1
|
Anand V, Pandey A. Silicon dioxide nanoparticles as a protective agent against As(III) toxicity in Vigna mungo L. Hepper. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:10960-10983. [PMID: 40186807 DOI: 10.1007/s11356-025-36363-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
The toxicity of As(III) significantly disrupts the growth and development of plants. In this study, black gram plants were exposed to 75 μM NaAsO2 and 10 mg/L SiO2 NPs, and various physiological, biochemical, and molecular changes were observed. Arsenic toxicity led to a notable reduction in plant development, accompanied by an accumulation of ROS and disturbances in proline levels due to electrolyte production. Treating As(III) contaminated black gram with SiO2 NPs resulted in increased root length and chlorophyll content, while decreasing ROS levels. The application of SiO2 NPs effectively mitigated As(III) toxicity by enhancing the activity of antioxidant enzymes such as peroxidase, catalase, glutathione, and superoxide dismutase, consequently reducing lipid peroxidation attributed to lower ROS production. RNA-seq analysis revealed several differentially expressed genes. Additionally, Fourier Transform Infrared (FTIR) Spectroscopy was utilized to explore the plant's capability to remove arsenic, identifying ligands such as O-H, C-O, C-C, and C-H that aid in the accumulation of heavy metals in plant tissues. An investigation using HR-LC/MS unveiled about 199 potential phytochemical components. A SwissADME analysis of these compounds showed that 136 out of 199 compounds followed Lipinski's rule. The bioavailability radar determined that 71 of these phytoconstituents had good oral bioavailability. Overall, the study indicates that the phytoconstituents that were found to have a shedload of pharmacological potential. The overall study showed that identified potential phytochemical compounds with pharmaceutical values, showing promise for drug development.
Collapse
Affiliation(s)
- Vandita Anand
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad (MNNITA), Prayagraj, 211004, India
| | - Anjana Pandey
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad (MNNITA), Prayagraj, 211004, India.
| |
Collapse
|
2
|
Kovács K, Szierer Á, Mészáros E, Molnár Á, Rónavári A, Kónya Z, Feigl G. Species-specific modulation of nitro-oxidative stress and root growth in monocots by silica nanoparticle pretreatment under copper oxide nanoparticle stress. BMC PLANT BIOLOGY 2025; 25:188. [PMID: 39948461 PMCID: PMC11823027 DOI: 10.1186/s12870-025-06193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Abiotic stressors such as heavy metals and nanoparticles pose significant challenges to sustainable agriculture, with copper oxide nanoparticles (CuO NPs) known to inhibit root growth and induce oxidative stress in plants. While silica nanoparticles (SiO2 NPs) have been shown to increase abiotic stress tolerance, their role in mitigating CuO NP-induced stress in crops, especially monocots, remains poorly understood. This study addresses this critical knowledge gap by investigating how SiO2 NP pretreatment modulates CuO NP-induced stress responses, with a particular focus on root growth inhibition and nitro-oxidative stress pathways. RESULTS Using an in vitro semihydroponic system, seeds were pretreated with varying concentrations of SiO2 NPs (100-800 mg/L) before exposure to CuO NPs at levels known to inhibit root growth by 50%. SiO2 NP pretreatment alleviated CuO NP-induced root growth inhibition in sorghum, wheat, and rye but intensified it in triticale. These responses are associated with species-specific alterations in reactive signaling molecules, including a reduction in nitric oxide levels and an increase in hydrogen sulfide in sorghum, a decrease in superoxide anion levels in rye, and elevated hydrogen peroxide levels in wheat. Protein tyrosine nitration, a marker of nitro-oxidative stress, was reduced in most cases, further indicating the stress-mitigating role of SiO2 NPs. These signaling molecules were selected for their established roles in mediating oxidative and nitrosative stress responses under abiotic stress conditions. CONCLUSIONS SiO2 NP pretreatment modulates CuO NP-induced stress responses through species-specific regulation of reactive oxygen and nitrogen species, demonstrating its potential as a tool for enhancing crop resilience. These findings advance the understanding of nanoparticle‒plant interactions and provide a foundation for future applications of nanotechnology in sustainable agriculture. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Kamilla Kovács
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép fasor 52, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Ádám Szierer
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép fasor 52, Szeged, Hungary
| | - Enikő Mészáros
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép fasor 52, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Árpád Molnár
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép fasor 52, Szeged, Hungary
| | - Andrea Rónavári
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Gábor Feigl
- Department of Plant Biology, University of Szeged, H-6726 Szeged, Közép fasor 52, Szeged, Hungary.
| |
Collapse
|
3
|
Rezghiyan A, Esmaeili H, Farzaneh M, Rezadoost H. The interaction effect of water deficit stress and nanosilicon on phytochemical and physiological characteristics of hemp (Cannabis sativa L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109298. [PMID: 39561683 DOI: 10.1016/j.plaphy.2024.109298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/03/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
Different practical approaches have been employed to attenuate the destructive impacts of water deficit stress on plants, such as utilization of humic acid, salicylic acid, algae extract, mulching, and microorganisms, as well as silicon application. Nanosilicon significantly moderates the ruinous effects of abiotic and biotic stress in plants through some physiological processes. In this study, the interaction effect of drought stress and nanosilicon on phytochemical and physiological characteristics of hemp (Cannabis sativa L.) was investigated, wherein the four-week-old seedlings were subjected to irrigation treatments at four levels, including 100% (control), 80% (mild stress), 60% (moderate stress), and 40% (severe stress) of field capacity and nanosilicon at three concentrations (0, 0.5, and 1.5 mM) was foliar applied every 10 days in a factorial completely randomized design experiment with three replications for 30 days. Phytochemical and physiological analyses such as photosynthetic pigments, total phenolic and flavonoid content, and antioxidant enzyme activities were conducted. The results indicated that the highest content of Cannabidiol and Tetrahydrocannabinol was achieved using 1.5 mM (1.89%) and 0.5 mM (0.63%) nanosilicon treatments, respectively, under moderate stress. The plants subjected to severe drought stress without nanosilicon application displayed the lowest values of chlorophyll a (0.50 mg/g FW) and b (0.20 mg/g FW). The use of nanosilicon excited the activation of antioxidant enzymes, wherein the plants treated with nanosilicon and drought stress exhibited significantly higher SOD, POD, and APX activities compared to the control. Under all drought stress levels, foliar application of nanosilicon at the highest concentration decreased proline content. The results proposed that the application of 1.5 mM nanosilicon, as a more efficient concentration, improved drought tolerance in hemp plants.
Collapse
Affiliation(s)
- Ayyub Rezghiyan
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 1983969411, Tehran, Iran
| | - Hassan Esmaeili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 1983969411, Tehran, Iran.
| | - Mohsen Farzaneh
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 1983969411, Tehran, Iran.
| | - Hassan Rezadoost
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 1983969411, Tehran, Iran
| |
Collapse
|
4
|
Xie W, Peng C, Wang W, Chen X, Tan J, Zhang W. Combined Toxicity of Multi-Walled Carbon Nanotubes and Cu 2+ on the Growth of Ryegrass: Effect of Surface Modification, Dose, and Exposure Time Pattern. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1746. [PMID: 39513826 PMCID: PMC11547606 DOI: 10.3390/nano14211746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The escalating release of multi-walled carbon nanotubes (MWCNTs) into the environment has raised concerns due to their potential ecotoxicological impacts. However, their combined phytotoxicity with heavy metals such as copper (Cu) is still unclear. This study investigated the individual and combined toxic effects of MWCNTs (MWCNT, MWCNT-OH, and MWCNT-COOH) and Cu2+ on ryegrass (Lolium multiflorum), uniquely considering different addition orders. The results show that Cu severely inhibited the growth of ryegrass while MWCNTs exhibited a hormesis effect on ryegrass. When MWCNT and Cu were combined, the malondialdehyde (MDA) content in ryegrass showed a 32.39% increase at 20 mg/L MWCNT exposure, suggesting reduced oxidative stress. However, at the higher concentration of 1000 mg/L, it led to a significant 75.22% reduction in ryegrass biomass. MWCNT-COOH had the most pronounced effect, reducing the total chlorophyll content by 39.76% compared to unmodified MWCNT and by 10.67% compared to MWCNT-OH (500 mg/L). Additionally, pre-induced MWCNTs might alleviate the Cu in the plant by 23.08-35.38% through adsorption in the nutrient solution. Small molecule organic acids and amino acids primarily mediated the response to environmental stress in ryegrass. This research provides crucial insights into understanding the complex interactions of MWCNT and Cu2+ and their combined effects on plant ecosystems.
Collapse
Affiliation(s)
- Wenwen Xie
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; (W.X.); (W.W.); (X.C.); (W.Z.)
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; (W.X.); (W.W.); (X.C.); (W.Z.)
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Weiping Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; (W.X.); (W.W.); (X.C.); (W.Z.)
| | - Xiaoyi Chen
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; (W.X.); (W.W.); (X.C.); (W.Z.)
| | - Jiaqi Tan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; (W.X.); (W.W.); (X.C.); (W.Z.)
| |
Collapse
|
5
|
Wang N, Chen H, Tian Y. Effects of nickel, lead, and copper stress on the growth and biochemical responses of Aegilops tauschii seedlings. Sci Rep 2024; 14:24832. [PMID: 39438605 PMCID: PMC11496656 DOI: 10.1038/s41598-024-77143-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024] Open
Abstract
Heavy metal pollution causes severe abiotic stress in cereal crops around the world. This study investigated the effects of different concentrations (0, 100, 200, and 300 mg·kg-1) of nickel, lead, and copper stress on the growth and biochemical responses of Aegilops tauschii seedlings, to provide a reference for research on the mechanism of invasion and screening potential sources of wheat tolerance genes. The results showed that nickel, lead, and copper stress caused a significant decrease in the contents of chlorophyll a, chlorophyll b, and chlorophyll (a + b) in A. tauschii, thereby inhibiting photosynthesis to different degrees and hindering seedling growth, which was reflected in significant reductions in plant height and root length, with the most notable effect observed under stress by 300 mg·kg-1 lead. As the concentration of heavy metals increased, the activities of antioxidant enzymes (SOD, POD, and APX), non-enzymatic antioxidants (GSH and AsA), and the contents of osmotic regulatory substances (proline and soluble proteins) in A. tauschii significantly increased. Additionally, heavy metal stress increased H2O2 and TBARS levels. However, when the nickel, lead, and copper concentrations reached 300 mg·kg-1, no significant differences were found in H2O2 or TBARS levels compared to those in the CK group. To summarize, A. tauschii can mitigate the accumulation of ROS and membrane lipid peroxidation caused by heavy metal stress through self-regulation, thus exhibiting a certain degree of tolerance to stress caused by different concentrations of nickel, lead, and copper. Finally, the evaluation using the membership function method revealed that among the three heavy metals, A. tauschii exhibited the strongest adaptation to Cu, followed by Ni and Pb.
Collapse
Affiliation(s)
- Ning Wang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan, China.
| | - Hao Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Yaowu Tian
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| |
Collapse
|
6
|
Zhong M, Yu H, Jiang Y, Liao J, Li G, Chai S, Yang R, Jiang H, Wang L, Deng X, Zhang L. Physiological and molecular mechanisms of carbon quantum dots alleviating Cu 2+ toxicity in Salvia miltiorrhiza bunge. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124521. [PMID: 38986761 DOI: 10.1016/j.envpol.2024.124521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/16/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024]
Abstract
Excessive Cu2+ is toxic to plants. Carbon quantum dots (CQDs) exhibit certain chelating properties towards heavy metals, and they also demonstrate antioxidant activities. To explore the mechanism for alleviating the Cu2+ toxicity of Salvia miltiorrhiza Bunge mediated by CQDs, CQDs that contained CC, CO, H-O, C-N and C-O functional groups with particle size less than 10 nm and that emitted blue fluorescence were prepared. S. miltiorrhiza seedlings were treated with 200 μM of Cu2+ and 500 mg/L of CQDs to relieve stress. Exogenous CQDs effectively restored plant phenotype; reduced Cu2+, H2O2 and malondialdehyde contents and restored total superoxide dismutase, peroxidase and catalase activities under Cu2+ toxicity. Simultaneously, an association network of Cu2+ transport-related and metabolic pathway genes of phenolic acids and terpenoids was established on the basis of cross-species transcriptome analysis. Combined with reverse transcription quantitative real-time polymerase chain reaction analysis, the potential molecular mechanism of CQDs, i.e. promoting phenolic acid biosynthesis to alleviate Cu2+ toxicity, was revealed by activating the expression of key enzyme genes of phenolic acid synthesis. This study provides a theoretical basis for Cu2+ pollution prevention and control in plants. It also laid a foundation for alleviating Cu stress by using CQDs in agricultural production.
Collapse
Affiliation(s)
- Mingzhi Zhong
- College of Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - Haomiao Yu
- College of Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - Yuanyuan Jiang
- College of Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - Jinqiu Liao
- College of Life Sciences, Sichuan Agricultural University, 625014, Ya'an, China
| | - Guanghui Li
- Sichuan Agricultural Machinery Research and Design Institute, 610066, Chengdu, China
| | - Songyue Chai
- College of Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - Ruiwu Yang
- College of Life Sciences, Sichuan Agricultural University, 625014, Ya'an, China
| | - Huixia Jiang
- Sichuan Agricultural Machinery Research and Design Institute, 610066, Chengdu, China
| | - Long Wang
- College of Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - Xuexue Deng
- College of Science, Sichuan Agricultural University, 625014, Ya'an, China
| | - Li Zhang
- College of Science, Sichuan Agricultural University, 625014, Ya'an, China.
| |
Collapse
|
7
|
Ashraf H, Ghouri F, Liang J, Xia W, Zheng Z, Shahid MQ, Fu X. Silicon Dioxide Nanoparticles-Based Amelioration of Cd Toxicity by Regulating Antioxidant Activity and Photosynthetic Parameters in a Line Developed from Wild Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:1715. [PMID: 38931146 PMCID: PMC11207486 DOI: 10.3390/plants13121715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
An extremely hazardous heavy metal called cadmium (Cd) is frequently released into the soil, causing a considerable reduction in plant productivity and safety. In an effort to reduce the toxicity of Cd, silicon dioxide nanoparticles were chosen because of their capability to react with metallic substances and decrease their adsorption. This study examines the processes that underlie the stress caused by Cd and how SiO2NPs may be able to lessen it through modifying antioxidant defense, oxidative stress, and photosynthesis. A 100 μM concentration of Cd stress was applied to the hydroponically grown wild rice line, and 50 μM of silicon dioxide nanoparticles (SiO2NPs) was given. The study depicted that when 50 μM SiO2NPs was applied, there was a significant decrease in Cd uptake in both roots and shoots by 30.2% and 15.8% under 100 μM Cd stress, respectively. The results illustrated that Cd had a detrimental effect on carotenoid and chlorophyll levels and other growth-related traits. Additionally, it increased the levels of ROS in plants, which reduced the antioxidant capability by 18.8% (SOD), 39.2% (POD), 32.6% (CAT), and 25.01% (GR) in wild rice. Nevertheless, the addition of silicon dioxide nanoparticles reduced oxidative damage and the overall amount of Cd uptake, which lessened the toxicity caused by Cd. Reduced formation of reactive oxygen species (ROS), including MDA and H2O2, and an increased defense system of antioxidants in the plants provided evidence for this. Moreover, SiO2NPs enhanced the Cd resistance, upregulated the genes related to antioxidants and silicon, and reduced metal transporters' expression levels.
Collapse
Affiliation(s)
- Humera Ashraf
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (H.A.); (F.G.); (J.L.); (W.X.); (Z.Z.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (H.A.); (F.G.); (J.L.); (W.X.); (Z.Z.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jiabin Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (H.A.); (F.G.); (J.L.); (W.X.); (Z.Z.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Weiwei Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (H.A.); (F.G.); (J.L.); (W.X.); (Z.Z.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhiming Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (H.A.); (F.G.); (J.L.); (W.X.); (Z.Z.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (H.A.); (F.G.); (J.L.); (W.X.); (Z.Z.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xuelin Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; (H.A.); (F.G.); (J.L.); (W.X.); (Z.Z.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
8
|
Jalil S, Zulfiqar F, Moosa A, Chen J, Jabeen R, Ali HM, Alsakkaf WAA, Masood HA, Mirmazloum I, Makhzoum A, Chen J, Abeed AHA, Essawy HS. Amelioration of chromium toxicity in wheat plants through exogenous application of nano silicon. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108659. [PMID: 38691875 DOI: 10.1016/j.plaphy.2024.108659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Chromium (Cr) contamination in agricultural soils poses a risk to crop productivity and quality. Emerging nano-enabled strategies show great promise in remediating soils contaminated with heavy metals and enhancing crop production. The present study was aimed to investigate the efficacy of nano silicon (nSi) in promoting wheat growth and mitigating adverse effects of Cr-induced toxicity. Wheat seedlings exposed to Cr (K2Cr2O7) at a concentration of 100 mg kg-1 showed significant reductions in plant height (29.56%), fresh weight (35.60%), and dry weight (38.92%) along with enhanced Cr accumulation in roots and shoots as compared to the control plants. However, the application of nSi at a concentration of 150 mg kg-1 showcased substantial mitigation of Cr toxicity, leading to a decrease in Cr accumulation by 27.30% in roots and 35.46% in shoots of wheat seedlings. Moreover, nSi exhibited the capability to scavenge oxidative stressors, such as hydrogen peroxide (H2O2), and malondialdehyde (MDA) and electrolyte leakage, while significantly enhancing gas exchange parameters, total chlorophyll content, and antioxidant activities (enzymatic and nonenzymatic) in plants grown in Cr-contaminated soil. This study further found that the reduced Cr uptake by nSi application was due to downregulating the expression of HMs transporter genes (TaHMA2 and TaHMA3), alongwith upregulating the expression of antioxidant-responsive genes (TaSOD and TaSOD). The findings of this investigation highlight the remarkable potential of nSi in ameliorating Cr toxicity. This enhanced efficacy could be ascribed to the distinctive size and structure of nSi, which augment its ability to counteract Cr stress. Thus, the application of nSi could serve as a viable solution for production of crops in metal contaminated soils, offering an effective alternative to time-consuming and costly remediation techniques.
Collapse
Affiliation(s)
- Sanaullah Jalil
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, 63100, Pakistan.
| | - Anam Moosa
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Department of Environmental Horticulture, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL 32703, USA
| | - Raheela Jabeen
- Department of Biochemistry and Biotechnology, The Women University Multan, Pakistan
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Waleed A A Alsakkaf
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hafiza Ayesha Masood
- Department of Plant Breeding and Genetics, University of Agriculture, 38000 Faisalabad, Pakistan; MEU Research Unit, Middle East University, Amman, Jordan
| | - Iman Mirmazloum
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Budapest 1118, Hungary
| | - Abdullah Makhzoum
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Palapye, Botswana
| | - Jiansheng Chen
- National Key Laboratory of Wheat Improvement, Group of Wheat Quality and Molecular Breeding, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, China
| | - Amany H A Abeed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Heba S Essawy
- Botany and Microbiology Department, Faculty of Science, Benha University, 13518, Egypt
| |
Collapse
|
9
|
Anand V, Pandey A. Unlocking the potential of SiO 2 and CeO 2 nanoparticles for arsenic mitigation in Vigna mungo L. Hepper (Blackgram). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34473-34491. [PMID: 38704781 DOI: 10.1007/s11356-024-33531-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024]
Abstract
In this study, the interaction effects of NaAsO2 (1 and 5 μM), SiO2 NPs (10 and 100 mg/L) and CeO2 NPs (10 and 100 mg/L) were assessed in Vigna mungo (Blackgram). The treatment of NaAsO2, SiO2, CeO2-NPs and combinations of NPs & As were applied to blackgram plants under hydroponic conditions. After its application, the morpho-physiological, antioxidant activity, and phytochemical study were evaluated. At 10 and 100 mg/L of SiO2 and CeO2-NPs, there was an increase in antioxidative enzymatic activity (p < 0.05) and reactive oxygen species (ROS). However, substantial ROS accumulation was observed at 1 and 5 μM NaAsO2 and 100 mg/L SiO2 NPs (p < 0.05). Additionally, at such concentrations, there is a substantial reduction in photosynthetic pigments, nitrogen fixation, chlorosis, and plant development when compared to controls (p < 0.05). The combination of SiO2 and CeO2 NPs (10 and 100 mg/L) with NaAsO2 decreased superoxide radical and hydrogen peroxide and improved SOD, CAT, APX, GR, and chlorophyll pigments (p < 0.05). Further FTIR results were evaluated for documenting elemental and phytochemical analysis.
Collapse
Affiliation(s)
- Vandita Anand
- Department of Biotechnology, Motilal Nehru National Institute of Technology (MNNIT) Allahabad, Prayagraj, 211004, India
| | - Anjana Pandey
- Department of Biotechnology, Motilal Nehru National Institute of Technology (MNNIT) Allahabad, Prayagraj, 211004, India.
| |
Collapse
|
10
|
Pradhan I, Hembram P. Silicon supplementation stabilizes the effect of copper stress, the use of copper chaperones and genes involved: a review. Mol Biol Rep 2024; 51:543. [PMID: 38642191 DOI: 10.1007/s11033-024-09507-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/02/2024] [Indexed: 04/22/2024]
Abstract
Heavy metal stress is a major problem in present scenario and the consequences are well known. The agroecosystems are heavily affected by the heavy metal stress and the question arises on the sustainability of the agricultural products. Heavy metals inhibit the process to influence the reactive oxygen species production. When abundantly present copper metal ion has toxic effects which is mitigated by the exogenous application of Si. The role of silicon is to enhance physical parameters as well as gas exchange parameters. Si is likely to increase antioxidant enzymes in response to copper stress which can relocate toxic metals at subcellular level and remove heavy metals from the cell. Silicon regulates phytohormones when excess copper is present. Rate of photosynthesis and mineral absorption is increased in response to metal stress. Silicon manages enzymatic and non-enzymatic activities to balance metal stress condition. Cu transport by the plasma membrane is controlled by a family of proteins called copper transporter present at cell surface. Plants maintain balance in absorption, use and storage for proper copper ion homeostasis. Copper chaperones play vital role in copper ion movement within cells. Prior to that metallochaperones control Cu levels. The genes responsible in copper stress mitigation are discovered in various plant species and their function are decoded. However, detailed molecular mechanism is yet to be studied. This review discusses about the crucial mechanisms of Si-mediated alleviation of copper stress, the role of copper binding proteins in copper homeostasis. Moreover, it also provides a brief information on the genes, their function and regulation of their expression in relevance to Cu abundance in different plant species which will be beneficial for further understanding of the role of silicon in stabilization of copper stress.
Collapse
Affiliation(s)
- Itishree Pradhan
- Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur, 760007, India
| | - Padmalochan Hembram
- Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur, 760007, India.
| |
Collapse
|
11
|
Mukarram M, Ahmad B, Choudhary S, Konôpková AS, Kurjak D, Khan MMA, Lux A. Silicon nanoparticles vs trace elements toxicity: Modus operandi and its omics bases. FRONTIERS IN PLANT SCIENCE 2024; 15:1377964. [PMID: 38633451 PMCID: PMC11021597 DOI: 10.3389/fpls.2024.1377964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
Phytotoxicity of trace elements (commonly misunderstood as 'heavy metals') includes impairment of functional groups of enzymes, photo-assembly, redox homeostasis, and nutrient status in higher plants. Silicon nanoparticles (SiNPs) can ameliorate trace element toxicity. We discuss SiNPs response against several essential (such as Cu, Ni, Mn, Mo, and Zn) and non-essential (including Cd, Pb, Hg, Al, Cr, Sb, Se, and As) trace elements. SiNPs hinder root uptake and transport of trace elements as the first line of defence. SiNPs charge plant antioxidant defence against trace elements-induced oxidative stress. The enrolment of SiNPs in gene expressions was also noticed on many occasions. These genes are associated with several anatomical and physiological phenomena, such as cell wall composition, photosynthesis, and metal uptake and transport. On this note, we dedicate the later sections of this review to support an enhanced understanding of SiNPs influence on the metabolomic, proteomic, and genomic profile of plants under trace elements toxicity.
Collapse
Affiliation(s)
- Mohammad Mukarram
- Food and Plant Biology Group, Department of Plant Biology, School of Agriculture, Universidad de la Republica, Montevideo, Uruguay
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Bilal Ahmad
- Plant Physiology Section, Department of Botany, Government Degree College for Women, Pulwama, Jammu and Kashmir, India
| | - Sadaf Choudhary
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Alena Sliacka Konôpková
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
- Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia
| | - Daniel Kurjak
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
- Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia
| | - M. Masroor A. Khan
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
12
|
Yan G, Huang Q, Zhao S, Xu Y, He Y, Nikolic M, Nikolic N, Liang Y, Zhu Z. Silicon nanoparticles in sustainable agriculture: synthesis, absorption, and plant stress alleviation. FRONTIERS IN PLANT SCIENCE 2024; 15:1393458. [PMID: 38606077 PMCID: PMC11006995 DOI: 10.3389/fpls.2024.1393458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024]
Abstract
Silicon (Si) is a widely recognized beneficial element in plants. With the emergence of nanotechnology in agriculture, silicon nanoparticles (SiNPs) demonstrate promising applicability in sustainable agriculture. Particularly, the application of SiNPs has proven to be a high-efficiency and cost-effective strategy for protecting plant against various biotic and abiotic stresses such as insect pests, pathogen diseases, metal stress, drought stress, and salt stress. To date, rapid progress has been made in unveiling the multiple functions and related mechanisms of SiNPs in promoting the sustainability of agricultural production in the recent decade, while a comprehensive summary is still lacking. Here, the review provides an up-to-date overview of the synthesis, uptake and translocation, and application of SiNPs in alleviating stresses aiming for the reasonable usage of SiNPs in nano-enabled agriculture. The major points are listed as following: (1) SiNPs can be synthesized by using physical, chemical, and biological (green synthesis) approaches, while green synthesis using agricultural wastes as raw materials is more suitable for large-scale production and recycling agriculture. (2) The uptake and translocation of SiNPs in plants differs significantly from that of Si, which is determined by plant factors and the properties of SiNPs. (3) Under stressful conditions, SiNPs can regulate plant stress acclimation at morphological, physiological, and molecular levels as growth stimulator; as well as deliver pesticides and plant growth regulating chemicals as nanocarrier, thereby enhancing plant growth and yield. (4) Several key issues deserve further investigation including effective approaches of SiNPs synthesis and modification, molecular basis of SiNPs-induced plant stress resistance, and systematic effects of SiNPs on agricultural ecosystem.
Collapse
Affiliation(s)
- Guochao Yan
- College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Qingying Huang
- College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Shuaijing Zhao
- College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yunmin Xu
- College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yong He
- College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Miroslav Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Nina Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Zhujun Zhu
- College of Horticulture Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable of Ministry of Agriculture and Rural Affairs, Zhejiang Agriculture and Forestry University, Hangzhou, China
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
13
|
Huang Q, Ayyaz A, Farooq MA, Zhang K, Chen W, Hannan F, Sun Y, Shahzad K, Ali B, Zhou W. Silicon dioxide nanoparticles enhance plant growth, photosynthetic performance, and antioxidants defence machinery through suppressing chromium uptake in Brassica napus L. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123013. [PMID: 38012966 DOI: 10.1016/j.envpol.2023.123013] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/23/2023] [Accepted: 11/19/2023] [Indexed: 11/29/2023]
Abstract
Chromium (Cr) is a highly toxic heavy metal that is extensively released into the soil and drastically reduces plant yield. Silicon nanoparticles (Si NPs) were chosen to mitigate Cr toxicity due to their ability to interact with heavy metals and reduce their uptake. This manuscript explores the mechanisms of Cr-induced toxicity and the potential of Si NPs to mitigate Cr toxicity by regulating photosynthesis, oxidative stress, and antioxidant defence, along with the role of transcription factors and heavy metal transporter genes in rapeseed (Brassica napus L.). Rapeseed plants were grown hydroponically and subjected to hexavalent Cr stress (50 and 100 μM) in the form of K2Cr2O7 solution. Si NPs were foliar sprayed at concentrations of 50, 100 and 150 μM. The findings showed that 100 μM Si NPs under 100 μM Cr stress significantly increased the leaf Si content by 169% while reducing Cr uptake by 92% and 76% in roots and leaves, respectively. The presence of Si NPs inside the plant leaf cells was confirmed by using energy-dispersive spectroscopy, inductively coupled plasma‒mass spectrometry, and confocal laser scanning microscopy. The study's findings showed that Cr had adverse effects on plant growth, photosynthetic gas exchange attributes, leaf mesophyll ultrastructure, PSII performance and the activity of enzymatic and nonenzymatic antioxidants. However, Si NPs minimized Cr-induced toxicity by reducing total Cr accumulation and decreasing oxidative damage, as evidenced by reduced ROS production (such as H2O2 and MDA) and increased enzymatic and nonenzymatic antioxidant activities in plants. Interestingly, Si NPs under Cr stress effectively increased the NPQ, ETR and QY of PSII, indicating a robust protective response of PSII against stress. Furthermore, the enhancement of Cr tolerance facilitated by Si NPs was linked to the upregulation of genes associated with antioxidant enzymes and transcription factors, alongside the concurrent reduction in metal transporter activity.
Collapse
Affiliation(s)
- Qian Huang
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Ahsan Ayyaz
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Ahsan Farooq
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Kangni Zhang
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Weiqi Chen
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Fakhir Hannan
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Yongqi Sun
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Khuram Shahzad
- Department of Botany, University of Sargodha, Sargodha, 40162, Pakistan
| | - Basharat Ali
- Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Weijun Zhou
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
14
|
Čėsna V, Čėsnienė I, Sirgedaitė-Šėžienė V, Marčiulynienė D. Changes in Biologically Active Compounds in Pinus sylvestris Needles after Lymantria monacha Outbreaks and Treatment with Foray 76B. PLANTS (BASEL, SWITZERLAND) 2024; 13:328. [PMID: 38276785 PMCID: PMC10821276 DOI: 10.3390/plants13020328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024]
Abstract
Due to climate warming, the occurrence of Lymantria monacha outbreaks is predicted to become more frequent, causing repeated and severe damage to conifer trees. Currently, the most effective way to control the outbreaks is aerial spraying with the bioinsecticide Foray 76B. The present study aimed to determine the impact of both: (i) L. monacha outbreaks and (ii) treatment with Foray 76B on tree resistance through the synthesis of polyphenols (TPC), flavonoids (TFC), photosynthetic pigments (chlorophyll a and b, carotenoids), lipid peroxidation (MDA), and soluble sugars (TSS) in Pinus sylvestris needles. Samples were collected from visually healthy (control), damaged/untreated, and damaged/Foray 76B-treated plots in 2020 and 2021 (following year after the outbreaks). The results revealed that L. monacha outbreaks contributed to the increase in TPC by 34.1% in 2020 and 26.7% in 2021. TFC negatively correlated with TPC, resulting in 17.6% and 11.1% lower concentrations in L. monacha-damaged plots in 2020 and 2021, respectively. A decrease in MDA was found in the damaged plots in both 2020 and 2021 (10.2% and 23.3%, respectively), which was associated with the increased synthesis of photosynthetic pigments in 2021. The research results also showed that in the following year after the outbreaks, the increase in the synthesis of photosynthetic pigments was also affected by the treatment with Foray 76B. Moreover, the increase in the synthesis of TPC and photosynthetic pigments in the damaged plots in 2021 illustrates the ability of pines to keep an activated defense system to fight biotic stress. Meanwhile, a higher synthesis of photosynthetic pigments in Foray 76B-treated plots indicates a possible effect of the treatment on faster tree growth and forest recovery after L. monacha outbreaks.
Collapse
Affiliation(s)
- Vytautas Čėsna
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų 1, Girionys, LT-53101 Kaunas, Lithuania; (I.Č.); (V.S.-Š.); (D.M.)
| | | | | | | |
Collapse
|
15
|
Elsherif DE, Abd-ElShafy E, Khalifa AM. Impacts of ZnO as a nanofertilizer on fenugreek: some biochemical parameters and SCoT analysis. J Genet Eng Biotechnol 2023; 21:52. [PMID: 37126122 PMCID: PMC10151287 DOI: 10.1186/s43141-023-00501-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/20/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND Zinc oxide nanoparticles (ZnO NPs) can be considered as nanofertilizer providing zinc as an essential micronutrient for plant growth and production at specific safe dose, however, above this dose; ZnO NPs induce oxidative stress. The present research aimed to evaluate some physiological and molecular effects of ZnO NPs on Trigonella foenum-graecum (fenugreek) plant. RESULTS The ZnO NPs were applied at five different concentrations (10, 20, 30, 40, and 50 mg/l) via soaking fenugreek seeds for 24 h. Fenugreek seedlings were harvested after 14 days for biomass and biochemical analyses. The results revealed that increasing ZnO NPs concentration led to a significant increase in all measured parameters until peaked at 30 mg/l; after that, a decline trend was detected. However, malondialdehyde (MDA) increased significantly just at higher concentrations of ZnO NPs (40 and 50 mg/l). In addition, genetic variation measure using start codon targeted (SCoT) markers revealed that ZnO NP treatments exhibited limited genetic variation. CONCLUSION Results showed that treatment with ZnO NPs at 30 mg/l can improve biomass, bioactive compounds, and antioxidant activity of fenugreek seedlings, besides being safe for DNA. So, this concentration could be a decent nanofertilizer for fenugreek plant.
Collapse
Affiliation(s)
- Doaa E Elsherif
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Eman Abd-ElShafy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt
| | - Asmaa M Khalifa
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo, Egypt
| |
Collapse
|
16
|
Nikolić D, Bosnić D, Samardžić J. Silicon in action: Between iron scarcity and excess copper. FRONTIERS IN PLANT SCIENCE 2023; 14:1039053. [PMID: 36818840 PMCID: PMC9935840 DOI: 10.3389/fpls.2023.1039053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Essential micronutrients belonging to the transition metals, such as Fe and Cu, are indispensable for plant growth and stress tolerance; however, when present in excess, they can become potentially dangerous producers of reactive oxygen species. Therefore, their homeostases must be strictly regulated. Both microelement deficiencies and elevated concentrations of heavy metals in the soil are global problems that reduce the nutritional value of crops and seriously affect human health. Silicon, a beneficial element known for its protective properties, has been reported to alleviate the symptoms of Cu toxicity and Fe deficiency stress in plants; however, we are still far from a comprehensive understanding of the underlying molecular mechanisms. Although Si-mediated mitigation of these stresses has been clearly demonstrated for some species, the effects of Si vary depending on plant species, growing conditions and experimental design. In this review, the proposed mechanistic models explaining the effect of Si are summarized and discussed. Iron and copper compete for the common metal transporters and share the same transport routes, hence, inadequate concentration of one element leads to disturbances of another. Silicon is reported to beneficially influence not only the distribution of the element supplied below or above the optimal concentration, but also the distribution of other microelements, as well as their molar ratios. The influence of Si on Cu immobilization and retention in the root, as well as Si-induced Fe remobilization from the source to the sink organs are of vital importance. The changes in cellular Cu and Fe localization are considered to play a crucial role in restoring homeostasis of these microelements. Silicon has been shown to stimulate the accumulation of metal chelators involved in both the mobilization of deficient elements and scavenging excess heavy metals. Research into the mechanisms of the ameliorative effects of Si is valuable for reducing mineral stress in plants and improving the nutritional value of crops. This review aims to provide a thorough and critical overview of the current state of knowledge in this field and to discuss discrepancies in the observed effects of Si and different views on its mode of action.
Collapse
|