated diverse cellular distributions. The results indicate that the PA metabolism of quinoa is closely linked to ethylene synthesis, with multiple genes showing an upregulation in response to cold stress. However, differential expression within gene families suggests a nuanced regulatory network. CONCLUSIONS Overall, this study contributes valuable insights for the functional characterization of the PA metabolism and ethylene synthesis of quinoa, which emphasize their roles in plant low-temperature tolerance and providing a foundation for future research in this domain.
Collapse
Affiliation(s)
- Xiaoxue Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, 650201, Kunming, China
| | - Shiyu Wang
- College of Horticulture and Landscape, Yunnan Agricultural University, 650201, Kunming, China
| | - Fenggen Guo
- College of Agronomy and Biotechnology, Yunnan Agricultural University, 650201, Kunming, China.
| | - Pan Xia
- College of Agronomy and Biotechnology, Yunnan Agricultural University, 650201, Kunming, China
| |
Collapse
|
6
|
Craine EB, Davies A, Packer D, Miller ND, Schmöckel SM, Spalding EP, Tester M, Murphy KM. A comprehensive characterization of agronomic and end-use quality phenotypes across a quinoa world core collection. FRONTIERS IN PLANT SCIENCE 2023; 14:1101547. [PMID: 36875583 PMCID: PMC9978749 DOI: 10.3389/fpls.2023.1101547] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Quinoa (Chenopodium quinoa Willd.), a pseudocereal with high protein quality originating from the Andean region of South America, has broad genetic variation and adaptability to diverse agroecological conditions, contributing to the potential to serve as a global keystone protein crop in a changing climate. However, the germplasm resources currently available to facilitate quinoa expansion worldwide are restricted to a small portion of quinoa's total genetic diversity, in part because of day-length sensitivity and issues related to seed sovereignty. This study aimed to characterize phenotypic relationships and variation within a quinoa world core collection. The 360 accessions were planted in a randomized complete block design with four replicates in each of two greenhouses in Pullman, WA during the summer of 2018. Phenological stages, plant height, and inflorescence characteristics were recorded. Seed yield, composition, thousand seed weight, nutritional composition, shape, size, and color were measured using a high-throughput phenotyping pipeline. Considerable variation existed among the germplasm. Crude protein content ranged from 11.24% to 17.81% (fixed at 14% moisture). We found that protein content was negatively correlated with yield and positively correlated with total amino acid content and days to harvest. Mean essential amino acids values met adult daily requirements but not leucine and lysine infant requirements. Yield was positively correlated with thousand seed weight and seed area, and negatively correlated with ash content and days to harvest. The accessions clustered into four groups, with one-group representing useful accessions for long-day breeding programs. The results of this study establish a practical resource for plant breeders to leverage as they strategically develop germplasm in support of the global expansion of quinoa.
Collapse
Affiliation(s)
| | - Alathea Davies
- Department of Chemistry, University of Wyoming, Laramie, WY, United States
| | - Daniel Packer
- Sustainable Seed Systems Laboratory, Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Nathan D. Miller
- Department of Botany, University of Wisconsin-Madison, Madison, WI, United States
| | - Sandra M. Schmöckel
- Department Physiology of Yield Stability, Institute of Crop Science, Faculty of Agriculture, University of Hohenheim, Stuttgart, Germany
| | - Edgar P. Spalding
- Department of Botany, University of Wisconsin-Madison, Madison, WI, United States
| | - Mark Tester
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Kevin M. Murphy
- Department of Chemistry, University of Wyoming, Laramie, WY, United States
| |
Collapse
|