1
|
Wendlandt CE, Avelar-Barragan J, Zomorrodian AJ, Al-Moussawi K, Porter SS, Sachs JL. Host control by Acmispon strigosus constrains fitness gains of ineffective Bradyrhizobium symbionts in mixed infections. J Evol Biol 2025; 38:261-271. [PMID: 39659200 DOI: 10.1093/jeb/voae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024]
Abstract
Plant hosts can gain significant growth benefits from symbiosis with microbes, but these benefits could be threatened by divergent fitness interests among partners. Here, we measured fitness outcomes in symbiosis, by varying the genotypes of both microbes and hosts, to examine scenarios that might favour uncooperative symbionts. We studied associations between Acmispon strigosus, an annual legume native to California, and its nitrogen-fixing symbionts in the genus Bradyrhizobium. Bradyrhizobium symbionts form root nodules on compatible hosts, with strains varying from effective, fixing substantial nitrogen for the host, to ineffective strains that do not fix nitrogen and provide no benefit to host growth. We co-inoculated four A. strigosus plant lines with nine combinations of effective and ineffective Bradyrhizobium strains and measured the relative fitness of ineffective strains within individual nodules, as hosts must select against uncooperative symbionts to maintain benefits. In mixed infections, ineffective strains always had lower relative fitness in nodules compared to beneficial strains, consistent with efficient punishment of non-fixing rhizobia. However, ineffective strains exhibited genotypic variation in their fitness in nodules within individual nodules co-infected with a beneficial strain, suggesting a role for symbiont competitiveness in shaping this joint phenotype. Variation in symbiont fitness during co-inoculations did not measurably affect plant performance, suggesting that predicted conflict over the joint phenotype of rhizobia fitness has negligible effect on the host.
Collapse
Affiliation(s)
- Camille E Wendlandt
- Department of Botany & Plant Sciences, University of California, Riverside, CA, United States
| | - Julio Avelar-Barragan
- Department of Botany & Plant Sciences, University of California, Riverside, CA, United States
| | - Avissa J Zomorrodian
- Department of Evolution, Ecology & Organismal Biology, University of California, Riverside, CA, United States
| | - Khadija Al-Moussawi
- Department of Evolution, Ecology & Organismal Biology, University of California, Riverside, CA, United States
| | - Stephanie S Porter
- School of Biological Sciences, Washington State University, Vancouver, WA, United States
| | - Joel L Sachs
- Department of Botany & Plant Sciences, University of California, Riverside, CA, United States
- Department of Evolution, Ecology & Organismal Biology, University of California, Riverside, CA, United States
- Institute of Integrative Genome Biology, University of California, Riverside, CA, United States
| |
Collapse
|
2
|
Michailidu J, Maťátková O, Čejková A, Masák J. Chemical Conversations. Molecules 2025; 30:431. [PMID: 39942538 PMCID: PMC11820530 DOI: 10.3390/molecules30030431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 02/16/2025] Open
Abstract
Among living organisms, higher animals primarily use a combination of vocal and non-verbal cues for communication. In other species, however, chemical signaling holds a central role. The chemical and biological activity of the molecules produced by the organisms themselves and the existence of receptors/targeting sites that allow recognition of such molecules leads to various forms of responses by the producer and recipient organisms and is a fundamental principle of such communication. Chemical language can be used to coordinate processes within one species or between species. Chemical signals are thus information for other organisms, potentially inducing modification of their behavior. Additionally, this conversation is influenced by the external environment in which organisms are found. This review presents examples of chemical communication among microorganisms, between microorganisms and plants, and between microorganisms and animals. The mechanisms and physiological importance of this communication are described. Chemical interactions can be both cooperative and antagonistic. Microbial chemical signals usually ensure the formation of the most advantageous population phenotype or the disadvantage of a competitive species in the environment. Between microorganisms and plants, we find symbiotic (e.g., in the root system) and parasitic relationships. Similarly, mutually beneficial relationships are established between microorganisms and animals (e.g., gastrointestinal tract), but microorganisms also invade and disrupt the immune and nervous systems of animals.
Collapse
Affiliation(s)
| | | | | | - Jan Masák
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague, Czech Republic; (J.M.); (O.M.); (A.Č.)
| |
Collapse
|
3
|
Hanif MS, Tayyab M, Baillo EH, Islam MM, Islam W, Li X. Plant microbiome technology for sustainable agriculture. Front Microbiol 2024; 15:1500260. [PMID: 39606113 PMCID: PMC11599219 DOI: 10.3389/fmicb.2024.1500260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/16/2024] [Indexed: 11/29/2024] Open
Abstract
Plants establish specific interactions with microorganisms, which are vital for promoting growth and resilience. Although advancements in microbiome modulation technologies show great potential for sustainable agriculture, several challenges have hindered the wider application of plant microbiomes in the field. These challenges may include inconsistent microbial colonization, competition with native microbiota, and environmental variability. Current strategies, while promising, often yield inconsistent results in real-world agricultural settings, highlighting the need for more refined approaches. Agricultural practices and plant genotypes significantly influence the composition and function of plant-associated microbiota. A data-driven strategy that incorporates genomic profiling, environmental assessments, and optimized delivery systems is essential for selecting effective microbial strains. Additionally, refining farming practices, such as crop rotation, intercropping, and reduced tillage, along with robust plant breeding programs, can greatly enhance crop health and productivity.
Collapse
Affiliation(s)
- Muhammad Sajid Hanif
- Centre for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Muhammad Tayyab
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, China
| | - Elamin Hafiz Baillo
- Agricultural Research Corporation (ARC), Ministry of Agriculture, Wad Madani, Sudan
| | - M. Mominul Islam
- Centre for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Xiaofang Li
- Centre for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| |
Collapse
|
4
|
Iriart V, Rarick EM, Ashman TL. Rhizobial variation, more than plant variation, mediates plant symbiotic and fitness responses to herbicide stress. Ecology 2024:e4426. [PMID: 39440990 DOI: 10.1002/ecy.4426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/25/2024] [Accepted: 07/18/2024] [Indexed: 10/25/2024]
Abstract
Symbiotic mutualisms provide critical ecosystem services throughout the world. Anthropogenic stressors, however, may disrupt mutualistic interactions and impact ecosystem health. The plant-rhizobia symbiosis promotes plant growth and contributes to the nitrogen (N) cycle. While off-target herbicide exposure is recognized as a significant stressor impacting wild plants, we lack knowledge about how it affects the symbiotic relationship between plants and rhizobia. Moreover, we do not know whether the impact of herbicide exposure on symbiotic traits or plant fitness might be ameliorated by plant or rhizobial genetic variation. To address these gaps, we conducted a greenhouse study where we grew 17 full-sibling genetic families of red clover (Trifolium pratense) either alone (uninoculated) or in symbiosis with one of two genetic strains of rhizobia (Rhizobium leguminosarum) and exposed them to a concentration of the herbicide dicamba that simulated "drift" (i.e., off-target atmospheric movement) or a control solution. We recorded responses in immediate vegetative injury, key features of the plant-rhizobia mutualism (nodule number, nodule size, and N fixation), mutualism outcomes, and plant fitness (biomass). In general, we found that rhizobial variation more than plant variation determined outcomes of mutualism and plant fitness in response to herbicide exposure. Herbicide damage response depended on plant family, but also whether plants were inoculated with rhizobia and if so, with which strain. Rhizobial strain variation determined nodule number and size, but this was herbicide treatment-dependent. In contrast, strain and herbicide treatment independently impacted symbiotic N fixation. And while herbicide exposure significantly reduced plant fitness, this effect depended on inoculation state. Furthermore, the differential fitness benefits that the two rhizobial strains provided plants seemed to diminish under herbicidal conditions. Altogether, these findings suggest that exposure to low levels of herbicide impact key components of the plant-rhizobia mutualism as well as plant fitness, but genetic variation in the partners determines the magnitude and/or direction of these effects. In particular, our results highlight a strong role of rhizobial strain identity in driving both symbiotic and plant growth responses to herbicide stress.
Collapse
Affiliation(s)
- Veronica Iriart
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elizabeth M Rarick
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Wangthaisong P, Piromyou P, Songwattana P, Phimphong T, Songsaeng A, Pruksametanan N, Boonchuen P, Wongdee J, Teamtaisong K, Boonkerd N, Sato S, Tittabutr P, Teaumroong N. CopG 1, a Novel Transcriptional Regulator Affecting Symbiosis in Bradyrhizobium sp. SUTN9-2. BIOLOGY 2024; 13:415. [PMID: 38927295 PMCID: PMC11201211 DOI: 10.3390/biology13060415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
The symbiotic interaction between leguminous and Bradyrhizobium sp. SUTN9-2 mainly relies on the nodulation process through Nod factors (NFs), while the type IV secretion system (T4SS) acts as an alternative pathway in this symbiosis. Two copies of T4SS (T4SS1 and T4SS2) are located on the chromosome of SUTN9-2. ΔT4SS1 reduces both nodule number and nitrogenase activity in all SUTN9-2 nodulating legumes. The functions of three selected genes (copG1, traG1, and virD21) within the region of T4SS1 were examined. We generated deleted mutants and tested them in Vigna radiata cv. SUT4. ΔtraG1 and ΔvirD21 exhibited lower invasion efficiency at the early stages of root infection but could be recently restored. In contrast, ΔcopG1 completely hindered nodule organogenesis and nitrogenase activity in all tested legumes. ΔcopG1 showed low expression of the nodulation gene and ttsI but exhibited high expression levels of the T4SS genes, traG1 and trbE1. The secreted proteins from ΔT4SS1 were down-regulated compared to the wild-type. Although ΔcopG1 secreted several proteins after flavonoid induction, T3SS (nopP and nopX) and the C4-dicarboxylate transporter (dct) were not detected. These results confirm the crucial role of the copG1 gene as a novel key regulator in the symbiotic relationship between SUTN9-2 and legumes.
Collapse
Affiliation(s)
- Praneet Wangthaisong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pongdet Piromyou
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pongpan Songwattana
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Tarnee Phimphong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Apisit Songsaeng
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Natcha Pruksametanan
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pakpoom Boonchuen
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Jenjira Wongdee
- Institute of Research and Development, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Kamonluck Teamtaisong
- The Center for Scientific and Technological Equipment, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Nantakorn Boonkerd
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Panlada Tittabutr
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Neung Teaumroong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
6
|
Ben Gaied R, Sbissi I, Tarhouni M, Brígido C. Enhancing Pisum sativum growth and symbiosis under heat stress: the synergistic impact of co-inoculated bacterial consortia and ACC deaminase-lacking Rhizobium. Arch Microbiol 2024; 206:203. [PMID: 38573536 PMCID: PMC10995081 DOI: 10.1007/s00203-024-03943-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
The 1-aminocyclopropane-1-carboxylate (ACC) deaminase is a crucial bacterial trait, yet it is not widely distributed among rhizobia. Hence, employing a co-inoculation approach that combines selected plant growth-promoting bacteria with compatible rhizobial strains, especially those lacking ACC deaminase, presents a practical solution to alleviate the negative effects of diverse abiotic stresses on legume nodulation. Our objective was to explore the efficacy of three non-rhizobial endophytes, Phyllobacterium salinisoli (PH), Starkeya sp. (ST) and Pseudomonas turukhanskensis (PS), isolated from native legumes grown in Tunisian arid regions, in improving the growth of cool-season legume and fostering symbiosis with an ACC deaminase-lacking rhizobial strain under heat stress. Various combinations of these endophytes (ST + PS, ST + PH, PS + PH, and ST + PS + PH) were co-inoculated with Rhizobium leguminosarum 128C53 or its ΔacdS mutant derivative on Pisum sativum plants exposed to a two-week heat stress period.Our findings revealed that the absence of ACC deaminase activity negatively impacted both pea growth and symbiosis under heat stress. Nevertheless, these detrimental effects were successfully mitigated in plants co-inoculated with ΔacdS mutant strain and specific non-rhizobial endophytes consortia. Our results indicated that heat stress significantly altered the phenolic content of pea root exudates. Despite this, there was no impact on IAA production. Interestingly, these changes positively influenced biofilm formation in consortia containing the mutant strain, indicating synergistic bacteria-bacteria interactions. Additionally, no positive effects were observed when these endophytic consortia were combined with the wild-type strain. This study highlights the potential of non-rhizobial endophytes to improve symbiotic performance of rhizobial strains lacking genetic mechanisms to mitigate stress effects on their legume host, holding promising potential to enhance the growth and yield of targeted legumes by boosting symbiosis.
Collapse
Affiliation(s)
- Roukaya Ben Gaied
- Laboratory of Pastoral Ecosystems and Promotion of Spontaneous Plants and Associated Micro-Organisms, Institute of Arid Lands, University of Gabes, Medenine 4119, Tunisia
- MED - Mediterranean Institute for Agriculture, Environment and Development, Universidade de Évora, Pólo da Mitra, Ap. 94, Évora, 7006-554, Portugal
| | - Imed Sbissi
- Laboratory of Pastoral Ecosystems and Promotion of Spontaneous Plants and Associated Micro-Organisms, Institute of Arid Lands, University of Gabes, Medenine 4119, Tunisia
| | - Mohamed Tarhouni
- Laboratory of Pastoral Ecosystems and Promotion of Spontaneous Plants and Associated Micro-Organisms, Institute of Arid Lands, University of Gabes, Medenine 4119, Tunisia
| | - Clarisse Brígido
- MED-Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, Évora, 7006-554, Portugal.
| |
Collapse
|
7
|
Carvia-Hermoso C, Cuéllar V, Bernabéu-Roda LM, van Dillewijn P, Soto MJ. Sinorhizobium meliloti GR4 Produces Chromosomal- and pSymA-Encoded Type IVc Pili That Influence the Interaction with Alfalfa Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:628. [PMID: 38475474 DOI: 10.3390/plants13050628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/09/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
Type IVc Pili (T4cP), also known as Tad or Flp pili, are long thin microbial filaments that are made up of small-sized pilins. These appendages serve different functions in bacteria, including attachment, biofilm formation, surface sensing, motility, and host colonization. Despite their relevant role in diverse microbial lifestyles, knowledge about T4cP in bacteria that establish symbiosis with legumes, collectively referred to as rhizobia, is still limited. Sinorhizobium meliloti contains two clusters of T4cP-related genes: flp-1 and flp-2, which are located on the chromosome and the pSymA megaplasmid, respectively. Bundle-forming pili associated with flp-1 are involved in the competitive nodulation of alfalfa plants, but the role of flp-2 remains elusive. In this work, we have performed a comprehensive bioinformatic analysis of T4cP genes in the highly competitive S. meliloti GR4 strain and investigated the role of its flp clusters in pilus biogenesis, motility, and in the interaction with alfalfa. Single and double flp-cluster mutants were constructed on the wild-type genetic background as well as in a flagellaless derivative strain. Our data demonstrate that both chromosomal and pSymA flp clusters are functional in pili biogenesis and contribute to surface translocation and nodule formation efficiency in GR4. In this strain, the presence of flp-1 in the absence of flp-2 reduces the competitiveness for nodule occupation.
Collapse
Affiliation(s)
- Cristina Carvia-Hermoso
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Virginia Cuéllar
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Lydia M Bernabéu-Roda
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Pieter van Dillewijn
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - María J Soto
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| |
Collapse
|