1
|
Varadharajan V, Rajendran R, Muthuramalingam P, Runthala A, Madhesh V, Swaminathan G, Murugan P, Srinivasan H, Park Y, Shin H, Ramesh M. Multi-Omics Approaches Against Abiotic and Biotic Stress-A Review. PLANTS (BASEL, SWITZERLAND) 2025; 14:865. [PMID: 40265800 PMCID: PMC11944711 DOI: 10.3390/plants14060865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 04/24/2025]
Abstract
Plants face an array of environmental stresses, including both abiotic and biotic stresses. These stresses significantly impact plant lifespan and reduce agricultural crop productivity. Abiotic stresses, such as ultraviolet (UV) radiation, high and low temperatures, salinity, drought, floods, heavy metal toxicity, etc., contribute to widespread crop losses globally. On the other hand, biotic stresses, such as those caused by insects, fungi, and weeds, further exacerbate these challenges. These stressors can hinder plant systems at various levels, including molecular, cellular, and development processes. To overcome these challenges, multi-omics computational approaches offer a significant tool for characterizing the plant's biomolecular pool, which is crucial for maintaining homeostasis and signaling response to environmental changes. Integrating multiple layers of omics data, such as proteomics, metabolomics, ionomics, interactomics, and phenomics, simplifies the study of plant resistance mechanisms. This comprehensive approach enables the development of regulatory networks and pathway maps, identifying potential targets for improving resistance through genetic engineering or breeding strategies. This review highlights the valuable insights from integrating multi-omics approaches to unravel plant stress responses to both biotic and abiotic factors. By decoding gene regulation and transcriptional networks, these techniques reveal critical mechanisms underlying stress tolerance. Furthermore, the role of secondary metabolites in bio-based products in enhancing plant stress mitigation is discussed. Genome editing tools offer promising strategies for improving plant resilience, as evidenced by successful case studies combating various stressors. On the whole, this review extensively discusses an advanced multi-omics approach that aids in understanding the molecular basis of resistance and developing novel strategies to improve crops' or organisms' resilience to abiotic and biotic stresses.
Collapse
Affiliation(s)
| | - Radhika Rajendran
- Indian Council of Agricultural Research (ICAR), National Institute for Plant Biotechnology (NIPB), PUSA Campus, New Delhi 110012, India;
| | - Pandiyan Muthuramalingam
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52725, Republic of Korea;
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Ashish Runthala
- Department of Basic Sciences, School of Science and Humanities, SR University, Warangal 506371, India;
| | - Venkatesh Madhesh
- Department of Biotechnology, PSG College of Technology, Coimbatore 641004, India; (V.M.)
| | - Gowtham Swaminathan
- Department of Biotechnology, PSG College of Technology, Coimbatore 641004, India; (V.M.)
| | - Pooja Murugan
- Department of Biotechnology, PSG College of Technology, Coimbatore 641004, India; (V.M.)
| | - Harini Srinivasan
- Department of Biotechnology, PSG College of Technology, Coimbatore 641004, India; (V.M.)
| | - Yeonju Park
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Hyunsuk Shin
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52725, Republic of Korea;
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Manikandan Ramesh
- Department of Biotechnology, Alagappa University, Karaikudi 630003, India;
| |
Collapse
|
2
|
Zeng P, Yang M, He S, Kong Y, Zhu X, Ma Z, Wu M. Effects of Biochar and Sepiolite on Pb and Cd Dynamics in Contaminated Soil with Different Corn Varieties. TOXICS 2025; 13:127. [PMID: 39997942 PMCID: PMC11860827 DOI: 10.3390/toxics13020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025]
Abstract
Biochar can stabilize heavy metals in soil and inhibit their accumulation in plants as a soil amendment. Sepiolite has also shown good effects in the remediation of soil heavy metal pollution. In this study, biochar, sepiolite, and biochar-sepiolite combined amendments were used to evaluate the accumulation of cadmium (Cd) and lead (Pb) in soil by 29 corn varieties. The concentrations of Cd and Pb in corn fruits were the lowest (Pb: 0.11 mg/kg, Cd: 0.06 mg/kg). There was a significant difference (p < 0.05) in Pb and Cd accumulation in the roots, stems, leaves, and fruits in the 29 corn varieties. The BCF and TF values of Pb and Cd in the 29 corn varieties were different, and Pb is more likely to accumulate in the roots, Cd is more likely to accumulate in the leaves, and neither heavy metal is easily translocated to the corn fruits. The combination of biochar and sepiolite creates an environment conducive to the retention of heavy metals in the root zone, effectively reducing the risk of heavy metal contamination in the edible parts of the plants. After considering various factors, such as environmental adaptability, we recommend using sepiolite and biochar combined as a soil amendment material and planting the WG1790 variety. Field experiments are needed to verify the effects. These results provide scientific evidence and new strategies for the selection of corn varieties and soil amendments.
Collapse
Affiliation(s)
- Peiyi Zeng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China;
- Yunan Research Academy of Eco-Environmental Sciences, Kunming 650034, China; (M.Y.); (S.H.); (Y.K.); (X.Z.); (Z.M.)
- Yunnan National Engineering Research Center for Control &Treatment of Heavy Metal Pollution, Kunming 650034, China
| | - Muqing Yang
- Yunan Research Academy of Eco-Environmental Sciences, Kunming 650034, China; (M.Y.); (S.H.); (Y.K.); (X.Z.); (Z.M.)
- Yunnan National Engineering Research Center for Control &Treatment of Heavy Metal Pollution, Kunming 650034, China
| | - Shujuan He
- Yunan Research Academy of Eco-Environmental Sciences, Kunming 650034, China; (M.Y.); (S.H.); (Y.K.); (X.Z.); (Z.M.)
- Yunnan National Engineering Research Center for Control &Treatment of Heavy Metal Pollution, Kunming 650034, China
| | - Ying Kong
- Yunan Research Academy of Eco-Environmental Sciences, Kunming 650034, China; (M.Y.); (S.H.); (Y.K.); (X.Z.); (Z.M.)
- Yunnan National Engineering Research Center for Control &Treatment of Heavy Metal Pollution, Kunming 650034, China
| | - Xian Zhu
- Yunan Research Academy of Eco-Environmental Sciences, Kunming 650034, China; (M.Y.); (S.H.); (Y.K.); (X.Z.); (Z.M.)
- Yunnan National Engineering Research Center for Control &Treatment of Heavy Metal Pollution, Kunming 650034, China
| | - Zitao Ma
- Yunan Research Academy of Eco-Environmental Sciences, Kunming 650034, China; (M.Y.); (S.H.); (Y.K.); (X.Z.); (Z.M.)
- Yunnan National Engineering Research Center for Control &Treatment of Heavy Metal Pollution, Kunming 650034, China
| | - Min Wu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China;
| |
Collapse
|
3
|
Ma W, Luo P, Ahmed S, Hayat HS, Anjum SA, Nian L, Wu J, Wei Y, Ba W, Haider FU, Cai L. Synergistic Effect of Biochar, Phosphate Fertilizer, and Phosphorous Solubilizing Bacteria for Mitigating Cadmium (Cd) Stress and Improving Maize Growth in Cd-Contaminated Soil. PLANTS (BASEL, SWITZERLAND) 2024; 13:3333. [PMID: 39683126 DOI: 10.3390/plants13233333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
Cadmium (Cd) contamination threatens human health and plant growth due to its accumulation in edible parts. The sole application of phosphorus-solubilizing bacteria (PSB), biochar (BC), and phosphorus (P) effectively mitigates Cd's adverse effects in contaminated agricultural systems. However, further investigation into their combined impacts on Cd toxicity and maize (Zea mays) production is essential. This study evaluates the synergistic effects of PSB (10 g kg-1 of Bacillus megaterium), BC (5% w/w), and P (0.8 g kg-1) on soil properties and the morphological and physiological traits of maize cultivated in agricultural soil contaminated with Cd (20 mg kg-1). The study revealed that Cd toxicity negatively impacts soil properties, reducing shoot and root biomass, lowering chlorophyll content, and heightening oxidative stress levels. Conversely, the combined use of P, PSB, and BC markedly improved soil properties, increasing the organic matter by 175.94%, available K by 87.24%, and available P by 306.93% compared to the control. This combination also improved maize growth metrics, with increases in aboveground dry biomass (92.98%), root dry biomass (110.33%), chlorophyll a (28.20%), chlorophyll b (108.34%), and total chlorophyll (37.17%). Notably, the treatment reduced Cd concentrations in maize leaves by 61.08% while increasing soil Cd levels by 31.12% compared to the control group. Overall, the synergistic effect of P-BC-PSB is an eco-friendly strategy for mitigating Cd toxicity in contaminated soil. However, further studies are required to explore its effects and molecular mechanisms on other crops.
Collapse
Affiliation(s)
- Wenjun Ma
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China
- Key Laboratory of Dry Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Panjun Luo
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China
- Key Laboratory of Dry Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Sarfraz Ahmed
- Key Laboratory of Remote Sensing, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Hafiz Saqib Hayat
- Department of Agronomy, Faculty of Agriculture & Environmental Science, Muhammad Nawaz Shareef University of Agriculture, Multan 60000, Pakistan
| | - Shakeel Ahmad Anjum
- Department of Agronomy, University of Agriculture, Faisalabad 38000, Pakistan
| | - Lili Nian
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China
| | - Jun Wu
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China
- Key Laboratory of Dry Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuzhen Wei
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China
- Key Laboratory of Dry Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenxue Ba
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China
- Key Laboratory of Dry Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Fasih Ullah Haider
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China
- Key Laboratory of Dry Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Liqun Cai
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China
- Key Laboratory of Dry Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
4
|
Muzaffar U, Naveed M, Naseem Z, Abid I, Amir KZ, Alamri S, Siddique M, Brtnicky M, Mustafa A. Enhanced cadmium immobilization in soil using Fe- and Zn-doped biochar: Mechanisms and safety implications for Cicer arietinum L. CHEMOSPHERE 2024; 368:143797. [PMID: 39580087 DOI: 10.1016/j.chemosphere.2024.143797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/07/2024] [Accepted: 11/21/2024] [Indexed: 11/25/2024]
Abstract
Cd toxicity emerges as a major environmental concern with detrimental impacts on global agricultural systems and food safety. Therefore, there is an urgent need to cope with the high concentration of Cd in the soil and crops. This study elucidates the potential of iron (FeBC) and zinc doped biochar (ZnBC) on the growth and yield of chickpea (Cicer arietinum L.) in Cd-contaminated soil. The parallels of biochemical attributes and Cd absorption of Cicer arietinum L. were investigated after a 120-day pot trial under 1% (w/w) biochar doses and two Cd concentrations (25 and 50 mg kg-1). The results demonstrated that FeBC was more effective in promoting plant growth by reducing Cd mobility in soil than ZnBC and normal biochar (NBC). Additionally, the application of FeBC resulted in significant improvement in photosynthesis rate (53.98%), transpiration rate (91.53%), stomatal conductance (197%), and sub-stomatal conductance (213.33%) compared to other applied treatments. Cd uptake in roots, shoots, and grains was reduced by 44.19%, 56.89%, and 88.25% respectively with the application of FeBC. Notably, the highest decrease in Cd bioaccumulation factor (99.72% and 99.65%) and Cd translocation factor (99.89% and 99.85%) were recorded under FeBC application in 25 and 50 mg kg-1 Cd-contaminated soils, respectively. The improved plant growth and reduced Cd buildup with FeBC under Cd stress suggest that FeBC is a promising strategy to remediate Cd-contaminated soil and simultaneously promote sustainable production of legume crops in Cd-contaminated soils.
Collapse
Affiliation(s)
- Uzma Muzaffar
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Naveed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Zainab Naseem
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Iqra Abid
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Kashif Zulfiqar Amir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Muhammad Siddique
- Department of Botany, Govt. College University, Jhang Road, 38000, Faisalabad, Pakistan
| | - Martin Brtnicky
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Adnan Mustafa
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
5
|
Chen L, Yang X, Huang F, Zhu X, Wang Z, Sun S, Dong F, Qiu T, Zeng Y, Fang L. Unveiling biochar potential to promote safe crop production in toxic metal(loid) contaminated soil: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124309. [PMID: 38838809 DOI: 10.1016/j.envpol.2024.124309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Biochar application emerges as a promising and sustainable solution for the remediation of soils contaminated with potentially toxic metal (loid)s (PTMs), yet its potential to reduce PTM accumulation in crops remains to be fully elucidated. In our study, a hierarchical meta-analysis based on 276 research articles was conducted to quantify the effects of biochar application on crop growth and PTM accumulation. Meanwhile, a machine learning approach was developed to identify the major contributing features. Our findings revealed that biochar application significantly enhanced crop growth, and reduced PTM concentrations in crop tissues, showing a decrease trend of grains (36.1%, 33.6-38.6%) > shoots (31.1%, 29.3-32.8%) > roots (27.5%, 25.7-29.2%). Furthermore, biochar modifications were found to amplify its remediation potential in PTM-contaminated soils. Biochar application was observed to provide favorable conditions for reducing PTM uptake by crops, primarily through decreasing available PTM concentrations and improving overall soil quality. Employing machine learning techniques, we identified biochar properties, such as surface area and C content as a key factor in decreasing PTM bioavailability in soil-crop systems. Furthermore, our study indicated that biochar application could reduce probabilistic health risks associated with of the presence of PTMs in crop grains, thereby contributing to human health protection. These findings highlighted the essential role of biochar in remediating PTM-contaminated lands and offered guidelines for enhancing safe crop production.
Collapse
Affiliation(s)
- Li Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China
| | - Xing Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, Renmin Road, Haikou, 570228, China
| | - Fengyu Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiaozhen Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhe Wang
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, 621010, China
| | - Shiyong Sun
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, 621010, China
| | - Faqin Dong
- College of Environment and Resources, Southwest University of Science & Technology, Mianyang, 621010, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Linchuan Fang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
6
|
Hu Y, Cao Y, Ma C, Yan W. Nano-biochar as a potential amendment for metal(loid) remediation: Implications for soil quality improvement and stress alleviation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119658. [PMID: 38056332 DOI: 10.1016/j.jenvman.2023.119658] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/01/2023] [Accepted: 11/18/2023] [Indexed: 12/08/2023]
Abstract
Metal(loid) contamination of agricultural soils has become an alarming issue due to its detrimental impacts on soil health and global agricultural production. Therefore, environmentally sustainable and cost-effective solutions are urgently required for soil remediation. Biochar, particularly nano-biochar, exhibits superior and high-performance capabilities in the remediation of metal(loid)-contaminated soil, owing to its unique structure and large surface area. Current researches on nano-biochar mainly focus on safety design and property improvement, with limited information available regarding the impact of nano-biochar on soil ecosystems and crop defense mechanisms in metal(loid)-contaminated soils. In this review, we systematically summarized recent progress in the application of nano-biochar for remediation of metal(loid)-contaminated soil, with a focus on possible factors influencing metal(loid) uptake and translocation in soil-crop systems. Additionally, we conducted the potential/related mechanisms by which nano-biochar can mitigate the toxic impacts of metal(loid) on crop production and security. Furthermore, the application of nano-biochar in field trials and existing challenges were also outlined. Future studies should integrate agricultural sustainability and ecosystem health targets into biochar design/selection. This review highlighted the potential of nano-biochar as a promising soil amendment for enhancing the remediation of metal(loid)-contaminated agricultural soils, thereby promoting the synthesis and development of highly efficient nano-biochar towards achieving environmental sustainability.
Collapse
Affiliation(s)
- Yi Hu
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China; Key Laboratory of Urban Forest Ecology of Hunan Province, Changsha, 410004, Hunan, China
| | - Yini Cao
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China; Key Laboratory of Urban Forest Ecology of Hunan Province, Changsha, 410004, Hunan, China.
| | - Chuanxin Ma
- Key Laboratory for City Cluste Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wende Yan
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, 410004, China; Key Laboratory of Urban Forest Ecology of Hunan Province, Changsha, 410004, Hunan, China.
| |
Collapse
|
7
|
Sadeghi J, Lakzian A, Halajnia A, Alikhani M. Effects of fungal carbon dots application on growth characteristics and cadmium uptake in maize. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108102. [PMID: 39492165 DOI: 10.1016/j.plaphy.2023.108102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 11/05/2024]
Abstract
The advancement of nanotechnology has led to the increased use of nanomaterials for the purpose of restoring contaminated soils. However, so far no research has been reported on the interactions of carbon dots with heavy metals (loid)s in phytoremediation. The purpose of this study was to investigate the effect of a new carbon dots derived from fungal exopolysaccharide (EPSs) on the growth and cadmium uptake in maize plants. This research was carried out using a completely randomized design with three replications in a greenhouse condition. Treatments included control, carbon dots (150 mg kg-1), cadmium (50 mg kg-1) and cadmium + carbon dots (50 mg kg-1+150 mg kg-1). The carbon dots synthesized by hydrothermal method from EPSs. The results showed that shoot dry weight and chlorophyll content of maize increased 9.7% and 23.2% in the presence of carbon dots, respectively. Carbon dots improved the chlorophyll content of maize by 24.3% in the cadmium treatment. Cadmium concentration increased (106%) in maize shoot but it decreased in root maize (68%). Carbon dots caused an increase of 5.7 and 6.7 times in the transfer factor and phytoremediation rate of cadmium, respectively. The presence of carbon dots triggered an increase of 77.9% and 39.9% of dissolved organic carbon in non-contaminated and cadmium-contaminated soils, respectively. Soil microbial biomass carbon increased 54.9% and 24.1% carbon dots and cadmium + carbon dots treatments, respectively. The study demonstrates the potential of fungal carbon dots for phytoremediation of heavy metal (loid)s contaminated soils. It also highlights the potential of nanotechnology in environmental remediation efforts.
Collapse
Affiliation(s)
- Jalal Sadeghi
- Department of Soil Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, 91779-48944, Iran
| | - Amir Lakzian
- Department of Soil Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, 91779-48944, Iran.
| | - Akram Halajnia
- Department of Soil Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, 91779-48944, Iran
| | - Mina Alikhani
- Department of Chemistry, Payame Noor University, 19395-4697, Tehran, Iran
| |
Collapse
|
8
|
Zulfiqar U, Haider FU, Maqsood MF, Mohy-Ud-Din W, Shabaan M, Ahmad M, Kaleem M, Ishfaq M, Aslam Z, Shahzad B. Recent Advances in Microbial-Assisted Remediation of Cadmium-Contaminated Soil. PLANTS (BASEL, SWITZERLAND) 2023; 12:3147. [PMID: 37687393 PMCID: PMC10490184 DOI: 10.3390/plants12173147] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Soil contamination with cadmium (Cd) is a severe concern for the developing world due to its non-biodegradability and significant potential to damage the ecosystem and associated services. Industries such as mining, manufacturing, building, etc., rapidly produce a substantial amount of Cd, posing environmental risks. Cd toxicity in crop plants decreases nutrient and water uptake and translocation, increases oxidative damage, interferes with plant metabolism and inhibits plant morphology and physiology. However, various conventional physicochemical approaches are available to remove Cd from the soil, including chemical reduction, immobilization, stabilization and electro-remediation. Nevertheless, these processes are costly and unfriendly to the environment because they require much energy, skilled labor and hazardous chemicals. In contrasting, contaminated soils can be restored by using bioremediation techniques, which use plants alone and in association with different beneficial microbes as cutting-edge approaches. This review covers the bioremediation of soils contaminated with Cd in various new ways. The bioremediation capability of bacteria and fungi alone and in combination with plants are studied and analyzed. Microbes, including bacteria, fungi and algae, are reported to have a high tolerance for metals, having a 98% bioremediation capability. The internal structure of microorganisms, their cell surface characteristics and the surrounding environmental circumstances are all discussed concerning how microbes detoxify metals. Moreover, issues affecting the effectiveness of bioremediation are explored, along with potential difficulties, solutions and prospects.
Collapse
Affiliation(s)
- Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
- University of Chinese Academy of Sciences, Beijing 100039, China
| | | | - Waqas Mohy-Ud-Din
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan;
- Department of Soil and Environmental Sciences, Ghazi University, D. G. Khan 32200, Pakistan
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA
| | - Muhammad Shabaan
- Land Resources Research Institute (LRRI), National Agricultural Research Centre (NARC), Islamabad, Pakistan;
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan; (M.A.); (M.I.)
| | - Muhammad Kaleem
- Department of Botany, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Muhammad Ishfaq
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan; (M.A.); (M.I.)
- Department of Agriculture, Extension, Azad Jammu & Kashmir, Pakistan
| | - Zoya Aslam
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Babar Shahzad
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| |
Collapse
|
9
|
Liang A, Ma C, Xiao J, Hao Y, Li H, Guo Y, Cao Y, Jia W, Han L, Chen G, Tan Q, White JC, Xing B. Micro/nanoscale bone char alleviates cadmium toxicity and boosts rice growth via positively altering the rhizosphere and endophytic microbial community. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131491. [PMID: 37121038 DOI: 10.1016/j.jhazmat.2023.131491] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/10/2023] [Accepted: 04/23/2023] [Indexed: 05/19/2023]
Abstract
This present study investigated pork bone-derived biochar as a promising amendment to reduce Cd accumulation and alleviate Cd-induced oxidative stress in rice. Micro/nanoscale bone char (MNBC) pyrolyzed at 400 °C and 600 °C was synthesized and characterized before use. The application rates for MNBCs were set at 5 and 25 g·kg-1 and the Cd exposure concentration was 15 mg·kg-1. MNBCs increased rice biomass by 15.3-26.0% as compared to the Cd-alone treatment. Both types of MNBCs decreased the bioavailable Cd content by 27.4-54.8%; additionally, the acid-soluble Cd fraction decreased by 10.0-12.3% relative to the Cd alone treatment. MNBC significantly reduced the cell wall Cd content by 50.4-80.2% relative to the Cd-alone treatment. TEM images confirm the toxicity of Cd to rice cells and that MNBCs alleviated Cd-induced damage to the chloroplast ultrastructure. Importantly, the addition of MNBCs decreased the abundance of heavy metal tolerant bacteria, Acidobacteria and Chloroflexi, by 29.6-41.1% in the rhizosphere but had less impact on the endophytic microbial community. Overall, our findings demonstrate the significant potential of MNBC as both a soil amendment for heavy metal-contaminated soil remediation and for crop nutrition in sustainable agriculture.
Collapse
Affiliation(s)
- Anqi Liang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chuanxin Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States; The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States.
| | - Jiang Xiao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Yi Hao
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| | - Hao Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yaozu Guo
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yini Cao
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Weili Jia
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Lanfang Han
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guangcai Chen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, China
| | - Qian Tan
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
10
|
Mustafa A, Zulfiqar U, Mumtaz MZ, Radziemska M, Haider FU, Holatko J, Hammershmiedt T, Naveed M, Ali H, Kintl A, Saeed Q, Kucerik J, Brtnicky M. Nickel (Ni) phytotoxicity and detoxification mechanisms: A review. CHEMOSPHERE 2023; 328:138574. [PMID: 37019403 DOI: 10.1016/j.chemosphere.2023.138574] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Scientists studying the environment, physiology, and biology have been particularly interested in nickel (Ni) because of its dual effects (essentiality and toxicity) on terrestrial biota. It has been reported in some studies that without an adequate supply of Ni, plants are unable to finish their life cycle. The safest Ni limit for plants is 1.5 μg g-1, while the limit for soil is between 75 and 150 μg g-1. Ni at lethal levels harms plants by interfering with a variety of physiological functions, including enzyme activity, root development, photosynthesis, and mineral uptake. This review focuses on the occurrence and phytotoxicity of Ni with respect to growth, physiological and biochemical aspects. It also delves into advanced Ni detoxification mechanisms such as cellular modifications, organic acids, and chelation of Ni by plant roots, and emphasizes the role of genes involved in Ni detoxification. The discussion has been carried out on the current state of using soil amendments and plant-microbe interactions to successfully remediate Ni from contaminated sites. This review has identified potential drawbacks and difficulties of various strategies for Ni remediation, discussed the importance of these findings for environmental authorities and decision-makers, and concluded by noting the sustainability concerns and future research needs regarding Ni remediation.
Collapse
Affiliation(s)
- Adnan Mustafa
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic; Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Benatska 2, CZ12800, Praha, Czech Republic.
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Zahid Mumtaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Main Campus, Defense Road, Lahore, 54000, Pakistan
| | - Maja Radziemska
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic; Institute of Environmental Engineering, Warsaw University of Life Sciences, 159 Nowoursynowska,02-776, Warsaw, Poland
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Jiri Holatko
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic; Agrovyzkum Rapotin, Ltd., Vyzkumniku 267, 788 13, Rapotin, Czech Republic
| | - Tereza Hammershmiedt
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic
| | - Muhammad Naveed
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Hassan Ali
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Antonin Kintl
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic; Agricultural Research, Ltd., 664 4, Troubsko, Czech Republic
| | - Qudsia Saeed
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic
| | - Jiri Kucerik
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic
| | - Martin Brtnicky
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic; Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic.
| |
Collapse
|
11
|
Zhang Y, He T, Tian W, Xia Y, He Y, Su M, He G. The Expression of the StNRAMP2 Gene Determined the Accumulation of Cadmium in Different Tissues of Potato. Int J Mol Sci 2023; 24:ijms24119322. [PMID: 37298282 DOI: 10.3390/ijms24119322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Cadmium (Cd) is a toxic metal that threatens human health when enriched in crops. NRAMPs are a family of natural macrophage proteins reported to play a key role in Cd transport in plants. In order to explore the gene regulation mechanism of potato under Cd stress and the role of NRAMPs family in it, this study analyzed the gene expression differences of two different Cd accumulation levels in potato after 7 days of 50 mg/kg Cd stress and screened out the key genes that may play a major role in the differential accumulation of Cd in different varieties. Additionally, StNRAMP2 was selected for verification. Further verification showed that the StNRAMP2 gene plays an important role in the accumulation of Cd in potato. Interestingly, silencing StNRAMP2 increased Cd accumulation in tubers but significantly decreased Cd accumulation in other sites, suggesting a critical role of StNRAMP2 in Cd uptake and transport in potatoes. To further confirm this conclusion, we performed heterologous expression experiments in which overexpression of StNRAMP2 gene in tomato resulted in a threefold increase in Cd content, which further confirmed the important role of StNRAMP2 in the process of Cd accumulation compared with wild-type plants. In addition, we found that the addition of Cd to the soil increased the activity of the plant antioxidant enzyme system, and silencing StNRAMP2 partially reversed this effect. This suggests that the StNRAMP2 gene plays an important role in plant stress tolerance, and future studies could further explore the role of this gene in other environmental stresses. In conclusion, the results of this study improve the understanding of the mechanism of Cd accumulation in potato and provide experimental basis for remediation of Cd pollution.
Collapse
Affiliation(s)
- Yule Zhang
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Tengbing He
- College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of New Rural Development, Guizhou University, Guiyang 550025, China
| | - Weijun Tian
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Yabei Xia
- Research and Development Center of Fine Chemical Industry, Guizhou University, Guiyang 550025, China
| | - Yeqing He
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Minmin Su
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Guandi He
- College of Agriculture, Guizhou University, Guiyang 550025, China
| |
Collapse
|
12
|
Zulfiqar U, Haider FU, Ahmad M, Hussain S, Maqsood MF, Ishfaq M, Shahzad B, Waqas MM, Ali B, Tayyab MN, Ahmad SA, Khan I, Eldin SM. Chromium toxicity, speciation, and remediation strategies in soil-plant interface: A critical review. FRONTIERS IN PLANT SCIENCE 2023; 13:1081624. [PMID: 36714741 PMCID: PMC9880494 DOI: 10.3389/fpls.2022.1081624] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
In recent decades, environmental pollution with chromium (Cr) has gained significant attention. Although chromium (Cr) can exist in a variety of different oxidation states and is a polyvalent element, only trivalent chromium [Cr(III)] and hexavalent chromium [Cr(VI)] are found frequently in the natural environment. In the current review, we summarize the biogeochemical procedures that regulate Cr(VI) mobilization, accumulation, bioavailability, toxicity in soils, and probable risks to ecosystem are also highlighted. Plants growing in Cr(VI)-contaminated soils show reduced growth and development with lower agricultural production and quality. Furthermore, Cr(VI) exposure causes oxidative stress due to the production of free radicals which modifies plant morpho-physiological and biochemical processes at tissue and cellular levels. However, plants may develop extensive cellular and physiological defensive mechanisms in response to Cr(VI) toxicity to ensure their survival. To cope with Cr(VI) toxicity, plants either avoid absorbing Cr(VI) from the soil or turn on the detoxifying mechanism, which involves producing antioxidants (both enzymatic and non-enzymatic) for scavenging of reactive oxygen species (ROS). Moreover, this review also highlights recent knowledge of remediation approaches i.e., bioremediation/phytoremediation, or remediation by using microbes exogenous use of organic amendments (biochar, manure, and compost), and nano-remediation supplements, which significantly remediate Cr(VI)-contaminated soil/water and lessen possible health and environmental challenges. Future research needs and knowledge gaps are also covered. The review's observations should aid in the development of creative and useful methods for limiting Cr(VI) bioavailability, toxicity and sustainably managing Cr(VI)-polluted soils/water, by clear understanding of mechanistic basis of Cr(VI) toxicity, signaling pathways, and tolerance mechanisms; hence reducing its hazards to the environment.
Collapse
Affiliation(s)
- Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | | | - Muhammad Ishfaq
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Babar Shahzad
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Muhammad Mohsin Waqas
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim Yar Khan, Pakistan
| | - Basharat Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim Yar Khan, Pakistan
| | | | - Syed Amjad Ahmad
- Department of Mechanical Engineering, NFC IEFR, Faisalabad, Pakistan
| | - Ilyas Khan
- Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah, Saudi Arabia
| | - Sayed M. Eldin
- Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo, Egypt
| |
Collapse
|
13
|
El-Sappah AH, Metwally MAS, Rady MM, Ali HM, Wang L, Maitra P, Ihtisham M, Yan K, Zhao X, Li J, Desoky ESM. Interplay of silymarin and clove fruit extract effectively enhances cadmium stress tolerance in wheat ( Triticum aestivum). FRONTIERS IN PLANT SCIENCE 2023; 14:1144319. [PMID: 37123831 PMCID: PMC10140571 DOI: 10.3389/fpls.2023.1144319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/27/2023] [Indexed: 05/03/2023]
Abstract
Introduction Osmoprotectant supplementation can be used as a useful approach to enhance plant stress tolerance. However, the effect of silymarin and clove fruit extract (CFE) on wheat plants grown under cadmium (Cd) stress has not been studied. Methods Wheat seeds were planted in plastic pots filled with ions-free sand. A ½-strength Hoagland's nutrient solution was used for irrigation. Pots were treated with eight treatments thirteen days after sowing: 1) Control, 2) 0.5 mM silymarin foliar application [silymarin], 3) 2% CFE foliar application [CFE], 4) CFE enriched with silymarin (0.24 g silymarin L-1 of CFE) [CFE-silymarin], 5) Watering wheat seedlings with a nutritious solution of 2 mM Cd [Cd]. 6) Cadmium + silymarin, 7) Cadmium + CFE, and 8) Cadmium + CFE-silymarin. The experimental design was a completely randomized design with nine replicates. Results and discussion The Cd stress decreased grain yield, shoot dry weight, leaf area, carotenoids, chlorophylls, stomatal conductance, net photosynthetic rate, transpiration rate, membrane stability index, nitrogen, phosphorus, and potassium content by 66.9, 60.6, 56.7, 23.8, 33.5, 48.1, 41.2, 48.7, 42.5, 24.1, 39.9, and 24.1%, respectively. On the other hand, Cd has an Application of CFE, silymarin, or CEF-silymarin for wheat plants grown under Cd stress, significantly improved all investigated biochemical, morphological, and physiological variables and enhanced the antioxidant enzyme activities. Applying CFE and/or silymarin enhanced plant tolerance to Cd stress more efficiently. Our findings suggest using CFE-silymarin as a meaningful biostimulator for wheat plants to increase wheat plants' tolerance to Cd stress via enhancing various metabolic and physiological processes.
Collapse
Affiliation(s)
- Ahmed H. El-Sappah
- School of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | | | - Mostafa M. Rady
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Linghui Wang
- School of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Pulak Maitra
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Muhammad Ihtisham
- School of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Kuan Yan
- School of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Xin Zhao
- School of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
- *Correspondence: Jia Li, ; El-Sayed M. Desoky, ; Xin Zhao,
| | - Jia Li
- School of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
- *Correspondence: Jia Li, ; El-Sayed M. Desoky, ; Xin Zhao,
| | - El-Sayed M. Desoky
- Botany Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- *Correspondence: Jia Li, ; El-Sayed M. Desoky, ; Xin Zhao,
| |
Collapse
|
14
|
Saman RU, Shahbaz M, Maqsood MF, Lili N, Zulfiqar U, Haider FU, Naz N, Shahzad B. Foliar Application of Ethylenediamine Tetraacetic Acid (EDTA) Improves the Growth and Yield of Brown Mustard ( Brassica juncea) by Modulating Photosynthetic Pigments, Antioxidant Defense, and Osmolyte Production under Lead (Pb) Stress. PLANTS (BASEL, SWITZERLAND) 2022; 12:115. [PMID: 36616244 PMCID: PMC9824091 DOI: 10.3390/plants12010115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Lead (Pb) toxicity imposes several morphological and biochemical changes in plants grown in Pb-contaminated soils. Application of ethylenediamine tetraacetic acid (EDTA) in mitigating heavy metal stress has already been studied. However, the role of EDTA in mitigating heavy metal stress, especially in oilseed crops, is less known. Therefore, the study aimed to explore the potential effect of foliar application of 2.5 mM EDTA on two different varieties of Brassica juncea L., i.e., Faisal (V1) and Rohi (V2), with and without 0.5 mM Lead acetate [Pb(C2H3O2)2] treatment. Statistical analysis revealed that Pb stress was harmful to the plant. It caused a considerable decrease in the overall biomass (56.2%), shoot and root length (21%), yield attributes (20.16%), chlorophyll content (35.3%), total soluble proteins (12.9%), and calcium (61.7%) and potassium (40.9%) content of the plants as compared to the control plants. However, the foliar application of EDTA alleviated the adverse effects of Pb in both varieties. EDTA application improved the morphological attributes (67%), yield (29%), and photosynthetic pigments (80%). Positive variations in the antioxidant activity, ROS, and contents of total free amino acid, anthocyanin, flavonoids, and ascorbic acid, even under Pb stress, were prominent. EDTA application further improved their presence in the brown mustard verifying it as a more stress-resistant plant. It was deduced that the application of EDTA had significantly redeemed the adverse effects of Pb, leaving room for further experimentation to avoid Pb toxification in the mustard oil and the food chain.
Collapse
Affiliation(s)
- Rafia Urooj Saman
- Department of Botany, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Shahbaz
- Department of Botany, University of Agriculture, Faisalabad 38040, Pakistan
| | | | - Nian Lili
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Nargis Naz
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Babar Shahzad
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| |
Collapse
|
15
|
Batool T, Javied S, Ashraf K, Sultan K, Zaman QU, Haider FU. Alleviation of Cadmium Stress by Silicon Supplementation in Peas by the Modulation of Morpho-Physio-Biochemical Variables and Health Risk Assessment. Life (Basel) 2022; 12:1479. [PMID: 36294913 PMCID: PMC9605011 DOI: 10.3390/life12101479] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 09/08/2023] Open
Abstract
Agricultural soil quality degradation by potentially toxic elements, specifically cadmium (Cd), poses a significant threat to plant growth and the health of humans. However, the supplementation of various salts of silicon (Si) to mitigate the adverse effect of Cd on the productivity of peas (Pisum sativum L.) is less known. Therefore, the present investigation was designed to evaluate the exogenous application at various levels (0, 0.50, 1.00 and 1.50 mM) of silicate compounds (sodium and potassium silicates) on pea growth, gaseous exchange, antioxidant enzyme activities and the potential health risk of Cd stress (20 mg kg-1 of soil) using CdCl2. The findings of the study showed that Cd stress significantly reduced growth, the fresh and dry biomass of roots and shoots and chlorophyll content. In addition, electrolyte leakage, antioxidant enzymes and the content of Cd in plant tissues were enhanced in Cd-induced stressed plants. An application of Si enhanced the development of stressed plants by modulating the growth of fresh and dry biomass, improving the chlorophyll contents and decreasing leakage from the plasma membrane. Furthermore, Si addition performed a vital function in relieving the effects of Cd stress by stimulating antioxidant potential. Hence, a significant level of metal protection was achieved by 1.00 mM of potassium silicate application under the Cd levels related to stress conditions, pointing to the fact that the Si concentration required for plant growth under Cd stress surpassed that which was required for general growth, enzymatic antioxidants regulation and limiting toxic metal uptake in plant tissues under normal conditions. The findings of this research work provide a feasible approach to reduce Cd toxicity in peas and to manage the entry and accumulation of Cd in food crops.
Collapse
Affiliation(s)
- Tahira Batool
- Department of Environmental Sciences, University of Lahore, Lahore 54590, Pakistan
| | - Sabiha Javied
- Department of Environmental Sciences, University of Lahore, Lahore 54590, Pakistan
| | - Kamran Ashraf
- Department of Food Sciences, Government College University, Faisalabad, Sahiwal Campus, Sahiwal 57000, Pakistan
| | - Khawar Sultan
- Department of Environmental Sciences, University of Lahore, Lahore 54590, Pakistan
| | - Qamar uz Zaman
- Department of Environmental Sciences, University of Lahore, Lahore 54590, Pakistan
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|