1
|
Lian Y, Peng L, Shi X, Zheng Q, Fan D, Feng Z, Liu X, Ma H, Cao S, Chang W. Genome-Wide Identification of GLK Family Genes in Phoebe bournei and Their Transcriptional Analysis Under Abiotic Stresses. Int J Mol Sci 2025; 26:2387. [PMID: 40141031 PMCID: PMC11942458 DOI: 10.3390/ijms26062387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/23/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
GOLDEN2-LIKE (GLK) transcription factors are crucial regulators of chloroplast development and stress responses in plants. In this study, we investigated the GLK gene family in Phoebe bournei (Hemsl.) Yen C. Yang, a near-threatened species important for forestry and wood utilization in China. We identified 61 PbGLK genes which were classified into seven subfamilies. Our analyses of their phylogenetic relationships, gene structures, and chromosomal distribution revealed diverse characteristics. Expression profiling under different tissues and abiotic stresses showed that PbGLK25 and PbGLK30 were particularly responsive to drought, heat, light, and shade stresses, with significant upregulation. These findings highlight the potential role of PbGLK genes in stress adaptation and provide insights for the genetic improvement of P. bournei.
Collapse
Affiliation(s)
- Yiran Lian
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (X.S.)
| | - Liang Peng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.P.); (Q.Z.); (D.F.)
- Laboratory of Virtual Teaching and Research on Forest Therapy Speciality of Taiwan Strait, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinying Shi
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (X.S.)
| | - Qiumian Zheng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.P.); (Q.Z.); (D.F.)
| | - Dunjin Fan
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.P.); (Q.Z.); (D.F.)
| | - Zhiyi Feng
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Xiaomin Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (X.L.); (H.M.)
| | - Huanhuan Ma
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (X.L.); (H.M.)
| | - Shijiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.P.); (Q.Z.); (D.F.)
| | - Weiyin Chang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.P.); (Q.Z.); (D.F.)
- Laboratory of Virtual Teaching and Research on Forest Therapy Speciality of Taiwan Strait, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
2
|
Liu R, Feng Y, Li Q, Wu H, Guo S, Li J, Liu X, Zhang Y, Tang X, Cao S. Genome-Wide Analysis of CPP Transcription Factor Family in Endangered Plant Phoebe bournei and Its Response to Adversity. PLANTS (BASEL, SWITZERLAND) 2025; 14:803. [PMID: 40094804 PMCID: PMC11902078 DOI: 10.3390/plants14050803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
The CPP gene family comprises transcription factor genes containing a conserved CRC domain, which is mainly involved in plant development and evolution. Although CPP genes have been widely studied in many plants, little is known about them in woody plants, especially in the endangered species Phoebe bournei (Hemsl.). In the genome of Phoebe bournei, we identified 11 PbCPP genes (PbCPP1-PbCPP11) distributed on four chromosomes, with large differences in the number of amino acids. They encode both acidic and alkaline proteins. A phylogenetic analysis showed that these PbCPP genes can be divided into three subfamilies, A, B, and C, which contain seven, two, and two genes, respectively. Through an interspecific collinearity analysis, we identified homologous PbCPP genes. A promoter cis-acting element analysis revealed that PbCPPs contain a variety of elements that respond to plant hormones, stress signals, and light and play a role in growth and development, and most PbCPP genes (except PbCPP3 and PbCPP8) contain MYB binding site elements that regulate drought-induced stress responses, indicating that they play an important role in plant drought resistance. An expression analysis showed that PbCPP3 and PbCPP4 expression was high in the roots and stems and lower in the leaves, whereas the expression of most of the other genes was low in the roots, stems, and leaves. In addition, six representative PbCPP genes were detected using qRT-PCR. The results show significant differences in the expression of PbCPP genes under abiotic stress conditions (drought, cold, and salt), indicating that they play an important role in stress responses. This study preliminarily verified the role of the PbCPP gene family in different abiotic stress responses, which is of great significance for understanding its mechanism in plant growth and development and stress adaptation.
Collapse
Affiliation(s)
- Ronglin Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.L.); (Y.F.); (S.G.)
| | - Yizhuo Feng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.L.); (Y.F.); (S.G.)
| | - Qingyan Li
- College of Jun Cao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.L.); (Y.Z.)
| | - Hua Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Shengzhou Guo
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.L.); (Y.F.); (S.G.)
| | - Junnan Li
- Fujian Academy of Forestry Sciences, Fuzhou 350012, China;
| | - Xiaomin Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China;
| | - Yanlin Zhang
- College of Jun Cao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.L.); (Y.Z.)
| | - Xinghao Tang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.L.); (Y.F.); (S.G.)
- Fujian Academy of Forestry Sciences, Fuzhou 350012, China;
| | - Shijiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (R.L.); (Y.F.); (S.G.)
| |
Collapse
|
3
|
Fu N, Wang L, Sun Q, Wang Q, Zhang Y, Han X, Yang Q, Ma W, Tong Z, Zhang J. Genome-wide identification of the bHLH transcription factor family and the regulatory roles of PbbHLH74 in response to drought stress in Phoebe bournei. Int J Biol Macromol 2024; 283:137760. [PMID: 39557253 DOI: 10.1016/j.ijbiomac.2024.137760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Phoebe species constitute a large portion of subtropical forestry, which are key players in biomass resources. However, abiotic stresses such as drought stress severely limit the growth and development of P. bournei, and even lead to its death. It has been shown that basic helix-loop-helix (bHLH) as the second largest transcription factor family plays essential roles in response to multiple stresses in plants. However, little information of bHLH family is available in P. bournei. In this study, 130 PbbHLHs were identified and classified into 24 subfamilies. Then, the bHLH domain, conserved motifs and gene structures, evolutionary patterns and protein structural features were probed. The expression levels of 17 PbbHLHs were differentially induced by PEG and ABA by RT-qPCR analysis, indicating that they may be involved in drought stress response. Characterization of the drought candidate gene PbbHLH74 showed that it was transcriptionally active and localized in the nucleus. Heterologous transformation of PbbHLH74 into yeast improved cellular tolerance to drought stress. Meanwhile, overexpression of PbbHLH74 in Arabidopsis showed higher seed germination, plant biomass and expression levels of stress-related genes under drought conditions. Through the hairy root technique, overexpression of PbbHLH74 in P. bournei improved drought tolerance by enhancing root development and expression levels of genes involved in ABA-dependent and ROS scavenging pathways. Moreover, PbbHLH74 might positively regulate the expression of PbPOD by Y1H and dual-luciferase reporter assays. Overall, these results elucidated the structure and evolution of the PbbHLH family, in which PbbHLH74 could be applied to molecular assisted breeding for drought tolerance in P. bournei.
Collapse
Affiliation(s)
- Ningning Fu
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China
| | - Li Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China
| | - Qinglin Sun
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China
| | - Qiguang Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China
| | - Yuting Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China; Zhejiang Key Laboratory of Forest Genetics and Breeding, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China
| | - Xiao Han
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China; Zhejiang Key Laboratory of Forest Genetics and Breeding, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China
| | - Qi Yang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China; Zhejiang Key Laboratory of Forest Genetics and Breeding, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, National Innovation Alliance of Catalpa Bungei, Beijing, PR China
| | - Zaikang Tong
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China; Zhejiang Key Laboratory of Forest Genetics and Breeding, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China.
| | - Junhong Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China; Zhejiang Key Laboratory of Forest Genetics and Breeding, Zhejiang A&F University, Lin'an, Hangzhou 311300, Zhejiang, PR China.
| |
Collapse
|
4
|
Cisse EHM, Pascual LS, Gajanayake KB, Yang F. Tree species and drought: Two mysterious long-standing counterparts. PHYSIOLOGIA PLANTARUM 2024; 176:e14586. [PMID: 39468381 DOI: 10.1111/ppl.14586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 09/25/2024] [Indexed: 10/30/2024]
Abstract
Around 252 million years ago (Late Permian), Earth experienced one of its most significant drought periods, coinciding with a global climate crisis, resulting in a devastating loss of forest trees with no hope of recovery. In the current epoch (Anthropocene), the worsening of drought stress is expected to significantly affect forest communities. Despite extensive efforts, there is significantly less research at the molecular level on forest trees than on annual crop species. Would it not be wise to allocate equal efforts to woody species, regardless of their importance in providing essential furniture and sustaining most terrestrial ecosystems? For instance, the poplar genome is roughly quadruple the size of the Arabidopsis genome and has 1.6 times the number of genes. Thus, a massive effort in genomic studies focusing on forest trees has become inevitable to understand their adaptation to harsh conditions. Nevertheless, with the emerging role and development of high-throughput DNA sequencing systems, there is a growing body of literature about the responses of trees under drought at the molecular and eco-physiological levels. Therefore, synthesizing these findings through contextualizing drought history and concepts is essential to understanding how woody species adapt to water-limited conditions. Comprehensive genomic research on trees is critical for preserving biodiversity and ecosystem function. Integrating molecular insights with eco-physiological analysis will enhance forest management under climate change.
Collapse
Affiliation(s)
- El Hadji Malick Cisse
- United States Department of Agriculture, Beltsville Agricultural Research Center, Beltsville, Maryland, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Lidia S Pascual
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Castellón, Spain
| | - K Bandara Gajanayake
- United States Department of Agriculture, Beltsville Agricultural Research Center, Beltsville, Maryland, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Fan Yang
- Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecology, Hainan University, Haikou, China
| |
Collapse
|
5
|
Guan H, Zhang Y, Li J, Zhu Z, Chang J, Bakari A, Chen S, Zheng K, Cao S. Analysis of the UDP-Glucosyltransferase ( UGT) Gene Family and Its Functional Involvement in Drought and Salt Stress Tolerance in Phoebe bournei. PLANTS (BASEL, SWITZERLAND) 2024; 13:722. [PMID: 38475568 DOI: 10.3390/plants13050722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
Uridine diphosphate glycosyltransferases (UDP-GTs, UGTs), which are regulated by UGT genes, play a crucial role in glycosylation. In vivo, the activity of UGT genes can affect the availability of metabolites and the rate at which they can be eliminated from the body. UGT genes can exert their regulatory effects through mechanisms such as post-transcriptional modification, substrate subtype specificity, and drug interactions. Phoebe bournei is an economically significant tree species that is endemic to southern China. Despite extensive studies on the UGT gene family in various species, a comprehensive investigation of the UGT family in P. bournei has not been reported. Therefore, we conducted a systematic analysis to identify 156 UGT genes within the entire P. bournei genome, all of which contained the PSPG box. The PbUGT family consists of 14 subfamilies, consistent with Arabidopsis thaliana. We observed varying expression levels of PbUGT genes across different tissues in P. bournei, with the following average expression hierarchy: leaf > stem xylem > stem bark > root xylem > root bark. Covariance analysis revealed stronger covariance between P. bournei and closely related species. In addition, we stressed the seedlings with 10% NaCl and 10% PEG-6000. The PbUGT genes exhibited differential expression under drought and salt stresses, with specific expression patterns observed under each stress condition. Our findings shed light on the transcriptional response of PbUGT factors to drought and salt stresses, thereby establishing a foundation for future investigations into the role of PbUGT transcription factors.
Collapse
Affiliation(s)
- Hengfeng Guan
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanzi Zhang
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jingshu Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhening Zhu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiarui Chang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Almas Bakari
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shipin Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kehui Zheng
- College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shijiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|